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ABSTRACT

The equatxon governing the be‘mvxour -of rods of variable ccoss-sect;on subjected to
compressive loads is deduced using ths classical assumption-that the plane sections of the rod
bafore bending remain plane even after bending ; the stress-strain relatxonshlp can be either
the conventional Ramberg-Osgood Law or the alternative form developed by Rao and Krishna
Murthy; the deformations are considered to be large. The governing equation is monlinear
and an iterative method is used to obtain numerical results. A rlass of rods whose variation
of the cross-section can be represented by I=Io (1—Ss)", (where & is the curvilinear
coordinato) sre considered to study.the post-buckling behaviour. Numerical results have been

- obtained for various values of the geometric parameters involved in the problem, and the
;esults are in  good agreement with those available in the literature.

o

NOTATION

width of the column at the ﬁxéd end

ba

d, diameter (or depth) of column at the fixed end
E Young’s modulus of elasticity

E, tangent modulus | |

E, ‘reduced modulus

I, moment of inertia of the root section

L undeformed length of the column

P compressive load on the column
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radius of curvature of the rod

ar:.co-ordinate,  measured " along the® axis of ‘the 1
the: fixed “end o )

, i med column - e
@ slope. at free end of!!—th'e_. column o R C(
- denotes differeritiation ‘with respect to
B taper pa,;ram‘ete'if'i‘l;;ﬁb,/l-)'.;f"'f*‘"“l' o
A _taper pal'@n}gtgf ;;‘l;d',/do» : st
A PLyEJ, AR L
: slope at""ari"y’?“s"fg‘ét'iod s of the column

% - axial stress at the fixed end

Gos. . ..axial s’tx‘essgat‘:“?phy: station s o |
9,0, - bending stresses

P 1adius of ‘gyration at the base section

Study of comf;pess?b’iﬁf members Plays an.important role in the
design of structures. In me
Cross-section. Althodgh':the.liln_ea,if stability analysis of the tapered -1
columns provides an useful indication to the designer about the cri- Q
tical conditions, the-p’osft-bilckling analysis is of greater value in
predicting the, load-bea,rin]g capacity -of the structure after

er "‘buckl,ing’
has occurred. The solution for post-buckling of uniform cantilever

columns wasg given by Timoshenko [1]. Bhandari [2] studied the % :

Post buckling behaviour of columns with

moment of inertia, the tip section having
than the root section. Mioye recently, V
" given a solution for columns with small

a higher moment of Inertia
aradan and Pandala; [3] have
taper using the Rayleigh-

exponential variation of -

Ritz procedure.

In this paper, we

develop equations for the post-huck

ling analvsis
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of 1ods mcludlng the eﬁects of large deformation and elasto-plasti-
. city and.present:th st bueklmg behaviour of slender ‘columns for
a wide range of tapel 1at10 Critical loads of short columns are
“also"included. . A ‘ ' :

“ FORMULATION

The fundamenta,l a.ssumptlon in this paper is that the bendlnor
moment at any section of the rod is proportional to the local curva-
ture, which is representative of slender rods. Further, a linear stress
distribution, corresponding to the use-of Young’s modulus E on the
unloading side and the docal tangent modulus E, on the. loading side,
is assumed over: any CJ.OSS section of the rod; this assumption,
although not essential, is mhoduced to make the pxocedme reasonably.
simple. '

iy

Fig.1shows atyplcal cantjlever rol of v'mable Cross- sectlon
-subjected to an axial compressive load. In the deformed position,
the stress system at any cross-section may be considered tobe the sum
of the uniform axial stress field o,, due to normal component of the
load P and the stress distribution due .to bending moment M(s) .
thls sect:on Referring to. Tig. 2, we may write, ;
P ,é‘o'sﬁi
To find the bending s'tvresfses, we note that the stress on the concave
side of the column (see Fig. 1) will increase along the stress-strain
curve CD which is approximated, in this case, by a straightline from
Cv-with slope Z, at C, whereas on the co.avex side the stress will
reduce along aline CE having a slope E, the Young’s modulus of
elasticity; C co‘rresponds to g,s in stress-strain law. Noticinor that
the m\nal stress resultant of the bendmtr stresses at any cross-section
is zero, we have

h, h,

(2a) [0, ad — jqz AA=0"

0 o

(1) 'ao, =

and equilibrinm in moments requires
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, hl; - h2

@) jo, (7/,+e)d4 + fo, () dA=M(s)

o . 0
I’Lom s1mple oeometuc conmdexa,tlons we ha\e N
(3)' o 6,0— ’l/,/R and €, =1,/R o

and hence, ‘_ ,

(4) o,=En ,/R and o,=E,y,/R

Use of (4) in (2a) gives

(5 ES, ~E, S,=0

where S, and S, are the statlca.l moments of the cross-sectional areas
to the left and right of the lme d-d in Fm 3c and are given by

h, 1 h,

(5a) S,:jy, dA, S,.-;.'Jy,‘dA
' .0 - 1o »

Noticing that )
(6) I+ h,=d, |
One can obtain &, and I, and hence ‘¢’ from (5) and (6). Using (5)

the equation (2b) becomes

7) P’.-L&ffﬂsz; M
. "R ‘
where I, and I,, Lepzeqent the moments of inertia of the cross-

section to the right and the left of the line d-d in Fig. 8, about
(d-d), and are given by ~

. h, ¢ h
(7a) 71, =f?/’x A, I-"l:'j?”zm
i 2
° ‘ o

and R is the radins of curvature given by

(70) 1_de
- ds

S

-
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“and M(s) 'th‘e'. behtlinrr at ony section s. (7) is the differential
equa.tlon governing the behaviour of 1ods sub]ected to axial loads .
“in. the post bucklmg range. o

Sy

TAPERED ROI)S OF RECTANGULAR CROSS SECTION

We con31de1 a class of columns of 1ectandulal cmss—sectlon
with mdes‘of the cross section given by ' '

(8) d ié)zd,,'(l‘—ﬁl am

- b (s)= ""},' (1—B, )", | N

Q

where bo, d are the w1dth and depth of the rod at the fixed end
and B, and B, are taper parameters. For the analysis of such
rods, (7) may be written in a’more convenient form, as

o Bl g=ro-d.

where E, is the reduced modulus for the rectangular cross-section

given by
(10a) E,=4EE, (E'/*+ E’-l/z)
and I, is-the local plane moment of ‘inertia given by

(100)  To=g5b &= o by d2 (A= By )" (L i)™

which is a function of the curvilinear co-ovdinate s.

Using the Ramberg-Osgood stress-strain law, one can write

: o, n-1
1 -i———f—- N (—\)
/ g,

where 7 is a shape parameter and o, is a reference stress. Sub-
stituting the expression for ¢, from (1) and rearranging, we get,

(11) E=E

1

1) k= -
( ) 1 ‘\. ]\ ((").\[j)" !
95 (s) .
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“where . i

an k=2 ( E’—-) ,i B ()= (1= B, ™ (1= f,0)"

0p= P/A" P, d,

Usmu (1), (10) anl (12), irfl (8), one finds the curvature as

NE | . bcose 2
(14) ~.L:';‘l‘?_:.-?? (1,"*712)),_[1 i {1 i (,(s-)gﬁ) }]

R ds T, Ay (s

where

(s-)*a- B 1'--/31 s) "

Inho ucing the notatw.l

BN

, P o ' ' ]
(15) >\r = ’ x ; ' '
4 I, . oo
and recognising ;
o dr . ‘
(16) =l st
ils .
t
]
and mtegiating (14), we odt
' ! !
|
5 | send (Ir

(17 &) = : ‘ V 20! n ?
7) 6 (s) A ‘[h y“""(‘“")“‘”“i[l g {14!’_ ]‘(;;(21)0) } ] ds’

The solution of the nonhnc ar integro-differential equation (1/)
has to be obtained by a'sui able numerical method. In this paper,
We use an iteiative ]nocedme We' assume a suitable function

for 0 and wse the (oudmon that assumed slope at the free end

must be equal to the one ()l\runed from (17), and this will vield

the “‘]”1"')““1“ loxd g, of this configuration.  In teimns of the
slope at free cena @, (17) wmay he rewiitfen as

|
i { ~ /V,'(/j 1/_< ’
) ol Y —
(18 e e VN : AT fnc\ T
"o, J ¥ () 1 4 I 1 + j n (,O") ((*)EO) ll J-7 ds =0
. . o 1 / (5 19 (\) J
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4 (18a). -
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wwhere :
a=L[p und g,=Plh, d, . ,
The equations couespondmg to some speclﬁc cases may be deduced
from (18) as follows:
(1) Long unt form. column (lanear ela.sticity, ‘Za‘rge de formaiz’ons)
In this case -ﬂ,':ﬁzl—*O ~and hence, ¢(a =9y (s)=1. Also, the
modulus of ela-sticity is E and is constant. Hence, (18) reduces

j Jsm 7, dsds—()
@ o,

(¢4)  Long tapered coiwnm (linear clasticity, large deformation)

j. jsvne ds

(18) -i"E

=0

0,
(1e2)  Un z.lfor-m cnlm'n.n (elasto-plastic behaviour, large deformation)

I 1

(18¢) dali j (‘jsi?l@ (73)[ 1 4 { 1 +;3 (5‘_3)"" _
ulo, 1\, : 7 g, o

(cos 0) } :I dc’“O

e METHOD OF SOLUTION

We obtain an approximate solution of the governing equations,

using an iterative scheme. The appioximating function for the

slope 0 is chosen to be

(19) 0 (s) = sin™! ‘1: (2—=)

which satisfies the conditions

ds

and A ixa constant:  each value. of A conresponds to a specific slope
at the frce end and the cor no\])ondmw cquilibrinm load 1is ohtained
41

(194)  6(0)=-0 , ((M)T: =0,

(RPN

S el e i

v
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by solving. the corresponc;iii)g equations (18). The equation (19)

has been chosen in such a. foim that it simplifies the first in@gg;‘al
in (18).which is given by | -

A o : 1. g2 s3
20 B Od,:A R S 2
( )-’:"‘ | j . [d 26 >
SRR

Taking' o
(21) - A=2 sina

one can obtain an interesting limiting case, a—0, from (18) as

1 ( 1 _fi_}FiJ;)
(22) Le 2 1 _PLCAS 2 "%
s -~ a—0sina Z.Tifo vis)

[ e

The equation (22) coﬁ‘espdnds to critical: instability loads of very-

short columns of variable cross-section.

Based on a simpler trial function
23 =42 = 2 g
(23) v=Ar? = g

One can obtain, a first upproximation to equilibrium axial load of
slender rods (material assumed to be elastic, large deformation
effect considered) in terms of the slope at free end a, as

1 1 1 1
(24) — e 4 . 4+ e

A XN, C, 0,
where,
— (('I"I’la‘ + [_):7“(12 +l C )-,

Clm ety

(24a) C, = Nﬂ.r(l3 (M)

840
C,=N NED 4y 0 13a2498
2 , 560

N=n,+3 T

A 1 3 M : ) - . . .
The details regarding the derivation of (24) are given in the Appendix,

o o
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RESULTS AND DISCUSSION

F‘gq (5) and (6) show a comparison of the values of }\ for the

two cases of n=1and n=4. The results of [‘—3] ate better for small

valués. of 8. This is to be expectel since the function assumed

in [3] 1s ‘the exact mode shape of uniform. columns However, the -

plesent results are seen to be-better for hlgher values of 8. It is
lntelestmg to note that the present results and ‘those of [Rlare on -
either side of the more accurate results of’ Timoshenko, wherever
avaxlable ]410r 7. gives the values of \, for various values of a,
m_the complete linear taper range of 0=< =< 1 for the two cases, -

‘=1 and n=4. For acolumn of rectangular cross—section, n =1

represents a case -of taper in ‘breadth only. The ‘case n=4
corresponds to a linearly tapered cuculal or a rectangular column
with linear taper in both directions, By suitably selecting the
values of n, cases of non-linear taper can also be represented.

| }Criticalr instability loads of short columns (elasto-plastic
material, and small defouna,tlons) fortwo typical taper ratios are
1nesented in Fig. 8. For uniform columns, (22) gives a value of
A =2, 4 which compares well with the known exact value of n?/4.

APPENDIXN-A

The equilbrium equation may be written as (see eq. 8)
. ‘ . v" .
: (1+ 072312

In the case of cantilever columns cdnsiderd, we have
(A2) ET v" =P(v,—v) (14 0332

We consider cases for which B8,=8,=8 and the column has a
moment of inertia at any section expressible in the form
(A3) I(r)=1,(1—Bux)"

A deflected shape is assumed as »r,=Ar?, so that

(.‘X—i) ‘17,,a = A :11“1, 1_7'0 =a=2 1 X,

In the first step, we replace » on the right hand side of (A2) by

v,, so that

e a2
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z?) (1+4 42 222
, ve. expand the last term on the right
) ¥ W\\:O‘telms in the expansion, so that

(SAZ 2) (1 ﬂ z) "

Cor .

(A6) . o, =A"T J (Tt bz + _«3)[-1 +n B+ ’3'_(_’%*?-.1?132 2t + ...]d:c dz

2
\\"hel'Ae ‘

a=—64; b= esz 15 o=2,
Dependmo on the 1equl1ed - accmaq, one can retain a suitable

number of teems in the expansion of (1— gz)-". In the present
analysis, Onls three telms have been cons1deled

The \alue of \ is obta,lned from the condltlon that-the aqsumed
tip-deflection v, must be’ equal to v, at =2,  The expression for
A can be “11tten as b

(1&7) “1._ s 1_- + _}_ : ~L
XX e T ¢,
where -
X(l):(“ I(l +])JT : + i —t = 7.3 3:}&2""98
| 30 719 T2 caEnfal ()
AR ‘4ﬂ(13a74-"8) |

In the dbove equation, thc value of .2, corresponding to the a%eumed
function is ukcd and 1t is ol)t.mncd as follows:

Ta

(AS) le +(%)’ dz = j(].@: 1
o ' " . °

Using (A5), in the above éxpression, we get
(AQ) /" ol :} [a ;\/ j._*_&? _;_]” (a + ',\,-’l J'_\:‘c-tz) ]

(A10) oy e 2a
21y N1t 4 Iy (a + 13 ay

-

.
s
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®  TIMOSHENKO
——— REF.(3)

- = PRESENT WORK

A
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. : =.20°
20| = 5-22
0 04 08 12 -6

' FIG.5~COMPARISON OF X (n=4)

REF. (3)

PRESENT
WORK

2-0 1 {

o 02 ip 04 0-6

FiG. 6 — COMPARISON OF a (n:-1)
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FIG.8.CRITICAL LOADS OF SHORT COLUMNS
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