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Abstract 

Modeling of plate flexure, based on cubic variation of inplane 
displacements and qUllrtic variation of the normal displacement 
has been discussed. Displacement functions satisfy the zero shear 
stress condition at top and bottom surfaces' of the plate. The 
norma) stress condition at the surfaces of the plate and the el­
emental equilibrium eqUlltions are enforced through the use of 
the Lagrangian multipliers in the variational procedure used. Several 
new models are available as special cases in this formulation. 
An illustrative example of a simply-supported plate subjected 
to sinusoidal loading is included to indicate relative merits of 
the specia I .cases. 

1. Introduction 

Plate theory attempts to provide a two­
dimensional representation of an essentially 
three-dimensional phenomenon. The classical 
theory of plate flexure, based on Kirchhoff's 
assumption, predicts (he inplane stresses well. 
The transverse shear and normal stresses are 
usually estimated by integrating local equilibrium 
equations. Unfortunately this results in a violation 
of the constitutive relations as the transverse 
shear and normal strains are considered to be 
zero in the classical theory. Higher order models 
make provision for non-zero transverse shear 
and oormal strains. Here we consider the dis­
placement based higher order models wherein, 
one starts the displacement field in a series 

in terms of thicknesswise coordinate as 

.. 

Retaining a finite number of terms in the 
expansion and invoking variational principles/phy­
sical equilibr.ium cnnditions, the gov.erning. eq­

..• '" ,-.. .LJ~!ion.,,1!;..,.'~r:4 .... }?~~r.y conditions are~ -!f..~"!i~llJ?;,. 
'In this:'-appro~the=ctrninsvel:Se~sbear- .arid.:.'n"ormal 

stresses can be ·estimated using the constitutive 
relations; unfortunately such estimates violate 
the boundary conditions on stresses at the surfa~es 
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.of the plate. More recently Krishna Murty [2], 
Levinson [3]. gave the expressions for displace­
ments, wherein the zero shear stress condition 
at the top and bottom surfaces of the plate 
are also satisfied. So far there appears to be 
no attempt to formulate a plate theory satisfying 
the normal stress conditions at the top and bottom 
surfaces of the plate and this paper is an attempt 
in this direction. 

With the growing use of fiber reinforced 
plastic laminates in engineering applications 
and the importance of interlaminar stresses 
in such laminates, there is a new spur in de­
veloping new plate theories [4-11]. The int-er­
laminar normal stress is often a crucial design 
parameter· for the laminates, in particular when 
there are free etiges. Development of laminated 
plate theory, with provision for direct estimation 
of ,interlaminar normal stress is indeed complex. 
Basic studies related to isotropic plates are 
useful in identifying the direction for the de­
velopment of laminated plate models. 

Primarily two basic approaches may be 
identified for modeling plates satisfying the 
normal stress condition. A straight forward ap­
proach, wherein all stresses and strains are for­
mulated in terms of chosen displacement field, 
represents the classical consistent approach. 
This formulation is simple, populal' and is readily 
amenable for complicated problems. In the second 
approach, transverse shear and normal stresses 
are obtained by integrating local equilibrium 
equations after substituting the estimates to 
in-plane stresses from a displacement based 
theory [9,11]. In this paper, we consider the 
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firJapproach, to develop theories of flexure 
satisfying the normal stress condition. 

I 
lOne way of satisfying normal stress conditions 

at the surfaces of the plate in a displacement 
bas~d theory of plate flexure is the use of Lag­
ran~ian . multipliers. Unfortunately, it introduces 
a new difficulty namely, the governing equations 
ded~ced following the variational procedure, 
do Inot correspond to the physical equilibrium 
equations. Therefore, it becomes necessary to 
in t r10duce add i t i onal constraints representing 
ele~ental equilibrium equations through Lagrangian 
multipIit::rs to achieve satisfaction of these equ­
ilib~ium equations also. In the case of plate flexure 
problem, a total of· four Lagrangian multipliers 
will be necessary. 

The purpose of this paper is to present a 
stuqy, regarding modeling of plate flexure satis­
fying normal stress condition at the surface 
of the plate. 

I 
I 

I 2. F ormuJation 
I 
i A typical plate and the coordinate system 

are I shown in Fig.1. The plate is subjected to 
normal loadino at top and bottom surfaces (0 ) 1 
± Q~ and the ;hear loading on the plate surfcrc~s rs 
taken to be zero. In Ref. [12], a plate theory 

- has I been formulated based on . the displacement 
field. 
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Fig. 1 A typical Plate 
I 

i-I U (x,y,z) -z W,x - pu 
I I V (x,y,z) -z W,y - P v 

i iii (x~y,z) = W - p'w (1) 

I Where W,u,v, ware functions of the Cartesian 
coordinates,x and y only and denotes differen-
tiat,ion with respect to f;. 

I 
i p = f; (1 - + f;2 ) 
I 

(2) 

and E;, = z/h. where the thickness of the plate 
is 2h. This displacement field satisfies the zero 
shear stress conditions on the surfaces E;, = ± 1 of 
the plate. But the normal stress conditions on 
these faces are not satisfied. 

Appendix A contains a simple model satisfying 
all conditions at E;, = ± 1. It may be noted here, 
that although in this model, all boundary conditions 
are satisfied and the governing equations are 
variationally consistent, the transverse shear 
could not be estimated accurately. The reason 
for this debacle, is traced to be the fact that 
the governing equations deduced from the varia­
tional process do not correspond to the elemental 
equilibrium equations, leaving enors in elemental 
equilibrium. Hence it is imperative to make 
provision for the satisfaction of elemental equili­
brium conditions, by treating them as additional 
conditions to be satisfied by introduc::jng more 
Lagrangian multipliers. Keeping in view that 
there are three elemental equilibrium conditions 
namely the transverse and two rotational equili­
brium conditions in addition to the normal stress 
conditions at the top and bottom faces of the 
plate and recognising that zero shear stress 
conditions are already satisfied, it is clear, 
that a viable model must have, at least five 
independent variables to describe the displacement 
field as, 

U (x,y,z) -z w, -pu 
x 

V (x,y,z) = -z W, - pv y 

iii (x,y,z) W - p'w - qW
1 

(3) 

Where q E;,2 (1 _ E;,2) (2b) 

At. .this stage, for the sake of simplicity, 
it is convenient to restrict the presentation 
to the strip of an infinite plate, infinitely long 
in the y-direction, with uniform boundary condi­
tions along the edges x = constant. In such a 
case V = 0 and variations of all quantities 
with respect to yare zero. Thus the displace­
ment field reduces to 

o -z W'x - p u 

iii = W - p'w - qW 1 (4) 

The expressionss for the non-zero strains in 
terms of displacements become 

i 
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