

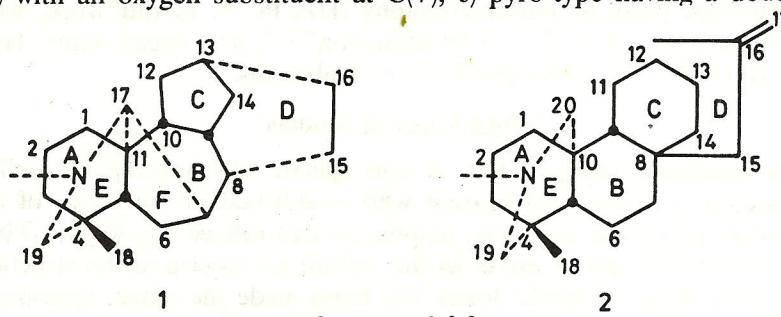
REVIEW ARTICLE RECENT CHEMISTRY OF SOME DITERPENOID ALKALOIDS

B S JOSHI, F.N.A.

*Institute of Natural Products Research, Chemistry Building,
The University of Georgia, Athens, Georgia 30602-2556, USA*

(Received 31 January 1995; Accepted 1 February 1996)

This review summarises some of our work on the chemistry of norditerpenoid and diterpenoid alkaloids


Key Words: Alkaloids Diterpenoid & Norditerpenoid; Isolation Technique; Studies—NMR Spectral & Phytochemical

Introduction

The diterpenoid alkaloids occur in the plant species of Compositae, Daphniphyllaceae, Garryaceae, Ranunculaceae, and Rosaceae. By far the largest number of diterpenoid alkaloids have been reported from *Aconitum*, *Delphinium* and *Consolida* genera of the Ranunculaceae family¹⁻³. *Delphiniums* have been used as arrow poisons since antiquity, plants containing these alkaloids have been traditionally used in India and China as medicines for centuries^{4,5}. These plants are primarily used as cardiotonics, febrifuges, sedatives and anti rheumatics. Recent studies have shown that the diterpenoid alkaloids contained in these plants are the active constituents responsible for the medicinal properties⁶.

Diterpenoid alkaloids have been divided on the basis of their skeletal ring system into two major groups, usually called C₁₉ diterpenoid (norditerpenoid) (1) and C₂₀-diterpenoid (diterpenoid) (2) alkaloids. Each group may be further subdivided into various types. Norditerpenoid alkaloids are highly oxygenated bases with one seven-, three six-, and two-five membered rings. They are subdivided mainly in four types; *a*) aconitine-type, having the skeleton (1) but no substituent at C(7) other than hydrogen. Some members of this class only, bear hydroxyl groups at C(3), C(13) and C(15); *b*) lycocotonine-type having the skeleton (1) with an oxygen substituent at C(7); *c*) pyro-type having a double bond

Although the
Aconitum and
Delphinium

Structures 1 & 2

between C(8) and C(15)—most probably, these compounds are not naturally occurring and are artifacts obtained during isolation of the alkaloids; and *d*) heterotype is a very small group of alkaloids in which a δ -lactone moiety is present in ring C.

The diterpenoid alkaloids include the basic skeleton shown in (2), differing in the attachment of the C(15) bridge at either C(11), C(12) or C(13)³, e.g. *a*) atisane-type alkaloids contain a [2.2.2]-bicyclo ring system with the C(15)-C(16) bridge attached at C(12)—such a ring system incorporates an *ent*-atisine skeleton, but does not obey the isoprene rule; *b*) veatchine-type possessing a [3.2.1] bicyclo ring system in a C(15)-C(16) bridge connected to C(13), forming the five membered ring D. These are modeled on a *ent*-kaurane nucleus and obey the isoprene rule; and *c*) delundine-type in which the presence of the five membered ring C in the skeleton differs from the veatchine type in that the C(15)-C(16) bridge is linked to C(11). It is difficult to explain how it could be derived from the atisane or a pimamic acid skeleton. Several hypotheses of biogenetic pathways for the formation of norditerpenoid and diterpenoid alkaloids have been postulated although detailed biosynthetic experimental studies have not been reported so far⁷.

Although the isolation of the first diterpenoid alkaloid was reported in 1819⁸ the structures of these complex natural products were not determined for well over hundred years. The structure of lycocotonine was established in 1956 by X-ray crystallographic studies of a degradation product⁹, the results of which marked a milestone in the history of diterpenoid alkaloids. Chemical and degradative studies to establish the structures of these alkaloids almost ended in the 1970's when ¹H and ¹³C nmr spectroscopy became available.

Isolation Techniques

Since the isolation of the first pure alkaloid morphine by Serturner in 1805, a variety of methods have been used for the isolation of pure alkaloids from crude plant-extracts. Many of the newer techniques include pH gradient extraction, preparative thin layer chromatography, gel permeation chromatography, high performance thin layer chromatography (HPTLC), high performance liquid chromatography (HPLC), vacuum liquid chromatography (VLC), centrifugally accelerated radial thin layer chromatography (Chromatotron), counter current distribution, droplet counter current chromatography (DCCC), high performance centrifugal partition chromatography (HPCPC)¹⁰. In our work, we have made extensive use of VLC¹¹, "Chromatotron"^{12,13}, and occasionally, HPLC¹⁴, DCCC¹⁵ and HPCPC¹⁶ for the purification of alkaloids.

NMR Spectral Studies

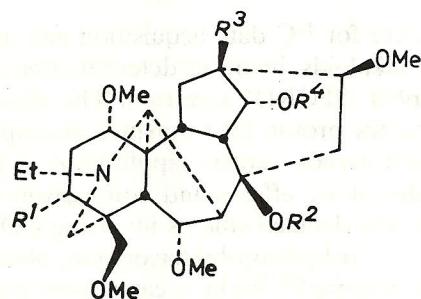
The only systematic study of the ¹H nmr spectra of norditerpenoid alkaloids was published by Tsuda and Marion who established the presence of acetate and benzoate groups in aconitine, delphinine and related alkaloids¹⁷. The proton nmr spectra are not as useful as the carbon-13 spectra in the structure determination of these alkaloids. Jones and Benn made the initial contribution to ¹³C nmr spectroscopy of diterpenoid alkaloids^{18,19}. This technique was further developed by Pelletier and co-workers^{1,2} which greatly accelerated progress in

structure elucidation of these complex natural products. Today the availability of new nmr techniques, such as 2D nmr, *n*Oe, HMBC, HMQC, COLOC and selective INEPT experiments allow structure determination of small amounts of isolated alkaloids. So far, the structures of more than 400 norditerpenoid and diterpenoid alkaloids have been established.

The structure determination of norditerpenoid alkaloids has become now straight forward, as all these alkaloids fall in the four major structure types discussed earlier and have well defined substituent and configurational patterns. In addition to these, a ¹³C nmr "data bank" is readily available for comparison of data of alkaloids which have similar structures^{1,2}. However, the structure determination of diterpenoid alkaloids (C₂₀) is more challenging because of their diverse substructures and also the fewer number of alkaloids for which the ¹³C nmr data are available.

The general procedure for ¹³C data acquisition and assignments of the resonances for each of the alkaloids, involved determination of the single frequency off resonance decoupled (SFORD) spectrum. The signals were assigned by means of the single frequency proton off resonance decoupling technique, direct analysis of non-protonated carbon centers, application of known chemical shift rules for substituent shifts, steric effects and comparison of spectra of closely related compounds. The first detailed studies involving COSY, and C/H correlations were carried out on 3 α -hydroxy-bikhaconitine, obtained by the hydrolysis of foresaconitine (yunaconitine)²⁰. We have carried out detailed nmr spectral investigations of aconitine²¹, tatsidine²², delphinine²³, dictyzine²³, ajabicine²⁴, andersobine¹⁵, tatsirine²⁵, and many other alkaloids, which study has enabled not only the structure derivation but also the accurate chemical shift assignments in these alkaloids. Our work indicated that the study of ¹³C nmr spectra of diterpenoid alkaloids is valuable in the determination of structures of newly isolated compounds. Also, in the case of amorphous alkaloids, where an X-ray structure determination is not possible, ¹³C nmr spectroscopy is a very useful tool for derivation of structures.

This review concerns our work on the isolation, determination of structures, partial synthesis, transformations and spectroscopic studies of diterpenoid alkaloids isolated from plants of the *Aconitum*, *Delphinium* and *Consolida* species. The chemical structures given in the review are predominantly those of new alkaloids; however, structures of known alkaloids are also given where necessary.


Phytochemical Studies

Aconitum balfourii

The roots of *A. balfourii* Stapf. are found in the sub-alpine and alpine Himalayas from Garhwal to Nepal between 7,500 and 14,000 ft⁴ and are reported to be highly poisonous. Henry and Sharp²⁶ reported the isolation of pseudaconitine from *A. balfourii* and this alkaloid was first isolated in 1877 from the roots of *A. ferox* Wall²⁷ a species which is used in Ayurvedic medicines⁴. After a series of investigations, the structure of pseudaconitine as (3) was established in 1963 by Tsuda and Marion²⁸.

Three new norditerpenoid alkaloids, 8-O-methylveratroylpseudaconine (**4**), veratroylbikhaconine (**5**) and balfourine (**6**) were isolated from the roots, together with eight known alkaloids, pseudaconitine (**3**), veratroylpseudaconine, indaconitine, ludaconitine, 8-deacetyllyunaconitine, bikhaconitine, neoline and chasmanine. Structures of the new alkaloids were determined by spectral data and chemical correlation with alkaloids of established structures²⁹.

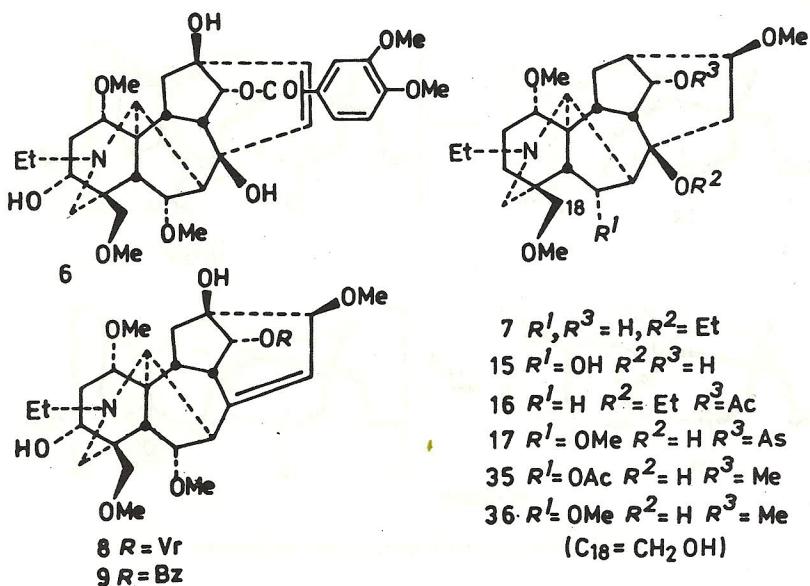
From the aerial parts of *A. balfourii*, nine known norditerpenoid alkaloids: condelphine, bullatine C, neoline, isotalatizidine, 1-O-methyldelphisine, pseudaconitine (**3**), yunaconitine, bikhaconitine and indaconitine were isolated. Detailed nmr studies (¹H, ¹³C, ¹H-¹H COSY, hetero COSY, and selective INEPT) were carried out on condelphine, neoline, isotalatizidine and indaconitine to provide chemical shift assignments for these alkaloids³⁰.

3	$R^1, R^3 = OH, R^2 = Ac, R^4 = Vr$ (Vr=Veratroyl)	12	$R^1, R^3 = H, R^2 = Ac, R^4 = Vr$
4	$R^1, R^3 = OH, R^2 = Me, R^4 = Vr$	13	$R^1, R^2, R^3 = H, R^4 = Vr$
5	$R^1, R^2 = H, R^3 = OH, R^4 = Vr$	14	$R^1, R^2 = H, R^3 = OH, R^4 = As$ (As=Anisoyl)
10	$R^1 = OH, R^2, R^3 = H, R^4 = Vr$	18	$R^1 = H, R^2 = Et, R^3 = OH, R^4 = As$
11	$R^1 = OH, R^2 = Ac, R^3 = H, R^4 = Vr$	19	$R^1, R^3 = OH, R^2 = Et, R^4 = As$

Structures 3-5, 10-14, 18 & 19

Aconitum columbianum

A. columbianum Nutt. ssp. *columbianum* is a perennial shrub growing in the western parts of the United States. The presence of aconine and aconitine has been recorded although no reference has been cited for their original isolation³¹. Some preliminary studies on the isolation of amorphous alkaloids from the roots and assays of the toxicity to sheep and cattle have been recorded³². A chemical investigation of the Canadian variety reported as major alkaloids, talatizamine and cammaconine and as minor alkaloids, sachaconitine, talatizidine, isotalatizidine, 14-O-acetyl talatizamine and columbianine³⁴.


In addition to the known alkaloids cammaconine, deltaline, dictyocarpine, talatizamine and 8-O-methyltalatizamine, a new base columbidine (**7**) was isolated by us. The structure of (**7**) was derived on the basis of spectral and chemical correlation studies. Some chemical shifts of the known compounds were reassigned³⁵. The 8-acetoxyl group in norditerpenoid alkaloids can be replaced by an alkoxy group by treatment with the corresponding alcohol under reflux

or in a sealed tube at 110-130°C. 8-Acetylthalatizamine has not been isolated from a natural source and we were unable to isolate it from *A. columbianum*. Talatizamine which has an OH group at C(8), does not furnish (7) when heated with ethanol at 50°C for a prolonged period.

Aconitum falconeri

The roots of *A. falconeri* Stapf. (Hindi: *Bish, Bikh* or *Meetha Tellia*) are found in the sub-alpine and alpine regions of the Himalayas of Garhwal and are reported to be poisonous⁴. Singh *et al.* reported the isolation of alkaloids bishatizine and bishaconitine without giving any structures³⁶. Pelletier *et al.* isolated two pyro-type of norditerpenoid alkaloids, falaconitine (8) mithaconitine (9)³⁷ apart from the known compounds, pseudoaconitine (3), indaconitine and veratroylpseudaconine³⁸. The alkaloids (8) and (9) are most probably artifacts formed by the pyrolysis of pseudoaconitine (3) and indaconitine, during the isolation procedure.

A reexamination of the alkaloids from the roots by isolation mild conditions did not show the presence of these pyro-type alkaloids. The new alkaloids, falconerine (10), falconerine 8-acetate (11)³⁹, falconericine (12) and falconeridine (13) were isolated⁴⁰, in these investigations. Another alkaloid falconeridine isolated from this plant, is probably an artifact resulting from the replacement of the 8-acetate in (11) with an ethoxy group. This was confirmed by refluxing (11) with ethanol⁴⁰.

Structures 6-9, 15-17, 35-36

Aconitum forrestii

The roots of *A. forrestii* Stapf. are used in the Chinese traditional medicine for the treatment of rheumatism. Chen and Breitmaier have reported the isolation of a foresaconitine (vilmorrianine C) from *A. forrestii* Stapf. var. *albo-*

villosum (Chen *et al.*) W.T. Wang⁴¹. Our investigation of the roots resulted in the isolation of two novel norditerpenoid alkaloids forestine (**14**) and foresticine (**15**), together with the known alkaloids, chasmanine, talatizamine, and yunaconitine⁴².

In another study, we isolated four alkaloids, acoforine (**16**), acoforesticine (**17**), acoforestine (**18**), acoforestinine (**19**), besides crassicauline A. The structures of these alkaloids were determined on the basis of nmr spectral data and correlation with alkaloids of established structures. The structure and stereochemistry of acoforestine (**18**) was confirmed by an X-ray crystal structure determination⁴³.

A few norditerpenoid alkaloids containing a methoxyl group at C(8) have been reported in the literature, e.g. alkaloid A (bicoloridine), ambiguine, puber-aconitidine, sepentriosine and hokbusine A^{1,2}. Columbidine is one of the alkaloids containing an ethoxyl group at C(8)³⁵. The question as to whether the alkaloids containing a methoxy or an ethoxyl group at C(8) are artifacts or are present in the plant cannot be answered unequivocally without careful investigation. The precursor of acoforine (**16**) should be 8,14-diacetyl talatizamine, but this has not been isolated so far from this plant. The facile conversion of the 8-acetoxy group in some norditerpenoid alkaloids to the 8-alkoxy compounds can be considered as synchronous fragmentation process such as described by Grob⁴⁴. The free electron pair of the nitrogen atom is oriented anti and parallel (anti-periplanar) with respect to the C–C bond which undergoes cleavage as shown in Fig. 1.

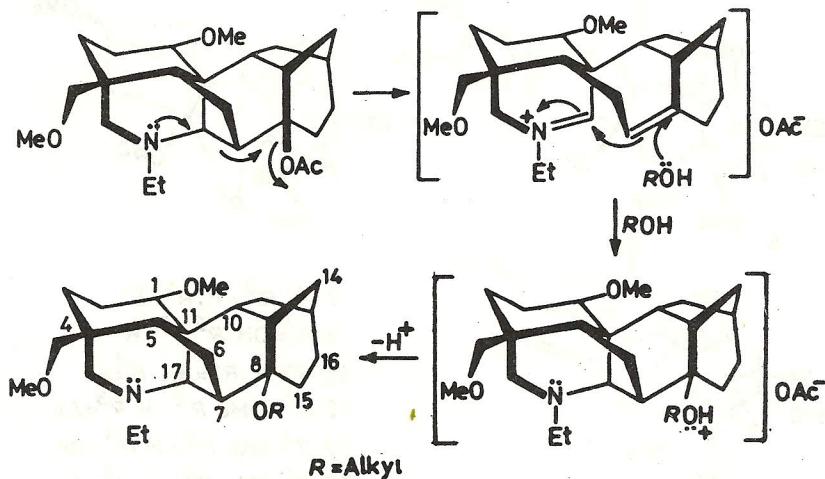
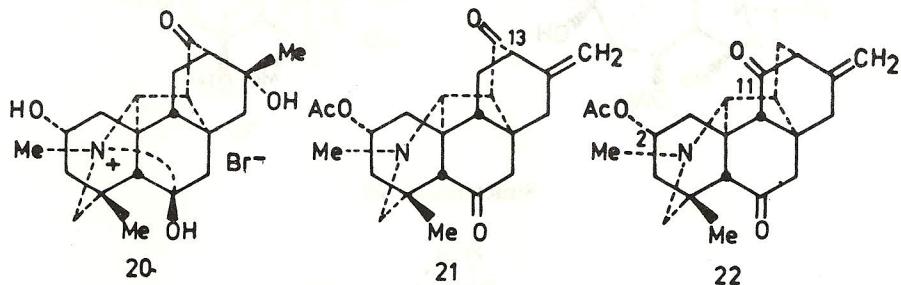
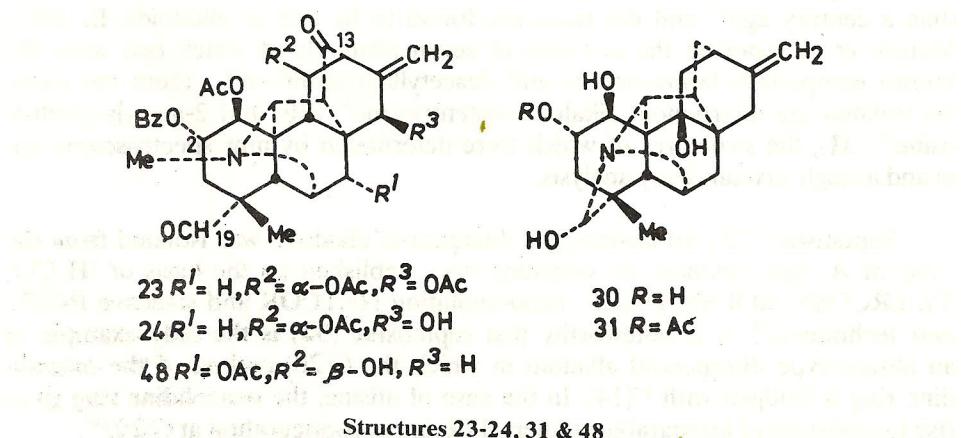



Fig 1 Synchronous fragmentation mechanism

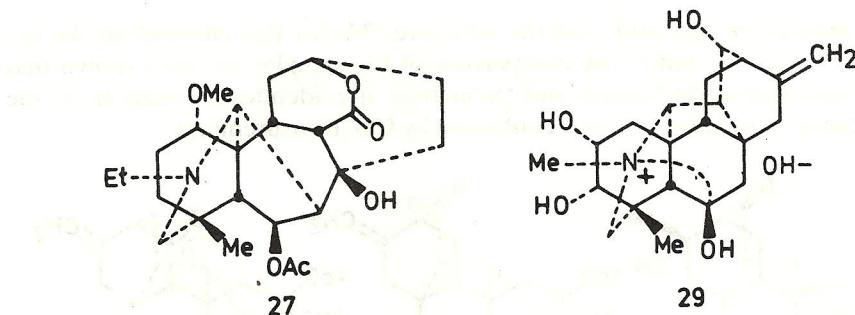
Aconitum heterophyllum, *Aconitum paniculatum*

An amorphous alkaloid heterophyllumine was isolated by Pelletier *et al.*⁴⁵, from the Indian plant *A. heterophyllum* Stapf. On the basis of an X-ray analysis of a bromo derivative (**20**), the structure and absolute configuration were assigned to heterophyllumine (**21**). Later, Katz and Staehelin isolated panicutine

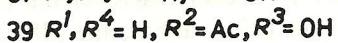
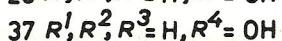
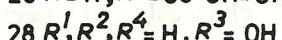
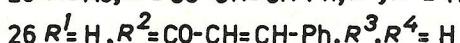
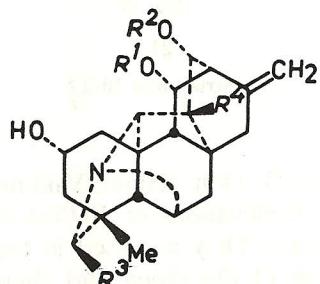
from *A. paniclatum* and proposed the structure (22) for this alkaloid on the basis of uv, ¹H and ¹³C nmr⁴⁶. By comparison of the samples we have shown that the alkaloids heterophylloidine and panicutine are identical. Location of the keto-groups at C(6) and C(13) was confirmed by CD measurements⁴⁷.



Structures 20-22

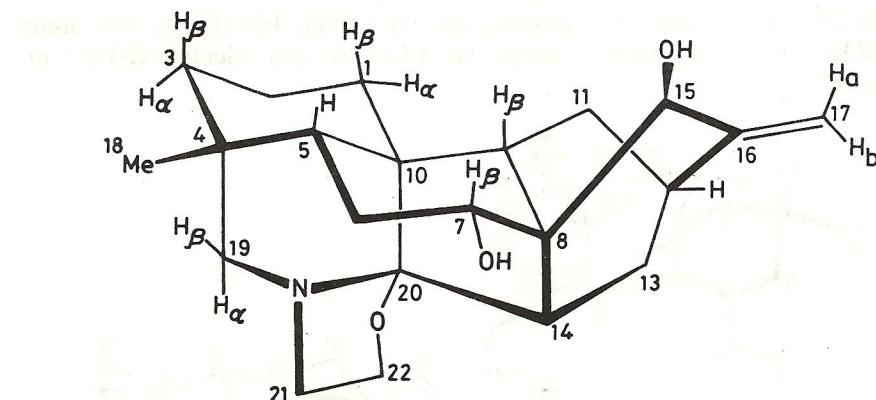

Aconitum palmatum

The species *A. palmatum* D. Don. (Hindi: Vakhma) occurs in the alpine Himalayas of Nepal, Sikkim at elevations of 10,000-16,000 ft and the roots are reported to be non-poisonous. They are used in the Ayurvedic medicine as a tonic, and in the treatment of diarrhoea and rheumatism⁴. The isolation of five diterpenoid alkaloids: vakognavine, palmatisine, vakatisine, vakatisinine and vakatidine was reported without assigning any structures⁴⁸. The structure of vakognavine (23) was based on an X-ray crystal structure determination⁴⁹. Later publications were concerned with chemical and spectral confirmation of (23)^{50,51} and that of vakatisine⁵².

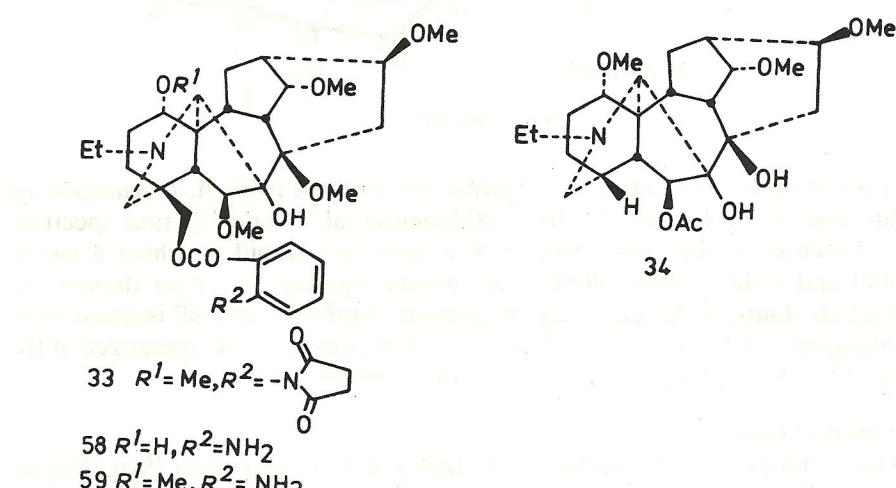





Six new diterpenoid alkaloids 15-deacetylvacognavine (24), palmadine (25), palmasine (26), 6-acetylheteratisine, (27), vakhmatine (28), and vakhmatine (29) *fd* together with the known alkaloids vakognavine, heteratisine, isoatidine, hetidine and hetidine, were isolated from the roots^{53,54}. Palmadine (25) and palmasine (26) are the first examples of diterpenoid alkaloids (C₂₀) bearing a cinnamoyl group.

Structures 23-24, 31 & 48

Structures 27, 29



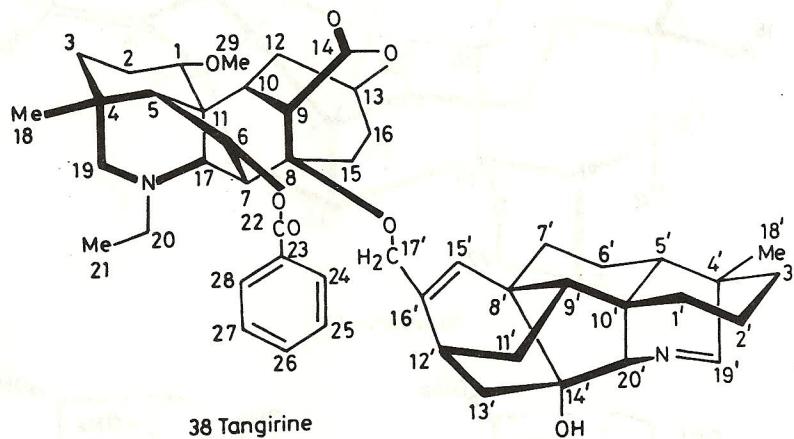
Structures 25, 26, 28, 37 & 39


Aconitum septentrionale

The presence of alkaloids in *A. septentrionale* Koelle was recorded more than a century ago⁵⁵ and the roots are found to be rich in alkaloids. In 1967, Marion *et al.* reported the isolation of seven alkaloids of which two were the known compounds lappaconitine and deacetylappaconitine⁵⁶. From the roots, we isolated the diterpenoid alkaloid septentriosine⁵⁷ (30) and 2-acetylseptentriosine⁵⁸ (31), the structures of which were determined by nmr spectroscopic data and a single crystal X-ray analysis.

Septatisine (32), an atisine-type diterpenoid alkaloid, was isolated from the roots of *A. septentrionale*. Its structure was established on the basis of ^1H CO-SY, LRCOSY, NOESY, DNOE, fixed-evolution HETCOR and selective INEPT nmr techniques⁵⁹. It is noteworthy that septatisine (32) is the only example of an atisane-type diterpenoid alkaloid in which the C(20) carbon of the oxazolidine ring is bridged with C(14). In the case of atisine, the oxazolidine ring gives rise to a mixture of inseparable epimers differing in configuration at C(20)⁶⁰.

Structures 32


Structures 33, 34, 58 & 59

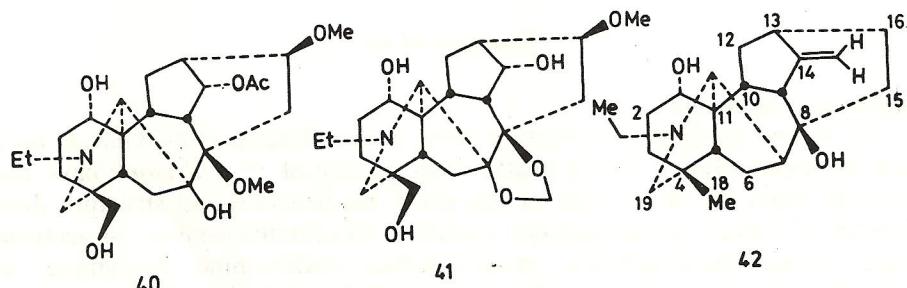
Four norditerpenoid alkaloids, 8-O-methyllyaconitine (33), 6-O-acetylacosepticine (34), acoseptrigine (35), acoseptriginine (36) and seven known alkaloids: *N*-acetylsepaconitine, *N*-deacetyllappaconitine, lapaconidine, lappaconine, lappaconitine, lycocionine and puberaconitine, were isolated from the roots⁶¹. By the ion exchange method, eight norditerpenoid alkaloids: acosepticine, acoseptridine, acoseptridinine, acoseptrine, acoseptrinine, 4-anhydroanthranoyllapaconidine, 6-demethyldephatine, and 14-O-methylforesticine, along with seven known alkaloids were isolated. Their structures were derived on the basis of nmr spectral data⁶².

Aconitum tanguticum

A. tanguticum (Maxim.) Stapf. W.T. Wang had been reported to contain the known alkaloids atisine, heteratisine, benzoylheteratisine and tanwusine; the structure of the last alkaloid was not determined⁶³. From the same species, a new diterpenoid alkaloid tangutisine was isolated and it has been assigned the

structure (37) on the basis of homonuclear ^1H COSY, HETCOR, two dimensional $n\text{Oe}$, ^1H - ^{13}C long range correlations (FLOCK) and selective INEPT nmr techniques⁶⁴.

Structures 38


A novel diterpenoid alkaloid tangirine was isolated from *A. tanguticum*. Its structure was established as (38) by multidimensional ^1H and ^{13}C nmr spectroscopy⁶⁵. Tangirine is the only example of a dimeric alkaloid in which a norditerpenoid and a diterpenoid alkaloid are joined together. Six other dimeric diterpenoid alkaloids of this class: e.g. staphidine, staphisine, etc. all isolated from *D. staphisagria*, are C_{20} diterpenoid alkaloids of the atisane-type, dimerized at the C(17), C(17'), O(15'), 16 positions to form spiro ethers³.

Consolida ambigua

The aerial parts of *C. ambigua* L.P. Ball and V. H Heywood (Syn. *Delphinium ajacis* Li) are rich in alkaloids, and most of these belong to the norditerpenoid-type. Thirty-three alkaloids of the lycocotonine-type have been isolated from the seeds and various parts of this plant. These are: 14-acetylbrowniine, 14-acetyldecosine, 14-acetyldelectine, ajacine, ajacusine, ajadelphine, ajadine, ajadinine, ajanine, ambiguine, anthranoyllycoctonine, browniine, 14-deacetylajadine, 14-deacetylambiguine, delajacine, delajacirine, delajadine, delcosine, deltaline, deltatsine, gigactonine, lycocotonine, 18-methoxygadesine, methyllycaconitine, 19-oxoanthranoyllycoctonine, 19-oxodelphatine, and takaosamine^{1,2}. Two diterpenoid alkaloids (C_{20}) isolated from the seeds are ajaconine and dihydroajaconine. From the seeds of *C. ambigua* vakhmatine (28) and the new alkaloid 13-O-acetylvakhmatine (39), were isolated. The structure (39) was established on the basis of spectroscopic data and chemical correlation with (28)¹⁶. Two new norditerpenoid alkaloids ajadelphine (40) and ajadelphinine (41) were isolated from the roots of *C. ambigua* and their structures established with the aid of nmr spectral data⁶⁶.

The structure of ajabicine, a novel diterpenoid alkaloid ($\text{C}_{22}\text{H}_{33}\text{NO}_2$) isolated from the seeds of *C. ambigua* has been established as (42), on the basis of

¹H, ¹³C, COSY, HETCOR, selective INEPT and FLOCK nmr experiments. To date more than 250 norditerpenoid alkaloids (C₁₉) have been shown to possess the hexacyclic ring skeleton comprised of one seven membered, three six membered and two five membered rings as in (1). On the other hand, the entire group of over 150 naturally occurring diterpenoid alkaloid (C₂₀) are found to be pentacyclic (atisane-type) or hexacyclic, containing a bicyclo[2.2.2]octane or bicyclo[3.2.1]octane (veatchine-type) ring system.

Structures 40-42

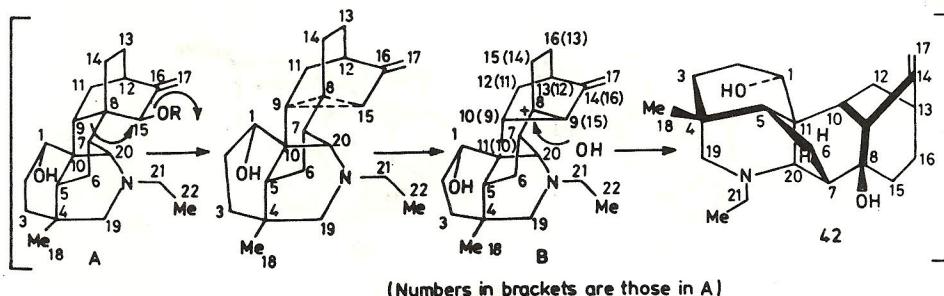
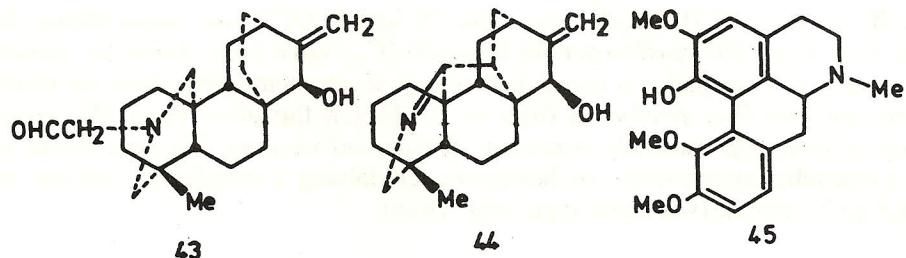
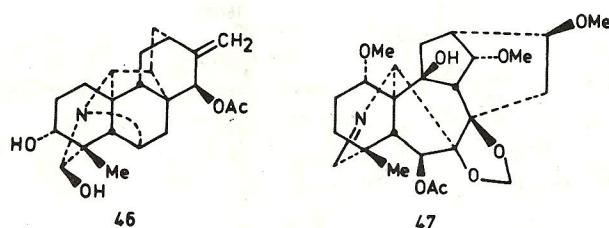



Fig 2

The biogenesis of ajabicine (**42**) may be assumed to proceed through a rearrangement of the fused bicyclo[2.2.2]octane **A** to give the bicyclo[3.2.1]octane rearrangement product (**42**) via the homo allylic carbocation **B** which on hydration gives (**42**) as shown in Fig. 2²⁴. There are many precedents in the literature for the rearrangement of a bicyclo[2.2.2]octane system to the bicyclo[3.2.1]octane⁶⁷.

Consolida hellespontica


From the aerial parts of *C. hellespontica* (Boiss) Chater we isolated the new diterpenoid alkaloids chellespontine (43) and azetidine (44). The norditerpenoid alkaloid 1-O-methyldelphisine has not been reported earlier to be occurring in nature and the aporphine alkaloid (+)-corydine (45) was isolated for the first time in the Ranunculaceae family. Besides these, the known alkaloids delphinine, delphisine, and bullatine C (14-acetylneoline) have been isolated from this plant. The structures of these alkaloids were determined by chemical correlation and spectroscopic studies⁶⁸.

Structures 43-45

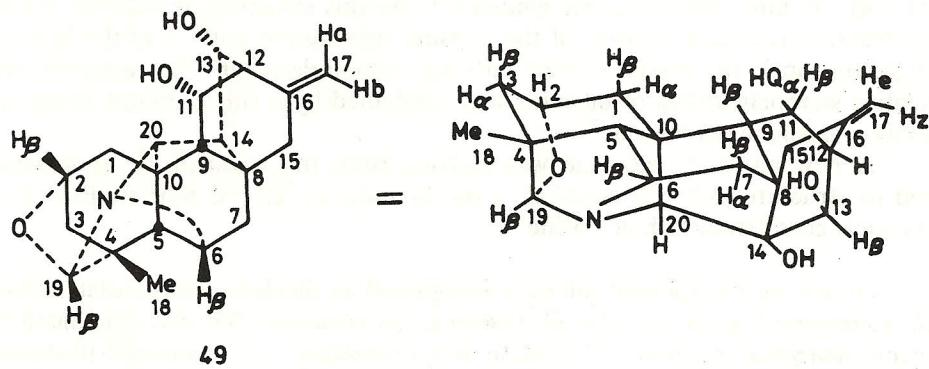
Delphinium andersonii

D. andersonii Gray is a shrub growing in the 'Wildcat Hills' Utah at an altitude of about 4800 ft. Cattle deaths from grazing of *D. andersonii* have been observed. From the aerial parts of this plant, the isolation and structure determination of sixteen norditerpenoid alkaloids: 14-acetylbrowniine, 14-acetyldecosine, 14-acetylnudicaulidine, andersonidine, andersonine, browniine, 14-deacetylnudiculine, delavaine, delcosine, delectinine, deltaline, dictyocarpine, lycoctonine, methyllycaconitine, nudicauline and takaosamine have been reported⁶⁹.

Structures 46 & 47

An investigation of the minor alkaloidal constituents of *D. andersonii* by droplet counter current chromatographic separation led to the isolation of a new, polar diterpenoid alkaloid andersobine (46). Its structure was established on the basis of ^1H , ^{13}C , ^1H homonuclear COSY, HETCOR, one dimensional $n\text{Oe}$, 2D $n\text{Oe}$ and selective INEPT nmr spectral studies. Two separate attempts to solve the structure of andersobine and its 4-dimethylaminobenzoate ester were unsuccessful, in spite of the availability of suitable crystals¹⁵.

Delphinium barbeyi

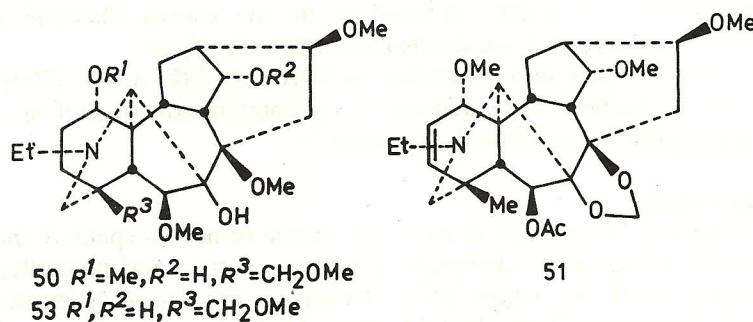

The occurrence of anthranoyllycoctonine, delphinine, deltaline, dictyocarpine and lycocitonine from *D. barbeyi* Huth (*D. glaucum* S. Watts) was reported in earlier literature^{70,71}. From the ethanolic extract of *D. barbeyi* Huth, a novel norditerpenoid alkaloid barbeline (**47**) was isolated and its structure determined by spectroscopic data and an X-ray crystal diffraction study. Barbeline was the first example of an alkaloid containing a C(19)=N-azomethine group among the 230 naturally occurring norditerpenoid alkaloids. Two new alkaloids,

6-acetyl delpheline and 6-deoxy delpheline and the known alkaloids browniine, delphatine and glaucenine were also isolated from this plant⁷².

The structure and stereochemistry of barbesine (48) a new diterpenoid alkaloid from *D. barbeyi*, were deduced by a combination of nmr spectroscopy and a single crystal X-ray diffraction analysis⁷³.

Delphinium elatum

D. elatum L. has proven to be a rich source of norditerpenoid and diterpenoid alkaloids. Delpheline, deltaline, deltamine, elatine, and methyllycaconitine were isolated from the whole plant. However, the following norditerpenoid (*i-xiv*) and diterpenoid (*xv*) alkaloids were found to be present in the seeds: *i*) 14-acetyl nudicauline, *ii*) delectinine, *iii*) delelatine, *iv*) delpheline, *v*) deltaline, *vi*) eladine, *vii*) elanine, *viii*) elsasine, *ix*) elatine, *x*) isodelpheline, *xi*) lycocitonine, *xii*) methyllycaconitine, *xiii*) nudicauline, *xiv*) pacinine and *xv*) ajaconine^{1,2}.

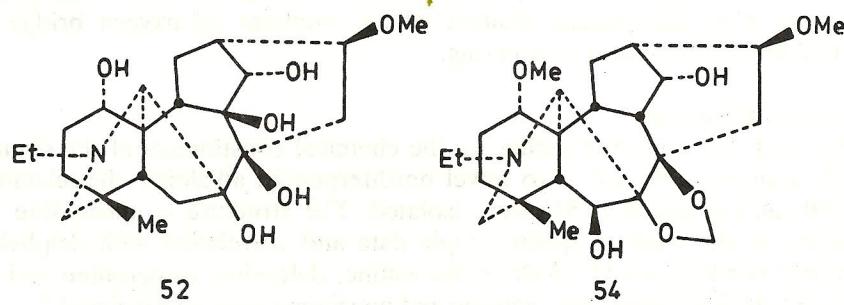


Structures 49

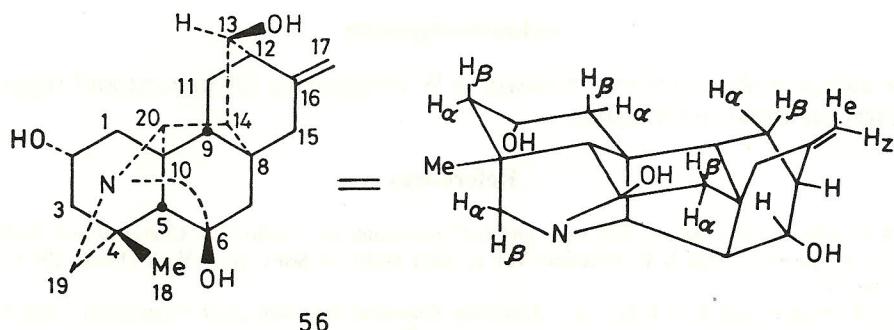
Chemical investigation of the seeds of *D. elatum* L. resulted in the isolation of a new diterpenoid alkaloid delatisine whose structure (49) was established by ¹H COSY, long range COSY, HETCOR, 2D *n*Oe, fixed evolution HETCOR and selective INEPT experiments. The structure of the alkaloid was confirmed by an X-ray crystal structure determination⁷⁴. A number of diterpenoid alkaloids possessing an oxide ring between C-1 and C-19 have been isolated; e.g. dehydroluciduscline, 12-acetyl dehydroluciduscline, dehydronapelline, songoramine, and subdesculine. The structure of delatisine is unusual in that there is no other diterpenoid alkaloid which contains an oxygen bridge between C-2 and C-19 to form a furan ring.

Delphinium tatsienense

No work was reported earlier on the chemical constituents of the Chinese plant *D. tatsienense* Franch. Two novel norditerpenoid alkaloids, deacetylambiguine (50) and tatsiensine (51) were isolated. The structure of tatsiensine was established on the basis of spectroscopic data and correlation with delpheline. The known norditerpenoid alkaloids browniine, delcosine, lycocitonine and the diterpenoid alkaloids ajaconine, hetisine and hetisinone were also isolated⁷⁵.



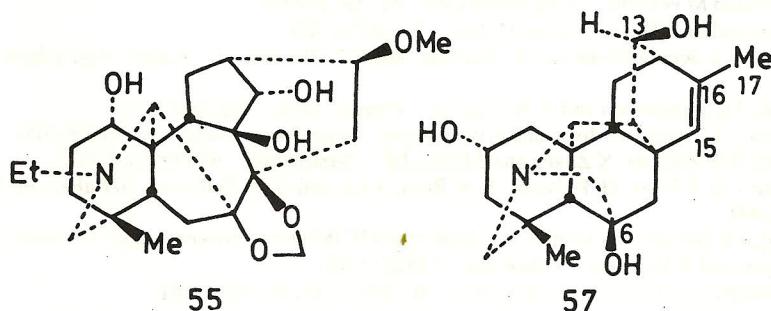
Structures 50-51 & 53


A novel highly polar norditerpenoid alkaloid designated as tatsinine was isolated from the roots of *D. tatsienense* and its structure (52) was derived from 1H and ^{13}C nmr spectroscopic evidence⁷⁶. As this structure depended purely on spectral data, and because of the unusual substitution pattern of the hydroxyl groups, an X-ray crystal diffraction study was undertaken. The structure and relative stereochemistry of tatsinine was confirmed by a single crystal X-ray analysis of tatsinine perchlorate⁷⁷.

A new alkaloid deltatsine was isolated from the roots of *D. tatsienense* and its structure (53) was established on the basis of 1H , ^{13}C nmr studies and a chemical correlation with delcosine⁷⁸.

A new norditerpenoid alkaloid designated as delelatine was isolated from *D. tatsienense* Franch and also *D. elatum* L. Its structure (54) was elucidated by spectroanalytical methods. Delelatine was correlated with 14-acetyl-10-deoxy-dictyocarpine and synthesized from dictyocarpine, thus confirming its structure and stereochemistry⁷⁹. By chromatographic separation on silica gel rotors, another norditerpenoid alkaloid tatsidine was isolated from the pH 8 alkaloidal fractions of *D. tatsienense* Franch⁸⁰. Homonuclear 1H COSY, long-range COSY, and relay coherence transfer correlation spectroscopy nmr experiments were used together with fixed evolution HETCOR and selective INEPT spectra for complete ^{13}C and 1H spectral peak assignments for tatsidine (55). Stereochemical and conformational assignments were made from the two dimensional n OE spectrum. The results of these studies confirmed the location of the methylene-dioxy group at C7/C-8⁸¹.

Structures 52-54



Structures 56

Tatsirine, isolated from the roots *D. tatsienense* Franch was assigned the structure (56). The structure was established on the basis of ^1H COSY, fixed evolution HETCOR, two-dimensional $n\text{Oe}$ and selective INEPT studies on (57)⁸². There are very few hetisane-type diterpenoid alkaloids in which a hydroxyl group at C-13 is located in a β -position (equatorial hydroxyl in the boat conformation of ring formed by carbons 8, 9, 11, 12, 13, 14). Two examples are spirasine XIII and spirasine XV, isolated from *Spirea japonica* L. var. *fortunei* (Pl.) Rehd. (Rosaceae)⁸³. The facile isomerization of the exocyclic double bond of tatsirine (56) to afford (57) can be explained by the formation of a carbonium ion (with traces of HCl from CDCl_3), which is stabilized with the suitably placed β -hydroxyl group to form an oxitane. On alumina, the more stable isomer is readily formed by loss of a proton from C-15.

Delphinium vestitum

D. vestitum Wall. groups in the Western Himalayas and inner Tibetan valleys at elevations of 10,000-12,000 ft and is reported to be poisonous to goats⁴.

Structures 55 & 57

An earlier investigation reported the isolation of two weak bases one of which on saponification gave lycocotonine⁸⁴. Our investigation of the aerial parts of the *D. vestitum* gave two new norditerpenoid alkaloids delvestine (58) and delvestidine (59)⁸⁵. The structures were based on nmr spectral evidence and chemical conversion to known alkaloids. An X-ray crystallographic study of delvestine confirmed the structure and stereochemistry of the alkaloid as (58)⁸⁶.

Acknowledgement

The author wishes to thank Professor S W Pelletier for his interest and support to carry out these investigations.

References

- 1 S W Pelletier, N V Mody, B S Joshi and L C Schramm, In: *Alkaloids: Chemical and Biological Perspectives* (Ed S W Pelletier) Vol 2, John Wiley & Sons, New York (1984) Ch 5, pp 206-247
- 2 S W Pelletier and B S Joshi, In: *Alkaloids: Chemical and Biological Perspectives* (Ed S W Pelletier) Vol 7, Springer Verlag, New York (1984) Ch 3, pp 298-565
- 3 S W Pelletier and N V Mody, In: *The Alkaloids* (Ed R G H Rodrigo) Vol 18, Academic Press, New York (1981) Ch 2, pp 100-211
- 4 R N Chopra, S L Nayar and I C Chopra *Glossary of Indian Medicinal Plants* CSIR, New Delhi (1985)
- 5 S Chang and Z Jiang *Acta Botanica Yunnanica* 1988, Supplement I p 63
- 6 M H Benn and J C Jacyno In: *Alkaloids: Chemical and Biological Perspectives* (Ed S W Pelletier) Vol 1, John Wiley & Sons, New York (1983) Ch 4, pp 155-206
- 7 G Cordell *Introduction to Alkaloids: A Biogenetic Approach* Wiley, New York (1981)
- 8 Allen's *Commercial Organic analysis* The Blackston Company, Garden City New York 5th Edn Vol 7 (1948) pp 22-40
- 9 M Przybylska and L Marion *Canad J Chem* 34 (1956) 185
- 10 S W Pelletier, B S Joshi and H K Desai, Techniques for isolation of alkaloids, In: *Advances in Medicinal Plant Research* (Ed A J Vlietinck and R A Domisse) Wissenschaftliche Verlagsgesellschaft mbH Stuttgart (1985) pp 153-1 195
- 11 S W Pelletier, H P Chokshi and H K Desai *J Nat Prod* 49 (1986) 892
- 12 H K Desai, B S Joshi, A M Panu and S W Pelletier *J Chromatogr* 22 (1985) 223
- 13 H K Desai, E R Trumbull and S W Pelletier *J Chromatogr* 366 (1986) 439
- 14 P Kulanthaivel and S W Pelletier *J Chromatogr* 402 (1987) 366
- 15 B S Joshi, M S Puar, Y Bai, A M Panu and S W Pelletier *Tetrahedron* 50 (1994) 12283
- 16 V Vobalaboina, S K Srivastava, B S Joshi, H K Desai and S W Pelletier *J Nat Prod* (Communicated)
- 17 Y Tsuda and L Marion *Canad J Chem* 51 (1973) 486
- 18 A J Jones and M H Benn *Tetrahedron Lett* 42 (1972) 4351
- 19 A J Jones and M H Benn *Canad J Chem* 51 (1973) 486
- 20 W S Chen, S Sepulveda-Boza, M Moertter and E B Breitmaier *Liebigs Ann Chem* (1985) 1297
- 21 B S Joshi, J K Wunderlich and S W Pelletier *Canad J Chem* 65 (1987) 99
- 22 J K Snyder, X Zhang, B S Joshi and S W Pelletier *Magn Reson Chem* 27 (1989) 1057
- 23 B S Joshi, S W Pelletier, X Zhang and J K Snyder *Tetrahedron* 47 (1991) 4299
- 24 B S Joshi, M S Puar, H K Desai, S A Ross, J Lu and S W Pelletier *Tetrahedron Lett* 34 (1993) 1441
- 25 X Zhang, J K Snyder, B S Joshi, J A Glinski and S W Pelletier *Heterocycles* 31 (1990) 1879
- 26 T A Henry and T M Sharp *J chem Soc* (1928) 1105
- 27 C R A Wright and A P Luff *J chem Soc* 31 (1877) 143; 33 (1878) 151
- 28 Y Tsuda and L Marion *Canad J Chem* 41 (1963) 1485
- 29 K S Khetwal, B S Joshi, H K Desai and S W Pelletier *Heterocycles* 34 (1992) 441
- 30 K S Khetwal, H K Desai, B S Joshi and S W Pelletier *Heterocycles* 38 (1994) 833
- 31 W C Muenscher *Poisonous Plants of the United States* (Revised Ed) Macmillan Co, New York (1951) p 79
- 32 P T Millar *Wyoming Agr Exptl Stn Rep* 131 (1920) *Chem Abstr* 16 (1922) 3500
- 33 O A Beath *J Am Phar Assn* 15 (1926) 265; *Chem Abstr* 20 (1926) 3778
- 34 V Boido, O E Edwards, K L Handa, R J Kolt and K K Purushothaman *Canad J Chem* 62 (1984) 778
- 35 S W Pelletier, S K Srivastava, B S Joshi and J D Olsen *Heterocycles* 23 (1985) 331

36 G S Singh, G S Bajwa and M G Singh *Indian J Chem* **4** (1966) 39
 37 S W Pelletier, N V Mody and H S Puri *J chem Soc* (1977) 12
 38 S W Pelletier, N V Mody and H S Puri *Phytochemistry* **16** (1977) 623
 39 H K Desai, B S Joshi and S W Pelletier *Heterocycles* **24** (1986) 1061
 40 H K Desai and S W Pelletier *Heterocycles* **29** (1989) 225
 41 W S Chen and E Breitmaier *Chem Ber* **114** (1981) 394
 42 S W Pelletier, S Y Chen, B S Joshi and H K Desai *J Nat Prod* **47** (1984) 474
 43 S W Pelletier, B S Joshi, J A Glinski, H P Chokshi, S Y Chen, K Bhandary and K T Go *Heterocycles* **25** (1987) 365
 44 C A Grob, H R Kiefer, H Lutz and H Wilkens *Tetrahedron Lett* (1964) 2901
 45 S W Pelletier, N V Mody, J Finer-Moore, H K Desai and H S Puri *Tetrahedron Lett* **22** (1981) 313
 46 A Katz and E Staehelin *Helv Chim Acta* **65** (1982) 286
 47 S W Pelletier, B S Joshi, H K Desai, A Panu and A Katz *Heterocycles* **24** (1986) 1275
 48 N Singh and A Singh *J Indian chem Soc* **42** (1965) 49
 49 S W Pelletier, K N Iyer, J H Wright, M G Newton and N Singh *J Am chem Soc* **93** (1971) 5942
 50 N Singh and S S Jaswal *Tetrahedron Lett* (1968) 2219
 51 N Singh, S S Jaswal and A Singh *Indian J Chem* **12** (1974) 1219
 52 N Singh and A Singh *Indian J Chem* **10** (1972) 953
 53 Q P Jiang and S W Pelletier *Tetrahedron Lett* **29** (1988) 1875
 54 Q P Jiang and S W Pelletier *J Nat Prod* **54** (1991) 525
 55 H V Rosendahl *Arch Pharmakol Inst Dorpat* **11** (1895) 1
 56 L Marion, L Fonzes, C K Wilkins, J P Boca, F Sandberg, R Thorsen and E Linden *Canad J Chem* **45** (1967) 969
 57 B S Joshi, H K Desai, S W Pelletier, E M Holt and A J Aasen *J Nat Prod* **51** (1981) 265
 58 S A Ross, B S Joshi, S W Pelletier, M G Newton and A J Aasen *J Nat Prod* **56** (1993) 424
 59 B S Joshi, H M Sayed, S A Ross, H K Desai, S W Pelletier, P Cai, J K Snyder and A J Aasen *Canad J Chem* **72** (1994) 100
 60 S W Pelletier, N V Mody, H K Desai, J Finer-Moore, J Nowacki and B S Joshi *J org Chem* **48** (1983) 1787
 61 S A Ross, S W Pelletier and A J Aasen *Tetrahedron* **48** (1992) 1183
 62 H M Sayed, H K Desai, S A Ross, S W Pelletier and A J Aasen *J Nat Prod* **55** (1992) 1595
 63 D H Chen and W L Sung *Zhongcaoyao* **16** (1985) 388; (*Chem Abstr* **104** (1986) 95320 g)
 64 B S Joshi, D H Chen, X Zhang, J K Snyder and S W Pelletier *Heterocycles* **32** (1991) 1793
 65 B S Joshi, Y Bai, D H Chen and S W Pelletier *Tetrahedron Lett* **34** (1993) 7525
 66 S W Pelletier, S Bhandaru, H K Desai, S A Ross and H M Sayed *J Nat Prod* **55** (1992) 736
 67 H L Goering and M F Sloan *J Am chem Soc* **83** (1961) 1397
 68 H K Desai, B S Joshi, S W Pelletier, B Sener, F Bingol and T Baykal *Heterocycles* **36** (1993) 1081
 69 S W Pelletier, P Kulanthaivel, A M Panu and J D Olsen *Heterocycles* **27** (1988) 1081; **28** (1989) 107
 70 W B Cook and O A Beath *J Am chem Soc* **74** (1952) 1411
 71 M Carmack, J P Ferris, J Harvey, P L Magat, E Martin and D W Mayo, *J Am chem Soc* **80** (1958) 497
 72 B S Joshi, A El-Kashoury, H K Desai, E M Holt, J D Olsen and S W Pelletier *Tetrahedron Lett* **29** (1988) 2397
 73 P Kulanthaivel, E M Holt, J D Olsen and S W Pelletier *Phytochemistry* **29** (1990) 293
 74 S A Ross, B S Joshi, H K Desai, S W Pelletier, M G Newton, X Zhang and J K Snyder *Tetrahedron* **47** (1991) 8585
 75 S W Pelletier, J A Glinski, B S Joshi and S Y Chen *Heterocycles* **20** (1983) 347
 76 J A Glinski, B S Joshi, S Y Chen and S W Pelletier *Tetrahedron Lett* **25** (1984) 1211

77 J A Maddry, M G Newton and S W Pelletier *J Nat Prod* **49** (1986) 674

78 B S Joshi, J A Gilnski, H P Chokshi, S Y Chen, S K Srivastava and S W Pelletier *Heterocycles* **22** (1984) 2037

79 S A Ross, H K Desai, B S Joshi, S K Srivastava, J A Glinski, S Y Chen and S W Pelletier *Phytochemistry* **27** (1988) 3719

80 B S Joshi, H K Desai, S W Pelletier, J K Snyder, X Zhang and S Y Chen *Phytochemistry* **29** (1990) 357

81 J K Snyder, X Zhang, B S Joshi and S W Pelletier *Magn Reson Chem* **27** (1989) 1057

82 X Zhang, J K Snyder, B S Joshi, J A Glinski and S W Pelletier *Heterocycles* **31** (1990) 1879

83 F Sun, X T Liang and D Q Yu *J Nat Prod* **51** (1988) 50

84 G A Mina, M I Khan, F Sultana and M Ikram *Pak J scient ind Res* **13** (1970) 51

85 H K Desai, B S Joshi and S W Pelletier *Heterocycles* **23** (1985) 2483

86 K K Bhandary, N Ramasubbu, B S Joshi, H K Desai and S W Pelletier *Acta Cryst* **C46** (1990) 1704