PROC. NAT. ACAD. SCI. INDIA, 77(A), IV, 2007

Residual elastic field in two welded half spaces due to non uniform slip

along a long strike slip fault

SUNITA RANI* and SARVA JIT SINGH"

*Department of Applied Mathematics, Guru Jambheshwar Univeristy, Hisar-125 001, India.

*INSA Senior Scientist, Department of Mathematics, University of Delhi, South Campus, New Delhi-110 021,

India.

Received August 30, 2003; Accepted August 25, 2006

Abstract

The problem of the static deformation of two
homogeneous, isotropic and perfectly elastic half spaces in
welded contact caused by non uniform slip along a vertical
strike slip fault of infinite length and finite width is studied.
Four slip profiles are considered : elliptic b = by (1-A*/L%)"?,
parabolic b = b (1-%/L?), linear b = by (1-h/L) and cubic b = by
(1-h¥L%*?, where b is the slip at distance k from the interface,
by is the interface slip and L is the fault width. The deformation
corresponding to the four non uniform slip profiles is.compared
with the deformation due to uniform slip; assuming the source

} L
potency / b(h) dh to be the same. The parity in source potency
0

is achieved by varying the fault width L, keeping the interface
slip by constant. Contour maps showing the displacement and
stress fields around a long vertical strike slip fault are presented.
It is found that the effect of non uniformity in slip in the near

field is noteworthy. The far field is not affected significantly by -

the non uniformity in slip, i.e. the far field cannot see the details
of the slip on the fault.

(Keywords :
fault/welded half spaces)

Introduction

Several investigators have studied the static
deformation of two welded half spaces caused by a
long strike slip fault [see, e.g., Sharma et al. ! Rani and
Singh2 and Singh and Rani’]. However, these studies
assumed uniform slip on the fault. The assumption of
uniform slip makes the edges of the fault plane
singular where the displacement is indeterminate and
the stress is infinite. For- this reason, uniform slip,
models are not suitable in the near-field. There are a

“number of interesting phenomena that occur near the
edge of the fault zone. These include the vertical
movements associated with strike slip faulting and the
formation of secondary faults (Chi_nperyg and E'etrak“).

non uniform slip/static deformation/strike slip’

In order to study these phenomena, it is necessary to
consider models of earthquake faulting with non
uniform slip on the fault. The assumption of non
uniform slip on the fault results in interesting
theoretical models which might find useful
applications in earthquake fault modelling. The

‘purpose of the present paper is to study the effect of

non uniform slip on the elastic field caused by a long

strike slip fault in a half space in welded contact with’

another half space. The interface may represent, for
example, the lithosphere/ asthenosphere boundary.

The problem of a fault with non-uniform slip in a
half space has received some attention in geophysical
literature. Chinnery and Petrak® used numerical
intergra‘tion to compute the elastic field due to a
vertical strike slip fault with  slip that varies
exponentially over the face of the fault. Freund and
Barnett® gave a numerical solution for surface
deformation due to 2-D dip slip faulting with variable
slip on the fault plane. Mahrer and Nur® studied the
deformation of an inhomogeneous half space, the shear
modulus of which increases monotonically with depth
due to strike slip faulting. They examined two general
classes of faults : those that broke the surface smoothly
reducing the slip to zero at some depth and those
which were completely buried with smooth closure at
both ends and evaluated the deformation numerically.
Yang and Tokséz’ used a finite element scheme to

' study a trapezoidal type of variable slip on a strike slip

fault. Wang and Wu® obtained closed form analytical
expressions for the displacements and stresses for the

_same model. Singh et al’ obtained closed form

analytical expressions for the displacements in a half

.space caused by long vertical strike slip and dip slip
faults: with non uniform slip. In this paper, we have

obtained -closed- form analytical -expressions for the
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displacements and stresses at any point of two
homogeneous, isotropic and elastic half spaces welded
along a plane interface due to a long vertical strike slip
fault with variable slip on the fault plane. Four slip

profiles are considered : elliptic, parabolic, linear and-

cubic. It is assumed that the slip b decreases from a
value by at the interface to zero at the depth L. The
value of the slip by is the same for all the profiles, but

the depth L is chosen in such a manner that the source -
potency (Ben-Menahem and Singh'%) is the same for

all .the profiles. Analytical expressions for the
displacement and shear stresses are used to compare

the elastic field for non uniform slip with that for -

uniform slip. The effect of the rigidity contrast is
examined. Contour maps showing the displacement
and stress fields around a long vertical strike slip fault
are also presented. :

Theory

Consider two homogeneous, isotropic and

'pcrfectly elastic half-spaces that are welded along the

plane z = 0. The upper half space z < 0 is called
medium I and the lower half space (z > 0) is called

medium II with rigidities p; and p, respectively. A.

vertical strike slip fault of infinite length and. finite
depth (width) occupies the region — 0 <x <,y =0,0
<z < L (Fig. 1). Let the slip on the fault be denoted by

Medium I, p, o)
Medium II, p,

o, 1)

&

Fig. | - Two half-spaces in welded contact with a long,
interface breaking, vertical and strike slip fault of
width L in the lower half space. + and - indicate the
displacements in the positive x direction and negative x
direction, respectively. u, is the rigidity of the upper
half space- (medium 1) and p, is the rigidity of the
lower half space (medium II).
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b which is non uniform in general. We are considering
a 2-D approximation in which b is independent of x. In
the following, the superscript (1) denotes displacement
and stresses in medium I and the supersript (2) denotcs
those in medium II. Following Rani and Singh?, the
dlsplacement parallel to the fault due to the slip b on
the fault can be expressed in the form.

ul(')=jb(h)Gl(" v,z Bydh  (i=1,2). (1)
0

The Green's functions appearing in equation (1) are
given by

G, =———. @
n(1+B) R
co_>| L (=B} 1 3)
b onR?2 1+B)s? ]

where

RP=y*+@-h),

S=y+@+h), p=tL. (4)
M

The expressions of the displacement for various

slip profiles have been obtained from equation (1) by

integrating analytically. The non zero shear stresses pi2
and py3 are then obtained by using Hooke's law :

i 0 0 W
D, ()—p =¥ ,pn(')—u —au i=12).
()

Uniform Slip

The case of uniform slip b(h) = by over a steike
slip fault has been discussed by Rani and Singh*. We

" use their results for numerical computations.

Elliptic
Let the slip on the fault vary according to the law
b(k) = bo (1-H’L})'?, (0<h<L) (6)

where by is the interface slip and L is the fault depth.
In this model, the slip decreases monotonically with

depth from the interface value by to zero at the buried
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edge of the fault. Inserting the expression for b(h) in
equation (1) and integrating, closed form expressions
for the displacement are obtained. The corresponding
Zstresses then follow from equation (5). The results
valid at the interface (z = 0) are

m_ @ __ b

2,172
w =@ = re ey ] o)

i

W _ @ __Pabob
P =P T+ p)

| (1+YH"2 -1
o (8)

1 Y
X — — n -
{Y 20+YH2 1+ +1

where Y =_y£ . The upper sign in equation (7) is for ¥

> 0 and the lower sign for ¥ <O0.
Parabolic

Let the slip on the fault be given by
2
b(h)=b0(l——2 , (0sh<L). )
' L

In this model, the slip decreases monotonically with
depth from the interface value by to zero at the buried
edge of the fault. The expressions for the
displacements and stresses obtained from equation )
and (5) are

__ b

by 2 2 afl-Z
" n(1+B)[(1+Y z ){tan ( > )

+tan—1(%)}— Y-2YZ h{%ﬂ, (10)

-Y+2YZ In

M _ MobeB [
aL(1+P)|

Y
af Z Z A
+ tan 1(7)} v-A—Oz—ZZ ln[z]—{l, | (12)7

Py

M _ 2“21705 Y
nL(1+P)| 24,

P3

(13)

()= (3)
X< tan + tan — s
Y Y )|
b —
p12(2) =E_g_(.)_ 2Y tan_l(¥)+mn_l(£J'
2nL Y _ Y
-2Z h{i] z
AO Ao
—tan“’(g +2Z In B
Y A

@ _Habpl Y

) =t ~Y In| -
P13 — 2A02 (

I_—_B_ _...._Y—+Y1n B
1+

242
0

o Bl
_Zm-l(l_;z}zw-r(g)}],

(15)

-where

Z=2L, AF=V+Z

A=P+Z-14B=V+Z+1)] | (16)
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Linear
For the slip profile
b(h)=by (1-h/L), (0<h<L). (17)

the slip decreases linearly from the interface value bg
_ to zero at a distance of L from the interface. For this
~profile, we obtain

b, 1-Z
I _ _ -1
U, e B)[(1 Z) {tan ( ; )

-

A 1 +2Z
_Yl(-,«t_)"l_ﬁ {(l+l)[tn ( " )

Y PR
B aL(1+B)| 42 Y )

1)
’ b, -
I ) IO ) P

2nL | 42 4, T1ep

‘dbldh = 0 at h = L.
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1-B _,(1+2) _1(2') Y
+——<tan | ——|—tan | — - | —"|¢ |
1+ Y Y -Ag

(23)
Cubic
Let the slip on the fault vary according to the law

312
b(h) =b, (1- h? /LZ) (O<h<Ll). (24
This model describes slip which reaches the interface
and smoothly reduces to zero with depth satlsfymg the
smooth closure conditions (Mahrer and Nur®) : b =0,
The expressions for the
displacements and stresses valid at the interface (z = 0)
are

ul =u® Do )’(Y2 +E)J_r(l+Y2)3/2 :
! 2(1+P) 2

(25)
b 2
0 2 p@ MBI Y o, 3
13 B al(1+B)| Y 2
1/2
12 1'+Y2 o+l
xy(-1+Y2) 1n(———l—-. 26)

(1+Y2)]/2 -1

The upper sign in equation (25) is for Y > 0 and the
lower sign is for ¥ <0. :

Equation (7) to (26) yield the elastic field in iwo
welded half spaces due to non. uniform slip on a
vertical strike slip fault. The corresponding rcsults for
a uniform half space given by Singh et al’
obtained as a particular case of the present resulls on

putting B =p/ p2=0.
Numerical Results and Discussion

There is a large volume of literature on the

‘analysis of the stresses and strains in the vicinity of

cracks. One of the successful crack models assumes
the two surfaces of the -crack to be in contact the

" stresses acting across the crack to be continuous and

the relative displacement (slip) of the two sides

specified. For mathematical simplification, the slip is




NON-UNIFORM SLIP ALONG A LONG STRIKE-SLIP FAULT

usually assumed to be constant. In this paper we have

attempted to study the effect of non uniform slip over
the face of the crack.

We wish to compare the deformation due to non
uniform along a long vertical strike slip fault in two
welded half spaces with the corresponding
deformation due to uniform slip. For all the slip
profiles considered, the slip decreases from a value by

- at the interface to zero at depth L. If the slip bo and the
fault depth L are assumed to be the same for all the
L
cases, then source potency | b(h)dh per unit length of
0 _
the fault is different for different profiles. Source
potency is the fault slip integrated over the fault face.
For uniform slips, it is simply the slip multiplied by
the fault area. Comparison of deformation of sources
of different potency is not justified: Before making any
comparison, a parity in source potency must be
“assured. A parity in source potency for different slip
profiles can be achieved by adjusting either the
interface slip or the fault depth. In our numerical "
computations, we have assumed that the interface slip
by is the same for all the slip profiles, but the fault
depth L is so adjusted that parity in source potency is
achieved. This yields the relationship (Singh et al®)
3n

-1—6—L5 = L (say),

2 ]
L,=—
32

i
Lo=—L ==

@7

L,=

where L, is the fault depth for the uniform slip model -

and Ly L3 Lsand Ls are, respectively, the fault depths
for the elliptic, parabolic, linear and cubic profiles
considered above. We measure the displacements in
untis of the slip by the distances in units of the fault
depth L, = L for the uniform slip model and the
stresses in units of pbo/Ly = pabo/L. The dimension-
less quantities ¥ and Z for non uniform slip cases are
to.be suitably modified in accordance with the relation
(27). For example in equation (10) to (16) Y should be
replaced by (2/3)Y and Z by (2/3)Z.

Varation of the dimensionless parallel
displacement u,/bo at the interface (z-= 0) with the
distance from the fault y for three values of the rigidity
contrast B = p/p, = 0.5, 1, 2 is shown in Fig. 2 (a, b,
c). The case B = 0.5 is an example in which the source
medium is harder than the other medium; when f =2
‘the source medium is softer than the other medium.
When B =1, 1 = p and the results for a‘source in a
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Fig. 2 — Variation of the dimensionless parallel displacement

- uy/by at the interface (z = 0) with the distance y from a

vertical strike slip fault for different slip profiles for (a)
B=p/pu,=05;(b)p=1and(c)p=2.
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Fig. 3 — Variation of the parallel displacement at fault depth
with the distance from the fault for different slip
profiles for (a) B = 0.5; (b) B =1 and (c) B = 2. Note
that the fault depth for different slip profiles is
different.
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Fig. 5 — Contour maps for the shear stress p,; for B =05. The
stress is measured in units of (u,be/L) x 1072, where L
is the fault depth for uniform slip. The distance is
measured in units of fault depth for the slip profile
under consideration. (a) uniform slip; (b) parabolic and
(c) linear.
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uniform unbounded medium are obtained. We notice
that the non uniformity in slip has only marginal effect
on the interface displacement. Moreover, the interface
displacement is greater when the source is in the
harder medium. Fig. 3 (a, b, c) exhibits the variation of
the parallel displacement at fault depth with the
distance from the fault. We notice that on the fault tip
(y = 0), the displacement for parabolic and linear
profiles vanishes. Moreover, the near field displace-
ments are significantly affected by the non uniformity

of slip.

Contour maps for the dimensionless parallel
displacement are given in Fig. 4 (a, b, ¢) and for the
dimensionless shear stress in Fig. 5 (a, b, c) for
uniform slip and for parabolic and linear profiles.
These maps reveal that the deformation near the fault
for different slip profiles is significantly different both
qualitatively and quantitatively.
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