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Abstract

In this paper, we study the problem features that may cause a multi-objective genetic algorithm
(GA) difficulty to converge to the true Pareto-optimal front. Identification of such features helps us
develop difficult test problems for multi-objective optimization. Multi-objective test problems are
constructed from single-objective optimization problems, thereby allowing known difficult features
of single-objective problems (such as multi-modality or deception) to be directly transferred to the
corresponding multi-objective problem. In addition, test problems having features specific to multi-
objective optimization are also constructed. The construction methodology allows a simpler way to
develop test problems having other difficult and interesting problem features. More importantly, these
difficult test problems will enable researchers to test their algorithms for specific aspects of multi-
objective optimization in the coming years.

1 Introduction

After about a decade since the pioneering work by Schaffer (1984; 1985), a number of studies on multi-
objective genetic algorithms (GAs) have been pursued since the year 1994, although most of these studies
took a hint from Goldberg (1989). The primary reason for these studies is a unique feature of GAs—
population approach—that make them highly suitable to be used in multi-objective optimization. Since
GAs work with a population of solutions, multiple Pareto-optimal solutions can be captured in a GA popu-
lation in a single simulation run. During the year 1994-95, a number of independent GA implementations
(Fonseca and Fleming, 1995; Horn, Nafploitis, and Goldberg, 1994; Srinivas and Deb, 1994) emerged.
Later, a number of other researchers have used these implementations in various multi-objective optimiza-
tion applications with success (Cunha, Oliviera, and Covas, 1987; Eheart, Cieniawski, and Ranjithan,
1983; Mitra, Deb, and Gupta, 1998; Parks and Miller, 1998; Weile, Michelsson, and Goldberg, 1996). A
number of studies have also concentrated in developing new and improved GA implementations (Fonseca
and Fleming, 1998; Leung et al., 1998; Rudolph, 1998; Laumanns, Rudolph, and Schwefel, 1998; Zitzler
and Thiele, 1998). Fonseca and Fleming (1995) and Horn (1997) have presented overviews of different
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multi-objective GA implementations. Recently, van Veldhuizen and Lamont (1998) have made a survey
of test problems that exist in the literature.

Despite all these interests, there seems to be a lack of studies discussing problem features that may
cause multi-objective GAs difficulty. The literature also lacks a set of test problems with known and
controlled difficulty measure, an aspect of test problems that allows an optimization algorithm to be tested
systematically. On the face of it, studies on seeking problem features causing difficulty to an algorithm may
seem a pessimist’s job, but we feel that true efficiency of an algorithm reveals when it is applied to difficult
and challenging test problems, and not to easy problems. Such studies in single-objective GAs (studies
on deceptive test problems, NK ‘rugged’ landscapes, Royal road functions, and others) have all enabled
researchers to compare GAs with other search and optimization methods and establish the superiority of
GAs in solving difficult optimization problems to their traditional counterparts. Moreover, those studies
have also helped us understand the working principle of GAs much better and paved ways to develop
new and improved GAs (such as messy GAs (Goldberg, Korb, and Deb, 1990), Gene expression messy
GA (Kargupta, 1996), CHC (Eshelman, 1990), Genitor (Whitley, 1989)), Linkage learning GAs (Georges,
1997), and others.

In this paper, we attempt to highlight a number of problem features that may cause a multi-objective
GA difficulty. Keeping these properties in mind, we then show procedures of constructing multi-objective
test problems with controlled difficulty. Specifically, there exists some difficulties that both a multi-
objective GA and a single-objective GA share in common. Our construction of multi-objective problems
from single-objective problems allow such difficulties (well studied in single-objective GA literature) to
be directly transferred to an equivalent multi-objective GA. Besides, multi-objective GAs have their own
specific difficulties, some of which are also discussed. In most cases, test problems are constructed to study
an individual problem feature that may cause a multi-objective GA difficulty. In some cases, simulation
results using a non-dominated sorting GA (NSGA) (Srinivas and Deb, 1994) are also presented to support
our arguments.

In the remainder of the paper, we discuss and define local and global Pareto-optimal solutions, fol-
lowed by a number of difficulties that a multi-objective GA may face. We show the construction of a
simple two-variable two-objective problem from single-variable, single-objective problems and show how
multi-modal and deceptive multi-objective problems may cause a multi-objective GA difficulty. There-
after, we present a generic two-objective problem of varying complexity constructed from generic single-
objective optimization problems. Specifically, systematic construction of multi-objective problems having
convex, non-convex, and discrete Pareto-optimal fronts is demonstrated. We then discuss the issue of using
parameter-space versus function-space based niching and suggest which to use when. The construction
methodology used here is simple. Various aspects of problem difficulties are functionally decomposed
so that each aspect can be controlled by using a separate function. The construction procedure allows
many other aspects of single-objective test functions that exist in the literature to be easily incorporated to
have a test problem with a similar difficulty for multi-objective optimization. Finally, a number of future
challenges in the area of multi-objective optimization are discussed.

2 Pareto-optimal Solutions

Pareto-optimal solutions are optimal in some sense. Therefore, like single-objective optimization prob-
lems, there exist possibilities of having both local and global Pareto-optimal solutions. Before we define
both these types of solutions, we first discuss dominated and non-dominated solutions.

For a problem having more than one objective function (say, f j , j = 1; : : : ;M and M > 1), any two
solutions x(1) and x(2) can have one of two possibilities—one dominates the other or none dominates the
other. A solution x(1) is said to dominate the other solution x (2), if both the following conditions are true:

1. The solution x(1) is no worse (say the operator � denotes worse and � denotes better) than x (2) in
all objectives, or fj(x(1)) � fj(x

(2)) for j = 1; 2; : : : ;M objectives.

2



2. The solution x(1) is strictly better than x(2) in at least one objective, or f�j(x
(1)) � f�j(x

(2)) for at
least one �j 2 f1; 2; : : : ;Mg.

If any of the above condition is violated, the solution x (1) does not dominate the solution x (2). It is
also customary to write that if x(1) dominates the solution x(2), then x(2) is dominated by x(1), or x(1) is
non-dominated by x(2), or, simply, among the two solutions, x (1) is the non-dominated solution.

The above concept can also be extended to find a non-dominated set of solutions in a set (or population)
of solutions. Consider a set of N solutions, each havingM (> 1) objective function values. The following
procedure can be used to find the non-dominated set of solutions:

Step 0: Begin with i = 1.

Step 1: For all j 6= i, compare solutions x(i) and x(j) for domination using the above two conditions for
all M objectives.

Step 2: If for any j, x(i) is dominated by x(j), mark x(i) as ‘dominated’.

Step 3: If all solutions (that is, when i = N is reached) in the set are considered, Go to Step 4, else
increment i by one and Go to Step 1.

Step 4: All solutions that are not marked ‘dominated’ are non-dominated solutions.

A population of solutions can be classified into groups of different non-domination levels (Goldberg,
1989). When the above procedure is applied for the first time in a population, the resulting set is the
non-dominated set of first (or, best) level. In order to have further classifications, these non-dominated
solutions can be temporarily counted out from the original set and the above procedure can be applied
once more. What results is a set of non-dominated solutions of second (or, next-best) level. These new
set of non-dominated solutions can be counted out and the procedure may be applied again to find the
third-level non-dominated solutions. This procedure can be continued till all members are classified into
a non-dominated level. It is important to realize that the number of non-domination levels in a set of N
solutions is bound to lie within [1; N ]. The minimum case of one non-domination level occurs when no
solution dominates any other solution in the set, thereby classifying all solutions of the original population
into one non-dominated level. The maximum case of N non-domination levels occurs, when there is
hierarchy of domination of each solution by exactly one other solution in the set.

In a set of N solutions, the first-level non-dominated solutions are candidates for possible Pareto-
optimal solutions. However, they need not be Pareto-optimal solutions. The following definitions ensure
them whether they are local or global Pareto-optimal solutions:

Local Pareto-optimal Set: If for every member x in a set P , there exist no solution y = x�� (obtained by
perturbing x in a small neighborhood) which dominates any member in the set P , then the solutions
belonging to the set P constitute a local Pareto-optimal set.

Global Pareto-optimal Set: If there exists no solution in the search space which dominates any member
in the set �P , then the solutions belonging to the set �P constitute a global Pareto-optimal set.

The size and shape of Pareto-optimal fronts usually depend on the number of objective functions and
interactions among the individual objective functions. If the objectives are ‘conflicting’ to each other, the
resulting Pareto-optimal front may span larger than if the objectives are more ‘cooperating’ 1. However, in
most interesting multi-objective optimization problems, the objectives are ‘conflicting’ to each other and
usually the resulting Pareto-optimal front (whether local or global) contains many solutions, which must
be found using a multi-objective optimization algorithm.

1The terms ‘conflicting’ and ‘cooperating’ are used loosely here. If two objectives have similar individual optimum solutions
and with similar individual function values, they are ‘cooperating’, as opposed to a ‘conflicting’ situation where both objectives
have drastically different individual optimum solutions and function values.
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3 Principles of Multi-Objective Optimization

It is clear from the above discussion that a multi-objective optimization problem usually results in a set of
Pareto-optimal solutions, instead of one single optimal solution. Thus, the objective in a multi-objective
optimization is different from that in a single-objective optimization. In multi-objective optimization the
goal is to find as many different Pareto-optimal solutions as possible. Since classical optimization methods
work with a single solution in each iteration (Deb, 1995; Reklaitis, Ravindran and Ragsdell, 1983), in
order to find multiple Pareto-optimal solutions they are required to be applied more than once, hopefully
finding one distinct Pareto-optimal solution each time. Since GAs work with a population of solutions,
a number of Pareto-optimal solutions can be captured in one single run of a multi-objective GA with
appropriate adjustments to its operators. This aspect of GAs makes them naturally suited to solve multi-
objective optimization problems for finding multiple Pareto-optimal solutions. Thus, this is no surprise that
a number of different multi-objective GA implementations exist in the literature (Fonseca and Fleming,
1995; Horn, Nafploitis, and Goldberg, 1994; Srinivas and Deb, 1994; Zitzler and Thiele, 1998).

Before we discuss the problem features that may cause multi-objective GAs difficulty, let us mention
a couple of matters2 that are not addressed in the paper. First, in discussions in this paper, we consider all
objectives to be of minimization type. It is worth mentioning here that identical properties as discussed
here may also exist in problems with mixed optimization types (some are minimization and some are
maximization). The use of non-dominated solutions in multi-objective GAs allows an elegant way to
suffice the discussion to have only for one type of problems. The meaning of ‘worse’ or ‘better’ discussed
in Section 2 takes care of other cases. Second, although we refer to multi-objective optimization throughout
the paper, we only restrict ourselves to two objectives. This is because we believe that the two-objective
optimization brings out the essential features of multi-objective optimization, although scalability of an
optimization method to solve more than two objectives is an issue which needs attention. Moreover,
to understand the interactions among multiple objectives, it is an usual practice to investigate pair-wise
interactions among objectives (Covas, Cunha, and Oliveira, in press). Thus, we believe that we need to
understand the mechanics behind what cause GAs may or may not work in a two-objective optimization
problem better, before we tackle more than two objectives.

Primarily, there are two tasks that a multi-objective GA should do well in solving multi-objective
optimization problems:

1. Guide the search towards the global Pareto-optimal region, and

2. Maintain population diversity in the current non-dominated front.

We discuss the above two tasks in the following subsections and highlight when a GA would have difficulty
in achieving each of the above tasks.

3.1 Difficulties in converging to Pareto-optimal front

The first task ensures that, instead of converging to any set, multi-objective GAs proceed towards the
global Pareto-optimal front. Convergence to the true Pareto-optimal front may not happen because of
various reasons:

1. Multimodality,

2. Deception,

3. Isolated optimum, and

4. Collateral noise.
2A number of other matters which need immediate attention are also outlined in Section 7.
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All the above features are known to cause difficulty in single-objective GAs (Deb, Horn, and Goldberg,
1992) and when present in a multi-objective problem may also cause difficulty to a multi-objective GA.

In tackling a multi-objective problem having multiple Pareto-optimal fronts, a GA, like many other
search and optimization methods, may get stuck to a local Pareto-optimal front. Later, we create a multi-
modal multi-objective problem and show that a multi-objective GA can get stuck at a local Pareto-optimal
front, if appropriate GA parameters are not used.

Deception is a well-known phenomenon in the studies of genetic algorithms (Deb and Goldberg, 1993;
Goldberg 1989; Whitley, 1990). Deceptive functions cause GAs to get misled towards deceptive attractors.
There is a difference between the difficulties caused by multi-modality and by deception. For deception to
take place, it is necessary to have at least two optima in the search space (a true attractor and a deceptive
attractor), but almost the entire search space favors the deceptive (non-global) optimum, whereas multi-
modality may cause difficulty to a GA, merely because of the sheer number of different optima where a
GA can get stuck to. There even exists a study where both multi-modality and deception coexist in a func-
tion (Deb, Horn, and Goldberg, 1993), thereby making these so-called massively multi-modal deceptive
problems even harder to solve using GAs. We shall show how the concepts of single-objective deceptive
functions can be used to create multi-objective deceptive problems, which are also difficult to solve using
multi-objective GAs.

There may exist some problems where most of the search space may be fairly flat, giving rise to
virtually no information of the location of the optimum. In such problems, the optimum is placed isolated
from the rest of the search space. Since there is no useful information that most of the search space can
provide, no optimization algorithm will perform better than an exhaustive search method. Multi-objective
optimization methods are also no exception to face difficulty in solving a problem where the true Pareto-
optimal front is isolated in the search space. Even though the true Pareto-optimal front may not be totally
isolated from the rest of the search space, reasonable difficulty may come if the density of solutions near
the Pareto-optimal front is significantly small compared to other regions in the search space.

Collateral noise comes from the improper evaluation of low-order building blocks (partial solutions
which may lead towards the true optimum) due to the excessive noise that may come from other part of
the solution vector. These problems are usually ‘rugged’ with relatively large variation in the function
landscapes. However, if adequate population size (adequate to discover signal from the noise) is consid-
ered, such problems can be solved using GAs (Goldberg, Deb, and Clark, 1992). Multi-objective problems
having such ‘rugged’ functions may also cause difficulties to multi-objective GAs, if adequate population
size is not used.

3.2 Difficulties in maintaining diverse Pareto-optimal solutions

As it is important for a multi-objective GA to find solutions in the true Pareto-optimal front, it is also
necessary to find solutions as diverse as possible in the Pareto-optimal front. If only a small fraction of
the true Pareto-optimal front is found, the purpose of multi-objective optimization is not served. This is
because, in such cases, many interesting solutions with large trade-offs among the objectives may not have
been discovered.

In most multi-objective GA implementations, a specific diversity-maintaining operator, such as a nich-
ing technique (Deb and Goldberg, 1989; Goldberg and Richardson, 1987), is used to find diverse Pareto-
optimal solutions. However, the following features of a multi-objective optimization problem may cause
multi-objective GAs to have difficulty in maintaining diverse Pareto-optimal solutions:

1. Convexity or non-convexity in the Pareto-optimal front,

2. Discreteness in the Pareto-optimal front,

3. Non-uniform distribution of solutions in the Pareto-optimal front.
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There exist multi-objective problems where the resulting Pareto-optimal front is non-convex. Although
it may not be apparent but in tackling such problems, a GA’s success to maintain diverse Pareto-optimal
solutions largely depends on fitness assignment procedure. In some GA implementations, the fitness of
a solution is assigned proportional to the number of solutions it dominates (Leung et al., 1998; Zitzler
and Thiele, 1998). Figure 1 shows how such a fitness assignment favors intermediate solutions, in the
case of problems with convex Pareto-optimal front (the left figure). Using such a GA (with GAs favoring
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Figure 1: The fitness assignment proportional to the number of dominated solutions (the shaded area)
favors intermediate solutions in convex Pareto-optimal front (a), compared to that in non-convex Pareto-
optimal front (b).

solutions having more dominated solutions), there is a natural tendency to find more intermediate solutions
than solutions with individual champions, thereby causing an artificial bias towards some portion of the
Pareto-optimal region.

In some multi-objective optimization problems, the Pareto-optimal front may not be continuous, in-
stead it is a set of discretely spaced continuous sub-regions (Poloni et al., in press; Schaffer, 1984). In such
problems, although solutions within each sub-region may be found, competition among these solutions
may lead to extinction of some sub-regions.

It is also likely that the Pareto-optimal front is not uniformly represented by feasible solutions. Some
regions in the front may be represented by a higher density of solutions than other regions. We show
one such two-objective problem later in this study. In such cases, there is a natural tendency for GAs to
find a biased distribution in the Pareto-optimal region. The performance of multi-objective GAs in these
problems would then depend on the principle of niching method used. As appears in the literature, there
are two ways to implement niching—parameter-space based (Srinivas and Deb, 1994) and function-space
based (Fonseca and Fleming, 1995) niching. Although both can maintain diversity in the Pareto-optimal
front, each method means diversity in its own sense. Later, we shall show that the diversity in Pareto-
optimal solution vectors is not guaranteed when function-space niching is used, in some complex multi-
objective optimization problems.

3.3 Constraints

In addition to above difficulties, the presence of ‘hard’ constraints in a multi-objective problem may cause
further difficulties. Constraints may cause difficulties in both aspects discussed earlier. That is, they may
cause hindrance for GAs to converge to the true Pareto-optimal region and they may also cause difficulty in
maintaining a diverse set of Pareto-optimal solutions. The success of a multi-objective GA in tackling both
these problems will largely depend on the constraint-handling technique used. Typically, a simple penalty-
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function based method is used to penalize each objective function (Deb and Kumar, 1995; Srinivas and
Deb, 1994; Weile, Michelsson and Goldberg, 1996). Although successful applications are reported in
the literature, penalty function methods demand an appropriate choice of a penalty parameter for each
constraint. Usually the objective functions may have different ranges of function values (such as cost
function varying in thousands of dollars, whereas reliability values varying in the range zero to one). In
order to maintain equal importance to objective functions and constraints, different penalty parameters
must have to be used with different objective functions. Recently, a couple of efficient constraint-handling
techniques are developed for single-objective GAs (Deb, in press; Koziel and Michalewicz, 1998), which
may also be implemented in a multi-objective GA, instead of the simple penalty function approach. In this
paper, we realize that the presence of constraints makes the job of any optimizer difficult, but we defer a
consideration of constraints in multi-objective optimization to a later study.

In addition to the above problem features, there may exist other difficulties (such as the search space
being discrete, rather than continuous). There may also exist problems having a combination of above dif-
ficulties. In the following sections, we demonstrate the problem difficulties mentioned above by creating
simple to complex test problems. A feature of these test problems is that each type of problem difficulty
mentioned above can be controlled using an independent function used in the construction process. Since
most of the above difficulties are also common to GAs in solving single-objective optimization problems,
we use a simple construction methodology for creating multi-objective test problems from single-objective
optimization problems. The problem difficulty associated with the chosen single-objective problem is then
transferred to the corresponding multi-objective optimization problem. Avoiding to present the most gen-
eral case first (which may be confusing at first), we shall present a simple two-variable, two-objective opti-
mization problem, which can be constructed from a single-variable, single-objective optimization problem.

In some instances, one implementation of a multi-objective binary GA (non-dominated sorting GA
(NSGA) (Srinivas and Deb, 1994)) is applied on test problems to investigate the difficulties which a multi-
objective GA may face.

4 A Special Two-Objective Optimization Problem

Let us begin our discussion with a simple two-objective optimization problem with two problem variables
x1 (> 0) and x2:

Minimize f1(x1; x2) = x1; (1)

Minimize f2(x1; x2) =
g(x2)

x1
; (2)

where g(x2) is a function of x2 only. Thus, the first objective function f1 is a function of x1 only3 and the
function f2 is a function of both x1 and x2. In the function space (that is, a space with (f1; f2) values), the
above two functions obey the following relationship:

f1(x1; x2) � f2(x1; x2) = g(x2): (3)

For a fixed value of g(x2) = c, a f1-f2 plot becomes a hyperbola (f1f2 = c). Figure 2 shows three
hyperbolic lines with different values of c such that c 1 < c2 < c3. There exists a number of interesting
properties of the above two-objective problem:

THEOREM 1 If for any two solutions, the second variable x2 (or more specifically g(x2)) are the same,
both solutions are not dominated by each other.

Proof: Consider two solutions x (1) = (x
(1)
1 ; x

(1)
2 ) and x(2) = (x

(2)
1 ; x

(2)
2 ). Since x2 values are same

for both solutions (which also means corresponding g(x 2) values are the same), the functions are related

3With this function, it is necessary to have all f1 function values to be strictly positive.
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Figure 2: Three hyperbolic lines (f1f2 = c) with c1 < c2 < c3 are shown.

as f1 = x1 and f2 = c=x1, where c = g(x
(1)
2 ). Thus, if x(1)1 < x

(2)
1 then f1(x

(1)) < f1(x
(2)) and

f2(x
(1)) > f2(x

(2)). That is, the solutionx(1) better than solutionx(2) in function f1, but worse in function

f2. Similarly, if x(1)1 > x
(2)
1 , conflicting behavior can be proved. However, when x

(1)
1 = x

(2)
1 , both the

function values are same. Hence, by definition of domination, these two solutions are not dominated by
each other.

THEOREM 2 If for any two solutions, the first variable x1 are the same, the solution corresponding to the
minimum g(x2) value dominates the other solution.

Proof: Since x(1)1 = x
(2)
1 , the first objective function values are also same. So, the solution having smaller

g(x2) value (meaning better f2 value) dominates the other solution.

THEOREM 3 For any two arbitrary solutions x(1) and x(2), where x(1)i 6= x
(2)
i for i = 1; 2, and g(x(1)2 ) <

g(x
(2)
2 ), there exists a solution x(3) = (x

(2)
1 ; x

(1)
2 ) which dominates the solution x (2).

Proof: Since the solutions x(3) and x(2) have the same x1 value and since g(x(1)) < g(x(2)), x(3) domi-
nates x(2), according to Theorem 2.

COROLLARY 1 The solutions x(1) and x(3) have the same x2 values and hence they are non-dominated to
each other according to Theorem 1.

Based on the above discussions, we can present the following theorem:

THEOREM 4 The two-objective problem described in equations 1 and 2 has local or global Pareto-optimal
solutions (x1; x�2), where x�2 is the locally or globally minimum solution of g(x 2), respectively, and x1 can
take any value.

Proof: Since the solutions with a minimum g(x2) has the smallest possible g(x2) value (in the neighbor-
hood sense in the case of local minimum and in the whole search space in the case of global minimum),
according to Theorem 3, all such solutions dominate any other solution in the neighborhood in the case of
local Pareto-optimal solutions or in the entire search space in the case of global Pareto-optimal solutions.
Since these solutions are also non-dominated to each other, all these solutions are Pareto-optimal solutions,
in the appropriate sense.

Although obvious, we shall make a final theorem about the relationship between a non-dominated set
of solutions and Pareto-optimal solutions.
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THEOREM 5 Although some members in a non-dominated set are members of the Pareto-optimal front,
not all members are necessarily members of the Pareto-optimal front.

Proof: Say, there are only two distinct members in a set, of which x (1) is a member of Pareto-optimal
front and x(2) is not. We shall show that both these solutions still can be non-dominated to each other.
The solution x(2) can be chosen in such a way that x(2)1 < x

(1)
1 . This makes f1(x(2)) < f1(x

(1)). Since

g(x
(2)
2 ) > g(x

(2)
2 ), it follows that f2(x(2)) > f2(x

(1)). Thus, x(1) and x(2) are non-dominated solutions.
This theorem establishes a negative argument about multi-objective optimization methods which work

with the concept of non-domination. Since these methods seek to find the Pareto-optimal front by finding
the best non-dominated set of solutions, it is important to realize that the best non-dominated set of solu-
tions obtained by an optimizer may not necessarily be the set of Pareto-optimal solutions. More could be
true. Even if some members of the obtained non-dominated front are members of Pareto-optimal front,
rest all members need not necessarily be members of the Pareto-optimal front. Nevertheless, seeking the
best set of non-dominated solutions is the best method that exists in the literature and should be perused
in absence of better approaches. But post-optimal testing (by locally perturbing each member of obtained
non-dominated set or by other means) may be performed to establish Pareto-optimality of all members in
an non-dominated set.

The above two-objective problem and the associated theorems allow us to construct different types
of multi-objective problems from single-objective optimization problems (defined in the function g). The
optimality and complexity of function g is then directly transferred into the corresponding multi-objective
problem. In the following subsections, we construct a multi-modal and a deceptive multi-objective prob-
lem.

4.1 Multi-modal multi-objective problem

According to Theorem 4, if the function g(x2) is multi-modal with local x2 and global �x2 minimum
solutions, the corresponding two-objective problem also has local and global Pareto-optimal solutions
corresponding to solutions (x 1; x2) and (x1; �x2), respectively. The Pareto-optimal solutions vary in x 1

values.
We create a bimodal, two-objective optimization problem by choosing a bimodal g(x 2) function:

g(x2) = 2:0� exp

(
�
�
x2 � 0:2

0:004

�2
)
� 0:8 exp

(
�
�
x2 � 0:6

0:4

�2
)
: (4)

Figure 3 shows the above function for 0 � x2 � 1 with x2 � 0:2 as the global minimum and x2 � 0:6 as
the local minimum solutions. Figure 4 shows the f 1-f2 plot with local and global Pareto-optimal solutions
corresponding to the two-objective optimization problem. The local Pareto-optimal solutions occur at
x2 � 0:6 and the global Pareto-optimal solutions occur at x 2 � 0:2. The corresponding values for g
function values are g(0:6) � 1:2 and g(0:2) � 0:7057, respectively. The density of the points marked
on the plot shows that most solutions lead towards the local Pareto-optimal front and only a few solutions
lead towards the global Pareto-optimal front.

To investigate how a multi-objective GA would perform in this problem, the non-dominated sorting
GA (NSGA) is used. Variables are coded in 20-bit binary strings each, in the ranges 0:1 � x 1 � 1:0

and 0 � x2 � 1:0. A population of size 60 is used4. Single-point crossover with pc = 1 is chosen. No
mutation is used to investigate the effect of non-dominated sorting concept alone. The niching parameter
�share = 0:158 is calculated based on normalized parameter values and assuming to form about 10 niches
in the Pareto-optimal front (Deb and Goldberg, 1989). Figure 5 shows a run of NSGA, which, even at
generation 100, gets trapped at the local Pareto-optimal solutions (marked with a ‘+’). When NSGA is

4This population size is determined to have, on an average, one solution in the global basin of function g in a random initial
population.
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tried with 100 different initial populations, it gets trapped into the local Pareto-optimal front in 59 out of
100 runs, whereas in other 41 runs NSGA can find the global Pareto-optimal front. We also observe that
in 25 runs there exist at least one solution in the global basin of function g in the initial population and
still NSGAs cannot converge to the global Pareto-optimal front. Instead, they get attracted to the local
Pareto-optimal front. Among 100 runs, in 21 cases the initial population has at least one solution in the
global basin and they are better than the locally optimal (g < 1:2) solution. Out of these 21 runs, 20
runs converged to the global Pareto-optimal front, whereas one run gets misled and converge to the local
Pareto-optimal front. In 5 out of 100 runs, initial population does not have any solution in the global
basin and still NSGAs are able to converge to the global Pareto-optimal front. These results show that
a multi-objective GA can even have difficulty from such a simple bimodal problem. However, a more
difficult test problem can be constructed using a standard single-objective multi-modal test problems, such
as Rastrigin’s function, Schwefel’s function (Gordon and Whitley, 1993), and others.

4.2 Deceptive multi-objective optimization problem

Next, we shall create a deceptive multi-objective optimization problem, from a deceptive g function. This
function is defined over binary alphabets, thereby making the search space discrete. Let us say that the
following multi-objective function is defined over ` bits, which is a concatenation of N substrings of
variable size `i such that

PN
i=1 `i = `:

Minimize f1 = 1 + u(`1);

Minimize f2 =
P

N

i=2
g(u(`i))

1+u(`1)
;

(5)

where u(`1) is the unitation5 of the first substring of length `1.
The first function f1 is a simple one-min problem, where the absolute minimum solution is to have all

0s in the first substring. A one is added to make all function values strictly positive.
The function g(`i) is defined6 in the following:

g(u(`i)) =

�
2 + u(`i); if u(`i) < `i,
1; if u(`i) = `i.

(6)

5Unitation is the number of 1 in the substring. Note that minimum and maximum values of unitation of a substring of length
`i is zero and `i, respectively.

6It can be shown that an equivalent dual maximization function G = ` i + 1� g(u(`i)) is deceptive according to conditions
outlined elsewhere (Deb and Goldberg, 1993). Thus, the above minimization problem is also deceptive.
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This makes the true attractor (with all 1s in the substring) to have worst neighbors and with a function
value g(`i) = 1 and the deceptive attractor (with all 0s in the substring) to have good neighbors and with a
function value g(0) = 2. Since, most of the substrings lead towards the deceptive attractor, GAs may find
difficulty to converge to the true attractor (all 1s).

Once again, the global Pareto-optimal front corresponds to the solution for which the summation of g
function values is absolutely minimum. Since, each minimum g function value is one, the global Pareto-
optimal solutions have a summation of g equal to (N � 1). Since each g function has two minima (one
true and another deceptive), there are a total of 2N�1 local minima, of which one is global. Corresponding
to each of these local minima, there exist a local Pareto-optimal front (some of them are identical since the
functions are defined over unitation), where a multi-objective GA may get stuck to.

In the experimental set up, we have used `1 = 10, `2 = 5, `3 = 5, `4 = 5, such that ` = 25. With three
deceptive subfunctions, there are a total of 23 or 8 Pareto-optimal fronts, of which one is global Pareto-
optimal front. Since the functions are defined with unitation values, we have used genotypic niching with
Hamming distance as the distance measure between two solutions (Deb and Goldberg, 1989). Since we
expect 11 different function values in f1 (all integers from 1 to 11), we use guidelines suggested in that
study to calculate the �share value. For 11 niches to form, the corresponding �share = 9 is obtained
for ` = 25. Figure 6 shows that when a population size of 80 is used, an NSGA is able to find the
global Pareto-optimal front from the initial population shown (solutions marked with a ‘+’). The initial
population is expected to be binomially distributed over unitation (with more representative solutions for
unitation values around `1=2). Although, this introduces a bias against finding solutions for small and large
values of f1, NSGA with genotypic sharing is able to find a wide distribution of solutions in the global
Pareto-optimal front. It is interesting to note that all Pareto-optimal fronts (whether global or non-global)
are expected to vary in f1, which takes integer values from 1 to 11. The figure shows that NSGA has found
all but f1 = 11 solution. The global Pareto-optimal solutions also correspond to all 1s in the last 15 bits
(in all `2 to `4 bits). In the global Pareto-optimal solutions, the summation of g function values equal to 3.

When a smaller population size (n = 60) is used, the NSGA cannot find the true substring in all
three deceptive subproblems, instead it converges to the deceptive substring in one subproblem and to
the true substring in two other subproblems. This makes a summation of g values equal to 4. When a
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sufficiently small population (n = 16) is used, the NSGA converges to the deceptive attractor in all three
subproblems. In these solutions, the summation of g function values is equal to 6. The corresponding
local Pareto-optimal front is shown in Figure 6 with a dashed line. Other two distinct (but 6 in total) local
Pareto-optimal solutions lie in between the dashed and the solid lines.

In order to investigate further the difficulties that a deceptive multi-objective function may cause to
a multi-objective GA, we construct a 30-bit function with ` 1 = 10 and `i = 5 for i = 2; : : : ; 5 and use
�share = 11. For each population size, 50 GA runs are started from different initial populations and the
proportion of successful runs is plotted in Figure 7. A run is considered successful if all four deceptive
subproblems are solved correctly (that is, the true optimal solution for the function g is found). The figure
shows that NSGAs with small population sizes could not be successful in many runs. Moreover, the
performance improves as the population size is increased. To show that this difficulty is due to deception
in subproblems alone, we use a linear function for g = u+1, instead of the deceptive function used earlier,
for comparison. The figure shows that multi-objective GAs with a reasonable population size have worked
in much more occasions with this easy problem than with the deceptive problem.

The above two problems show that by using a simple construction methodology (by choosing a suit-
able g function), any problem feature that may cause single-objective GAs difficulty can also be intro-
duced in a multi-objective GA. Based on the above construction methodology, we now present a generic
two-objective optimization problem which may have additional difficulties pertaining to multi-objective
optimization.

5 Generic Two-objective Optimization Problems

In this section, we present a more generic two-objective optimization problem which is constructed from
single-objective optimization problems. Let us consider the followingN -variable two-objective problem:

Minimize f1(~x) = f1(x1; x2; : : : ; xm);

Minimize f2(~x) = g(xm+1; : : : ; xN)h(f1(x1; : : : ; xm); g(xm+1; : : : ; xN)):
(7)
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The function f1 is a function of m variables (~xI = (x1; : : : ; xm)) and the function f2 is a function of all
N variables. The function g is a function of (N �m) variables (~x II = (xm+1; : : : ; xN)), which do not
appear in the function f1. The function h is a function of f1 and g function values directly.

By choosing appropriate functions for f1, g, and h, multi-objective problems having specific features
can be created. Some properties that may cause a multi-objective GA difficulty have been described earlier.
Specifically, the above construction allows a controlled way to introduce such difficulties in test problems:

1. Convexity or discreteness in the Pareto-optimal front can be affected by choosing an appropriate h
function.

2. Convergence to the true Pareto-optimal front can be affected by using a difficult (multi-modal, de-
ceptive, or others) g function, as already demonstrated in the previous section.

3. Diversity in the Pareto-optimal front can be affected by choosing an appropriate (non-linear or multi-
dimensional) f1 function.

We describe each of the above issues in the following subsections.

5.1 Convexity or discreteness in Pareto-optimal front

By choosing an appropriate h function (which is a function of f 1 and g), multi-objective optimization
problems with convex, non-convex or discrete Pareto-optimal fronts can be created. Specifically, if the
following two properties of h are satisfied, the global Pareto-optimal set will correspond to the global
minimum of the function g and to all values of the function f 17:

1. The function h is a monotonically non-decreasing function in g for a fixed value of f 1.

2. The function h is a monotonically decreasing function of f 1 for a fixed value of g.

7Although, for other h functions, the condition for Pareto-optimality of multi-objective problems can also be established, here,
we state the sufficient conditions for the functional relationships of h with g and f 1. Note that this allows us to directly relate the
optimality of g function with the Pareto-optimality of the resulting multi-objective problem.

13



The first condition ensures that the global Pareto-optimal front occurs for the global minimum value for
g function. The second condition ensures that there is a continuous ‘conflicting’ Pareto-front. However,
we realize that when we violate this condition (the second condition), we shall no more create problems
having continuous Pareto-optimal front. Later, we shall use an h function which is oscillatory with respect
to f1, in order to construct a problem having a discrete Pareto-optimal front. However, if the first condition
is met alone, for every local minimum of g, there will exist one local Pareto-optimal set (corresponding
value of g and all possible values of f1) of the multi-objective optimization problem.

Although many different functions may exist, we present two such functions—one leading to a convex
Pareto-optimal front and the other leading to a more generic problem having a control parameter which
decides the convexity or the non-convexity of the Pareto-optimal fronts.

5.1.1 Convex Pareto-optimal front

We choose the following function for h:

h(f1; g) =
1

f1
: (8)

The resulting Pareto-optimal set is (~x�I ; ~xII) = f(~xI ; ~xII) : rg(~xI) = 0g. We have used this example
before (see Section 4) and have seen that the resulting Pareto-optimal set is convex. This is one of the
simple functions that can be chosen to achieve a convex Pareto-optimal set. In the following, we present
another function which can be used to create convex and non-convex Pareto-optimal set by just tuning a
parameter.

5.1.2 Non-convex Pareto-optimal front

We choose the following function8 for h:

h(f1; g) =

(
1�

�
f1
�g

��
; if f1 � �g,

0; otherwise.
(9)

The global Pareto-optimal set corresponds to the global minimum of g function. The parameter � is a
normalization factor to adjust the range of values of functions f 1 and g. It is interesting to note that
when � > 1, the resulting Pareto-optimal front is non-convex. We show one such problem a little later.
It is important to note that when � > 1 is used, the classical weighted-sum method cannot find any
intermediate Pareto-optimal solution by using any weight vector. Although there exist other methods (such
as �-perturbation method or goal programming method (Steuer, 1986)), they require problem knowledge
and, moreover, require multiple application of the single-objective optimizer.

The above function can also be used to create multi-objective problems having convex Pareto-optimal
set by setting � � 1. Other interesting functions for the function h may also be chosen with properties
mentioned in Section 5.1.

Test problems having local and global Pareto-optimal fronts being of mixed type (some are of convex
and some are of non-convex shape) can also be created by making the parameter � a function of g. Since
the value of the function g decides the location of local and global Pareto-optimal solutions, problems
with mixed type of fronts can be easily created. These problems would be more difficult to solve, simply
because the search algorithm needs to adopt to a different kind of front while moving from local to global
Pareto-optimal front. Multi-objective optimization algorithms that work by exploiting the shape of the
Pareto-optimal front will have difficulty in solving such problems. Here, we illustrate one such problem,
where the local Pareto-optimal front is non-convex, whereas the global Pareto-optimal front is convex.

8This condition may also be waived, in which case negative values of f 2 in the Pareto-optimal front may be obtained.
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Consider the following functions:

g(x2) =

(
4� 3 exp

�
x2�0:2
0:02

�2
; if 0 � x2 � 0:4;

4� 2 exp
�
x2�0:7
0:2

�2
; if 0:4 < x2 � 1;

(10)

f1(x1) = 4x1; (11)

� = 0:25 + 3:75
g(x2)� g��

g� � g��
; (12)

where g� and g�� are the worst locally optimal and the globally optimal function value of g, respectively.
Equation 12 is set to have non-convex worst local Pareto-optimal front with � = 4:0 and convex global
Pareto-optimal front with � = 0:25.

The function h is given in equation 9 with � = 1. The function g(x 2) has a local minimum at x2 = 0:7

and a global minimum at x2 = 0:2. The corresponding function values are g = 2:0 and 1:0, respectively.
Equation 12 suggests that for g � 1:2, the f1-f2 plot for constantx2 is convex. Since the local minimum for
g(x2) occurs at g = 2:0 (which is larger than 1.2), the local Pareto-optimal front is non-convex (� = 4:0),
as shown in Figure 8. But, at the global minimum, g = 1:0 and the corresponding global Pareto-optimal
front is convex (� = 0:25). A random set of 40,000 solutions (x 1; x2 2 [0:0; 1:0]) are generated and

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

f_
2

f_1

Global Pareto-optimal Front
Local Pareto-optimal Front

Random points

Figure 8: A two-objective function with non-convex local Pareto-optimal front and a convex global Pareto-
optimal front. 40,000 random solutions are shown.

the corresponding solutions in the f 1-f2 space are also shown. The figures clearly show the nature of the
global and local Pareto-optimal fronts. Notice that only a small portion of the search space leads to the
global Pareto-optimal front. An apparent front at the top of the figure is due to the discontinuity in the
g(x2) function at x2 = 0:4.

5.1.3 Discrete Pareto-optimal front

As mentioned earlier, we have to relax the condition for h being a monotonically decreasing function of
f1 to construct multi-objective problems with a discrete Pareto-optimal front. In the following, we show
one such construction where the function h is a periodic function of f 1:

h(f1; g) = 1�
�
f1

g

��

� f1

g
sin(2�qf1): (13)
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The parameter q is the number of discrete regions in an unit interval of f 1. By choosing the following
functions

f1(x1) = x1;

g(x2) = 1 + 10x2;

and allowing variables x1 and x2 to lie in the interval [0,1], we have a two-objective optimization problem
which has a discrete Pareto-optimal front. Since the h (and hence f2) function is periodic to x1 (and hence
to f1), we generate discrete Pareto-optimal regions.

Figure 9 shows the 50,000 random solutions in f 1-f2 space. Here, we use q = 4 and � = 2. When
NSGAs (population size of 200, �share of 0.1, crossover probability of 1, and no mutation) are applied
to this problem, the resulting population at generation 300 is shown in Figure 10. The plot shows that if
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Figure 9: 50,000 random solutions are shown on
a f1-f2 plot of a multi-objective problem having
discrete Pareto-optimal front.
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Figure 10: The population at generation 300 for a
NSGA run is shown to have found solutions in all
four discrete Pareto-optimal regions.

reasonable GA parameter values are chosen, NSGAs can find solutions in all four discrete Pareto-optimal
regions. A population size of 200 is used to have a wide distribution of solutions in all discrete regions.
Since a linear function for g is used, the NSGA soon makes most of its population members converged to
the optimum solution for x�2 = 0. When this happens, the entire population is almost classified into one
non-domination class and niching helps to maintain diversity among Pareto-optimal solution. However,
it is interesting to note how NSGAs avoid creating the non-Pareto-optimal solutions, although the corre-
sponding x2 value may be zero. In general, discreteness in the Pareto-optimal front may cause difficulty to
multi-objective GAs which do not have an efficient mechanism of implementing diversity among discrete
regions.

5.2 Hindrance to reach true Pareto-optimal front

It is shown earlier that by choosing a difficult function for g alone, a difficult multi-objective optimiza-
tion problem can be created. Specifically, some instances of multi-modal and deceptive multi-objective
optimization have been created earlier. Test problems with standard multi-modal functions used in single-
objective GA studies, such as Rastrigin’s functions, NK landscapes, and others can all be chosen for the g
function.

5.2.1 Biased search space

The function g makes a major role in introducing difficulty to a multi-objective problem. Even though
the function g is not chosen to be a multi-modal function nor to be a deceptive function, with a simple

16



monotonic g function the search space can have adverse density of solutions towards the Pareto-optimal
region. Consider the following function for g:

g(xm+1; : : : ; xN) = gmin + (gmax � gmin)

 PN
i=m+1 xi �

PN
i=m+1 x

min
iPN

i=m+1 x
max
i �PN

i=m+1 x
min
i

!

; (14)

where gmin and gmax are minimum and maximum function values that the function g can take. The values
xmin
i and xmax

i are minimum and maximum values of the variable xi. It is important to note that the
Pareto-optimal region occurs when g takes the value gmin. The parameter  controls the biasness in the
search space. If  < 1, the density of solutions away from the Pareto-optimal front is more. We show this
on a simple problem with m = 1, N = 2, and with following functions:

f1(x1) = x1;

h(f1; g) = 1�
�
f1

g

�2

:

We also use gmin = 1 and gmax = 2. Figures 11 and 12 show 50,000 random solutions each with  equal to
1.0 and 0.25, respectively. It is clear that for  = 0:25, not even one solution is found in the Pareto-optimal
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Figure 11: 50,000 random solutions are shown for
 = 1:0.
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Figure 12: 50,000 random solutions are shown for
 = 0:25.

front, whereas for  = 1:0, many Pareto-optimal solutions exist in the set of 50,000 random solutions.
Random search methods are likely to face difficulty in finding the Pareto-optimal front in the case with
 close to zero, mainly due to the low density of solutions towards the Pareto-optimal region. Although
multi-objective GAs, in general, will progress towards the Pareto-optimal front, a different scenario may
emerge. Although for values of  greater than one, the search space is biased towards the Pareto-optimal
region, the search in a multi-objective GA with proportionate selection and without mutation or without
elitism is likely to slow down near the Pareto-optimal front. In such cases, the multi-objective GAs may
prematurely converge to a front near the true Pareto-optimal front. This is because the rate of improvement
in g value near the optimum (x2 � 0) is small with  � 1. Nevertheless, a simple change in the function g
with a change in  suggested above will change the landscape drastically and multi-objective optimization
algorithms may face difficulty in converging to the true Pareto-optimal front.

5.2.2 Parameter interactions

The difficulty in converging to the true Pareto-optimal front may also arise because of parameter depen-
dence to each other. It is discussed before that the Pareto-optimal set in the two-objective optimization
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problem described in equation 7 corresponds to all solutions of different f 1 values. Since the need for
a multi-objective GA is to find as many Pareto-optimal solutions as possible and since in equation 7 the
variables defining f1 are different from variables defining g, a GA may work in two stages. In one stage,
all variables ~xI may be found and in the other stage optimal ~x II may be found. This rather simple mode
of working of a GA in two stages can face difficulty if the above variables are mapped to another set of
variables. If M is a random orthonormal matrix of size N �N , the true variables ~y can first be mapped to
derived variables ~x using

~x = M~y: (15)

Thereafter, objective functions defined in equation 7 can be computed using the variable vector ~x. Since, a
GA operates on the variable vector ~y and all variables ~y are now related to each other at the Pareto-optimal
front, any change in one variable must be accompanying by related changes in other variables in order to
remain on the Pareto-optimal front. This makes this mapped version of problem more difficult to solve
than the unmapped version. We discuss more about mapped functions in the following section.

5.3 Non-uniformly represented Pareto-optimal front

In all the above test functions constructed above (except the deceptive problem), we have used a linear,
single-variable function for f1. This helped us to create a problem with uniform distribution of solutions
in f1. Unless the underlying problem has discretely spaced Pareto-optimal regions (like in Section 5.1.3),
there is no bias for the Pareto-optimal solutions to get spread over the entire range of f 1 values. However,
a bias for some portions of range of values for f1 may also be created by choosing any of the following f 1
functions:

1. The function f1 is non-linear, and

2. The function f1 is a function of more than one variable.

It is clear that if a non-linear f1 function (whether single or multi-variable) is chosen, the resulting Pareto-
optimal region (or, for that matter, the entire search region) will have bias towards some values of f 1.
The non-uniformity in distribution of the Pareto-optimal region can also be created by simply choosing a
multi-variable function (whether linear or non-linear). Consider, for simplicity, a two-variable function for
f1 (m = 2):

f1(x1; x2) = x1 + x2:

If each variable is varied between [0; 1], the maximum number of solutions ((x1; x2)) have the function
value f1 = 1. The number solutions having any other function value f 1 2 [0; 2] reduces, as f1 reduces
or increases from f1 = 1, thereby causing an artificial bias for solutions to cluster around f 1 = 1 values.
Multi-objective optimization algorithms not good at maintaining diversity among solutions (or function
values) will produce biased Pareto-optimal front in such problems. Thus, the non-linearity in function f 1

or dimension of f1 measures how well an algorithm is able to maintain distributed non-dominated solutions
in a population.

Consider the single-variable, multi-modal function f 1:

f1(x1) = 1� exp(�4x1) sin4(5�x1); 0 � x1 � 1: (16)

The above function has five minima for different values of x1, as shown in Figure 13. The figure also shows
the corresponding non-convex Pareto-optimal front in a f 1-f2 plot with h function defined in equation 9
having � = 1 and � = 4 (since � > 1, the Pareto-optimal front is non-convex) . The right figure is
generated from 500 uniformly-spaced points in x1. The value of x2 is fixed so that the minimum value of
g�(x2) is equal to 1. The figure shows that the Pareto-optimal region is biased for solutions for which f 1

is near one.

18



0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

f_
1

x_1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f_
2

f_1

Figure 13: A multi-modal f1 function and corresponding non-uniformly distributed non-convex Pareto-
optimal region are shown. In the right plot, Pareto-optimal solutions derived from 500 uniformly-spaced
x1 points are shown.

The working of a multi-objective GA on this function provides insights into an interesting debate about
fitness-space niching (Fonseca and Fleming, 1995) versus parameter-space niching (Srinivas and Deb,
1994). It is clear that when function-space niching is performed, a uniform distribution in the function
space (right plot in Figure 13) is anticipated. There are at least two difficulties with this approach. First,
the obtained distribution would depend on the shape of the Pareto-optimal region. Since GAs operate on
the solution vector, instead of the function values directly, in such complex problems it is difficult to realize
what function-space niching means to the solutions. Secondly, notice that the function f 1 has five distinct
minima in x1 with increasing function value. Since the objective of niching is to maintain diversity among
the Pareto-optimal solutions, the fitness-space niching may not maintain diversity in solution vectors,
instead may maintain diversity among the objective vectors.

We compare the performance of NSGAs with two different niching—parameter-space niching and
function-space niching. NSGAs with a reasonable parameter settings (population size of 100, 15-bit cod-
ing for each variable, �share of 0.2236 (assuming 5 niches), crossover probability of 1, and no mutation) are
run for 500 generations. A typical run for both niching methods are shown in Figure 14. Identical � share
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Figure 14: The left plot is with parameter-space niching and right is with function-space niching. The
figures show that both methods find solutions with diversity in the f 1-f2 space. But do each plot suggest
adequate diversity in the solution space? Refer to next figure for an answer.

value is used in both cases. This is because in both cases the ranges of values of x i or fi are the same.
Although it seems that both niching methods are able to maintain diversity in function space (with a better
distribution in f1-f2 space with function-space niching), the left plot in Figure 15 shows that the NSGA
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with parameter-space niching has truly found diverse solutions, whereas the NSGA with function-space
niching (right plot) converges to about 50% of the entire region of the Pareto-optimal solutions. Since the
first minimum and its basin of attraction spans the complete space for the function f 1, the function-space
niching does not have the motivation to find other important solutions (which are in some sense in the
shadow of the first minimum). Thus, in problems like this, function-space niching may hide information
about important Pareto-optimal solutions in the search space.
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Figure 15: The left plot is with parameter-space niching and right is with function-space niching. Clearly,
parameter-space niching is able to find more diverse solutions than function-space niching. All 100 solu-
tions at generation 500 are shown in each case.

It is important to understand that the choice between parameter-space or function-space niching en-
tirely depends on what is desired in a set of Pareto-optimal solutions in the underlying problem. In some
problems, it may be important to have solutions with trade-off in objective function values, without much
care of how similar or diverse the actual solutions (x vectors or strings) are. In such cases, function-space
niching will, in general, provide solutions with more trade-off in objective function values. Since there is
no induced pressure for the actual solutions to differ from each other, the Pareto-optimal solutions may
not be very different, unless the underlying objective functions demand them to be so. On the other hand,
in some problems the emphasis could be on finding more diverse solutions and with clear trade-off among
objective functions. In such cases, parameter-space niching would be better. This is because, in some
sense, categorizing a population using non-domination and emphasizing all such non-dominated solutions
through the selection operator help to maintain some diversity among objective function values. Whereas,
if explicit niching in the parameter space is not used, it is not expected to create Pareto-optimal solutions
with diversity in parameter values. However, a multi-objective optimization algorithm which explicitly
uses both niching (either in each generation or temporally switching from one type of niching to another
with generation (L. Thiele and E. Zitzler, personal communication, October, 1998)) would ensure solutions
with both kinds of diversity.

We return to the original problem and investigate how interactions among variables effect the perfor-
mance of NSGAs having both types of niching. When the parameter interaction is introduced by mapping
variables to another set of variables (by multiplying the original variable vector with a random normalized
matrix (suggested in equation 15) and translated to make the function values non-negative), the distinc-
tion between parameter-space and function-space niching is even more clear (Figure 16). GA parameter
values same as that in the unmapped case above are used here. Now the f1-x1 plot is rotated and the
Pareto-optimal front now occurs, not simply for a fixed value of just one variable x 2, but for a fixed value
of weighted sum of x1 and x2, dictated by the chosen random matrix. This makes the task of finding the
Pareto-optimal front harder, as discussed in Section 5.2. The left plot shows that parameter-space niching
is able to find solutions across the entire range, whereas the right plot shows that function-space niching is
able to find solutions in one minimum (the first minimum). However, an usual f 1-f2 plot reveals that the
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Figure 16: Plots for a rotated function are shown. The left plot is with parameter-space niching and right is
with function-space niching. Clearly, parameter-space niching is able to find more diverse solutions than
function-space niching. The plots are made with all 100 solutions at generation 500.

function-space niching is also able to find diverse solutions. But a plot like in Figure 16 truly reveals the
diversity achieved in the solutions.

A more complicated search space can be created by introducing bias in both lateral to (on f 2) and along
(on f1) the Pareto-optimal region by using techniques presented in Sections 5.2.1 and 5.3. Using non-linear
functions for g and f1, such bias can be easily created in multi-objective optimization test problems.

6 Summary of Test Problems

The two-objective optimization problem discussed above requires three functional—f 1, g, and h—which
can be set to various complexity levels to create complex two-objective optimization test problems. By
varying the complexity of one function and by fixing other two functions at their simplest form, we can
create multi-objective test problems with known and desired features. However, more complicated test
problems can also be created by simultaneously varying the complexity of more than one functions at a
time.

In the following, we summarize the properties of a two-objective optimization problem due to each of
above functions:

1. The function f1 tests a multi-objective GA’s ability to find diverse Pareto-optimal solutions. The
function f1 can used to create multi-objective problem having nonuniform representation of Pareto-
optimal solutions.

2. The function g tests a multi-objective GA’s ability to converge to the true (or global) Pareto-optimal
front. The function g can be used to create multi-modal, deceptive, isolated, or other complex multi-
objective optimization problems.

3. The function h tests a multi-objective GA’s ability to tackle multi-objective problems having convex,
non-convex, or discrete Pareto-optimal fronts. The function h can be used to create problems with
convex, non-convex, and discrete multi-objective optimization problems.

In the light of the above discussion, we summarize and suggest in Tables 1 to 3 a few test functions
for the above three functionals, which may be used in combination to each other. Unless specified, all
variables xi mentioned in the tables take real values in the range [0,1].

The functions mentioned in the third column in each table are representative functions which will
produce the desired effect mentioned in the respective fourth column. However, other functions of similar
type (mentioned in the second column) can also be chosen in each case. While testing an algorithm for
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Table 1: Effect of function f1 on the test problem.

Function f1(x1; : : : ; xm)
Controls search space along the Pareto-optimal front

Type Example Effect
F1-I Single-variable (m =

1) and linear
c1x1 Uniform representation of solu-

tions in the Pareto-optimal front.
Most of the Pareto-optimal re-
gion is likely to be found.

F1-II Multi-variable (m >

1) and linear

Pm
i=1 cixi Non-uniform representation of

Pareto-optimal front. Some
Pareto-optimal regions are not
likely to be found.

F1-III Non-linear (any m) Eqn 16 for m = 1 or,
1 � exp(�4r) sin4(5�r)
where r =

qPm
i=1 x

2
i

Same as above.

F1-IV Multi-modal Eqn 4 with g(x2) replaced by
f1(x1) or other standard multi-
modal test problems (such as
Rastrigin’s function, see Ta-
ble 2)

Same as above. Solutions at
global optimum of f1 and corre-
sponding function values are dif-
ficult to find.

F1-V Deceptive f1 =
Pm

i=1 f(`i), where f is
same as g defined in Eqn 6

Same as above. Solutions at true
optimum of f1 are difficult to
find.

its ability to overcome a particular feature of a test problem, we suggest varying the complexity of the
corresponding function (f1, g, or h) and fixing the other two functions at its easiest complexity level. For
example, while testing an algorithm for its ability to find the global Pareto-optimal front in a multi-modal
multi-objective problem, we suggest choosing a multi-modal g function (G-III) and fixing f 1 as in F1-I
and h as in H-I.

Some interesting combinations of these three functions will also produce significantly difficult test
problems. For example, if a deceptive f1 (F1-V) and a deceptive g function (G-IV) are used (E. Zitzler,
personal communication, October, 1998), it is likely that a multi-objective GA with a small population
size will get attracted to deceptive attractors of both functions. In such a case, that GA will not find the
global Pareto-optimal front. On the other hand, since not all function values of f 1 are likely to be found,
some region in the Pareto-optimal front will be undiscovered. The G-V function for g has a massively
multi-modal landscape along with deception (Goldberg, Deb, and Horn, 1992). This function introduces a
number of different solutions having the same global optimal g function value. Corresponding to each of
these globally optimal solutions for g function, there is one global Pareto-optimal front. In fact, in f 1-f2
space, all global Pareto-optimal fronts are the same, but solutions differ drastically. The sheer number
of local Pareto-optimal fronts and deception in this problem should cause enough difficulty to any multi-
objective GA to converge to one of the global Pareto-optimal fronts. An interesting challenge in this
problem would be to find all (or as many as possible) different globally optimal solutions for g function.
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Table 2: Effect of function g on the test problem.

Function g(xm+1; : : : ; xN), say n = N �m

Controls search space lateral to the Pareto-optimal front
Type Example Effect

G-I Uni-modal, single-
variable (n = 1), and
linear

c2x2, or Eqn 14 with  = 1 No bias for any region in the
search space.

G-II Uni-modal and non-
linear

Eqn 14 with  6= 1 With  > 1, bias towards the
Pareto-optimal region and with
 < 1, bias against the Pareto-
optimal region.

G-III Multi-modal Rastrigin:
1 + 10n +

Pn
i=1 x

2
i � 10 cos(2�xi)

xi 2 [�512; 511]

Many (1024n�1) local and one
global Pareto-optimal fronts

Schwefel:
1 + 418:983n �

Pn
i=1 xi sin(

p
jxij)

xi 2 [�512; 511]

Many (8n � 1) local and one
global Pareto-optimal fronts

Griewangk:
2+
Pn

i=1 x
2
i =4000��n

i=1 cos(xi=
p
i)

xi 2 [�512; 511]

Many (163n � 1) local and one
global Pareto-optimal fronts

G-IV Deceptive Eqn 6 Many (2n�1) deceptive attrac-
tors and one global attractor

G-V Multi-modal, decep-
tive

g(u(`i)) =

�
2 + e; if e < `i=2,
1; if e = `i=2.

where e = ju(`i)� `i=2j
Many (�n

i=1

h�
`i
`i=2

�
+ 2

i
� 2n)

deceptive attractors and 2n

global attractors

Table 3: Effect of function h on the test problem.

Function h(f1; g)
Controls shape of the Pareto-optimal front

Type Example Effect
H-I Monotonically non-

decreasing in g and convex
on f1

Eqn 8 or Eqn 9 with � �
1

Convex Pareto-optimal
front

H-II Monotonically non-
decreasing in g and
non-convex on f1

Eqn 9 with � > 1 Non-convex Pareto-optimal
front

H-III Convexity on f1 as a func-
tion of g

Eqn 9 along with Eqn 12 Mixed convex and non-
convex shapes for local and
global Pareto-optimal fronts

H-IV Non-monotonic periodic in
f1

Eqn 13 Discrete Pareto-optimal
front
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7 Future Directions for Research

This study suggests a number of immediate areas of research for developing better multi-objective GAs.
A list of them are outlined and discussed in the following:

1. Comparison of existing multi-objective GA implementations

2. Understand dynamics of GA populations with generations

3. Scalability of multi-objective GAs with number of objectives

4. Develop constrained test problems for multi-objective optimization

5. Convergence to Pareto-optimal front

6. Define appropriate multi-objective GA parameters (such as elitism)

7. Comparison of two populations

8. Hybrid multi-objective GAs

9. Real-world applications

10. Multi-objective scheduling and other optimization problems

As mentioned earlier, there exists a number of different multi-objective GA implementations primarily
varying in the way non-dominated solutions are emphasized and in the way the diversity in solutions are
maintained. Although some studies have compared different GA implementations (Zitzler and Thiele,
1998), they all have done on a specific problem without much knowledge about the complexity of the test
problems. With the ability to construct test functions having controlled complexity, as illustrated in this
paper, an immediate task would be to compare the existing multi-objective GAs and to establish the power
of each algorithm in tackling different types of multi-objective optimization problems. Such a study will
not only make a comparative evaluation of the existing algorithms, the knowledge gained from the study
can also be used to develop new and improved multi-objective GAs. Currently, we are undertaking such a
study, the outcome of which will be reported at a later date.

The test functions suggested here provide various degrees of complexity. The construction of all these
test problems has been done without much knowledge of how multi-objective GAs work. If we know more
about how such GAs based on non-domination principle actually work, problems can be created to test
more specific aspects of multi-objective GAs. In this regard, an interesting study would be to investigate
how an initial random population of solutions move from one generation to the next. In an initial random
population, it is expected to have solutions belonging to many non-domination levels. One hypothesis
about the working of a multi-objective GA would be that most population members soon collapse to a
single non-dominated front and each generation thereafter proceeds by improving this large non-dominated
front. On the other hand, GAs may also work by maintaining a number of non-domination levels at each
generation. Both these modes of working should provide enough diversity for the GAs to find new and
improved solutions and are thus likely candidates, although the actual mode of working may depend on
the problem at hand. Nevertheless, whether a GA follows one of these two modes of working alone or
in combination may also depend on the exact implementation of niching and non-domination principles.
Thus, it will be worthwhile to investigate how existing multi-objective GA implementations work in the
context of different test problems.

In this paper, we have not considered more than two objectives, although extensions of these test
problems for more than two objectives can also be done. It is intuitive that as the number of objectives
increase, the Pareto-optimal region is represented by multi-dimensional surfaces. With more objectives,
multi-objective GAs must have to maintain more diverse solutions in the non-dominated front in each
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iteration. Whether GAs are able to find and maintain diverse solutions, as demanded by the search space
of the problem with many objectives would be a matter of interesting study. Whether population size
alone can solve this scalability issue or a major structural change (implementing a better niching method)
is imminent would be the outcome of such a study.

We also have not considered constraints in this paper. Constraints can introduce additional complexity
in the search space by inducing infeasible regions in the search space, thereby obstructing the progress
of an algorithm towards the global Pareto-optimal front. Thus, creation of constrained test problems is
interesting area which should get emphasis in the near future. With the development of such complex test
problems, there is also a need to develop efficient constraint handling techniques that would be able to
help GAs to overcome hurdles caused by constraints. Some such methods are in progress in the context
single-objective GAs and with proper implementations they should also work in multi-objective GAs.

Most multi-objective GAs that exist to date work with the non-domination principle. Ironically, we
have shown in Section 4 that all solutions in a non-dominated set need not be members of the true Pareto-
optimal front, although some of them could be. This means that all non-dominated solutions found by
a multi-objective optimization algorithm may not necessarily be Pareto-optimal solutions. Thus, while
working with such algorithms, it is wise to check the Pareto-optimality of each of such solutions (by
perturbing the solution locally or by using weighted-sum single-objective methods originating from these
solutions). In this regard, it would be interesting to introduce special features (such as elitism, mutation,
or other diversity-preserving operators), the presence of which may help us to prove convergence of a GA
population to the global Pareto-optimal front. Some such proofs exist for single-objective GAs (Davis and
Principe, 1991; Rudolph, 1994) and a similar proof may also be attempted for multi-objective GAs.

Elitism is an useful and popular mechanism used in single-objective GAs. Elitism ensures that the best
solutions in each generation will not be lost. They are directly carried over from one generation to the next
and what is important is that these good solutions get a chance to participate in recombination with other
solutions in the hope of creating better solutions. In the context of single-objective optimization, there is
only one best solution in a population. But in multi-objective optimization, all non-dominated solutions
of the first level are the best solutions in the population. There is no way to distinguish one solution from
the other in the non-dominated set. Then if we like to introduce elitism in multi-objective GAs, should
we carry over all solutions in the first non-dominated set to the next generation! This may mean copying
many good solutions from one generation to the next, a process which may lead to premature convergence
to non-Pareto-optimal solutions. How elitism should be defined in this context is an interesting research
topic, but one way to do this would be to carry over only those solutions from the previous non-dominated
set of the first level that are not dominated by any member in the current population.

In this context, an issue related to comparison of two populations also raises some interesting ques-
tions. As mentioned earlier, there are two goals in a multi-objective optimization—convergence to the
true Pareto-optimal front and maintenance of diversity among Pareto-optimal solutions. A multi-objective
GA may have found a population which has many Pareto-optimal solutions, but with less diversity among
them. How would such a population be compared with respect to another which has fewer number of
Pareto-optimal solutions but with wide diversity? The practitioners of multi-objective GAs must have to
settle for an answer for these questions before they would be able to compare different GA implementations
or before they would be able to mimic operators in other single-objective GAs, such as CHC (Eshelman,
1990) or steady-state GAs (Syswerda, 1989).

As it is often suggested and used in single-objective GAs, a hybrid strategy of either implementing
problem-specific knowledge in GA operators or using a two-stage optimization process of first finding
good solutions with GAs and then improving these good solutions with a domain-specific algorithm would
make multi-objective optimization much faster than GAs alone.

Test functions test an algorithm’s capability to overcome a specific aspect that a real-world problem
may have. In this respect, an algorithm which can overcome more aspects of problem difficulty is natu-
rally a better algorithm. This is precisely the reason why so much effort is spent on doing research in test
function development. As it is important to develop better algorithms by applying them on test problems
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with known complexity, it is also equally important that the algorithms are tested in real-world problems
with unknown complexity. Fortunately, most interesting engineering design problems are naturally posed
as finding trade-offs among a number of objectives. Among them, cost and reliability are two objectives
which are often the priorities of designers. This is because, often in a design, a solution which is less costly
is likely to be less reliable and vice versa. In handling such real-world applications using single-objective
GAs, often, an artificial scenario is created. Only one objective is retained and all other objectives are used
as constraints. For example, if cost is retained as an objective, then an extra constraint restricting the relia-
bility to be greater than 0.9 (or some other value) is used. With the availability of efficient multi-objective
GAs, there is no need to have such artificial constraints (which are, in some sense, user-dependent). More-
over, a single run of a multi-objective GA may provide a number of Pareto-optimal solutions, each of
which is optimal in one objective with a constrained upper limit on other objectives (such as optimal in
cost for a particular upper bound on reliability). Thus, the advantages of using a multi-objective GA in
real-world problems are many and there is need for some interesting application case studies which would
clearly show the advantages and flexibilities in using a multi-objective GA, as opposed to a single-objective
GA.

With the advent of efficient multi-objective GAs for function optimization, the concept of multi-
objective optimization can also be applied to other search and optimization problems, such as multi-
objective scheduling and other multi-objective combinatorial optimization problems. Since in tackling
these problems using GAs, the main differences are in the way the solutions are represented and in the
construction of GA operators, identical non-domination principle along with the same niching concept can
still be used in solving such problems having multiple objectives. In this context, similar concepts can
also be incorporated in developing other population-based multi-objective EAs, such as multi-objective
evolution strategies, multi-objective genetic programming or multi-objective evolutionary programming,
to better solve specific multi-objective problems which are ideally suited for the respective evolutionary
method.

8 Conclusions

For the past few years, there has been a growing interest in the studies of multi-objective optimization
using genetic algorithms (GAs). Although, there exist a number of multi-objective GA implementations
and there exist a number of GA applications to multi-objective optimization problems, there exists no sys-
tematic study to speculate what problem features may cause a multi-objective GA to face difficulties. In
this paper, a number of features are identified and a simple construction methodology is suggested from
single-objective optimization problems. The construction method requires the choice of three function-
als, each of which controls a particular aspect of difficulty that a multi-objective GA may have. This
allows a multi-objective GA to be tested in a controlled manner on various aspects of problem difficulties.
Specifically, multi-modal multi-objective problems, deceptive multi-objective problems, multi-objective
problems having convex, non-convex, and discrete Pareto-optima fronts, and non-uniformly represented
Pareto-optimal fronts are presented.

This paper have shown a few aspects of a multi-objective problem which are important to study. We
believe that more such studies are needed to understand better the working principles of a multi-objective
GA. An obvious outcome of such studies would be the development of new and improved multi-objective
GAs.

The flip side of this study is also not less important. Since this paper shows a methodology to create
a multi-objective optimization problem from single-objective optimization problems and since all proper-
ties (mode of difficulties) of the chosen single-objective optimization problem are retained in the result-
ing multi-objective problem (with some additional complexities related to multi-objective optimization),
most theoretical or experimental studies on problem difficulties or on test function development in single-
objective GAs are directly of importance to multi-objective optimization.
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