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The problem of the static deformation of an elastic layer of uniform thickness
overlying an elastic half-space caused by a very long dip-slip faultin the layer is solved
analytically. Integral expressions for the surface displacements are obtained for a
vertical dip-slip fault and a 45° dip-slip fault. The displacements for a dip-slip fault
of arbitrary dip can be expressed in terms of the displacements for a vertical dip-
slip fault and a 45° dip-slip fault. The integrals involved are evaluated approximately
by replacing the integrand by a finite sum of exponential terms. Detailed numerical
results showing the variation of the horizontal and vertical displacements with
epicentral distance for various source locations in the layer are presented graphically.
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Introduction

The static deformation of various Earth models caused by two-dimensional sources
has been studied by many investigators, Maruyama' calculated the Green’s functions
- for two-dimensional elastic dislocations in infinite and semi-infinite Poissonian media.
The elastic residual field of a very long strike-slip fault in a layered half-space has been
calculated by Rybicki?, Chinnery and Jovanovich® and Singh and Rani*, amongst
others. Freund and Barnett® gave a two-dimensional analysis of surface deformation
due to dip-slip faulting in a uniform half-space, using the theory of analytic functions
of a complex variable. _

Singh and Garg® obtained integral expressions for the Airy stress function in an
unbounded medium due to various two-dimensional sources. Beginning with these
results, Rani -¢¢ al’” derived integral expressions for the Airy stress function,
displacements and stresses in a homogeneous, isotropic, perfectly elastic half-space.
The integrals were then evaluated analytically, obtaining closed-form expressions for
the Airy stress function, displacements and stresses at any point of the half-space. Rani
and Singh® began with the closed-form expressions for the Airy stress function for a
dip-slip line source of arbitrary dip buried in a uniform halfspace given by Rani ez
al’ to derive the elastic residual field due to a very long dip-slip fault of finite width.
Singh et al.® obtained closed-form analytical expressions for the displacements and
stresses at any point of either of two homogeneous, isotropic, perfectly elastic half-
spaces in welded contact caused by various two-dimensional sources.
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Two-dimensional dip-slip dislocation models have been used extensively to
model the crustal deformation associated with thrust faulting at subduction zones. In
the analytlcal approach, one has to solve the problem of a very long dip-slip fault in
a layer (representing lithosphere) overlying a half:space (representing astheno-
sphere). To this end, Nur and Mavko'® invoked the exact solution of Mura'! for an
edge dislocation parallel to the boundary of two elastic half-spaces in welded contact.
They took into account the effect of the free surface approximately by considering
Mura’s solution for two equal and opposite edge dislocations with the free surface
midway between them. By considering a simpler problem of a very long dip-slip fault
in a uniform halfspace, Singh and Punia'? showed that the approximate method used
by Nur and Mavko® does not yield satisfactory results. Singh and Punia'? observed
that for small dip angles and beyond a certain epicentral distance, while the exact
solution predicts subsidence, the approximate solution predicts uplift. Moreover, the
‘approximate solution yields non-zero values for the surface tractions at the free
boundary. Thatcher and Rundle'® have also pointed out that their results, which begin
with the exact elastic solution, differ substantially from the approximate results of
Nur and Mavko™. In fact, while the approximate method used by Nur and Mavko'®
may work very well in the antiplane strain problem of a very long strike-slip fault, it
gives unsatisfactory results in the plane strain problem of a very long dip-slip fault.

In this paper, the problem of a very long dip-slip fault in a layer overlying a
uniform hélfspace is solved analytically. The numerical solution is then obtained by
using Sneddon’s method of approximation (Sneddon'; Ben-Menahem and Gillon").

Theon'y

We consider a two-dimensional approximation in which the displacement compo-
nents u, in the x-direction (i = 1, 2, 3) are independent of the Cartesian coordinate x,
so that 5— 3 =0. Under this assumption the plane strain problem (u, = 0) and the
antiplane strain problem (1, = u, = 0) are decoupled and, therefore, can be solved
separately. We shall consider the plane strain problem only and use the notation x
=X, Y = Xy Z= X,

We consider a model consisting of a homogeneous, isotropic, elastic layer of
uniform thickness H overlying a homogeneous, isotropic, elastic half-space. We place
the origin of the Cartesian coordinate system (x,y,z) at the free surface with the z-axis
vertically downwards. Let A,, i, and A,, p, be the Lamé constants for the layer and
the half-space, respectively.  —

Let there be a line source parallel to the x-axis passing through the point (0,0,h)
of the layer. As shown by Singh and Garg’, the Airy stress function U for aline source

——_—
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para]lel to the x-axis passing through the point (0 0,h) in an infinite medlurn can be
expressed in the form . K

Uo j[(lO+M0klz hl)smky+(P0+Q0klz hl)cosky]k1 -k g - (1)

where the source coefﬁc1ents L, M, P, and Q, are independent of k. Smgh and
Garg® have obtained these source coefﬁments for various sources.

For a line source parallel to the x-axis acting at the point (0,0,h) of the layer (h<H),
the expressions for the Airy stress function for the layer and the half-space are of the
form ‘ : . o .

- U =Uy+ j , ‘[(;_, + M) sin ky+ (){ +Qkz) cos ky] k'™ dk

+ [ [+ Moy sin by + (B+ Q) cos ] K7 e @)
0 : S . :
U = f [(L, + My ke sin ky + (B, + Qike) cos ky] k™™ dk .(3)
where U is given in equatlon( )'and the unknowns L, M, P,, Q. Ly, M2, o Q2 and

L, M,, P, Q, are to be determined from the boundary conditions.
The stresses and the displacements in terms of the Airy stress function are given

by (Sokolnikoff', Section 71)

) aZU(i) o azv(i)' o az U(i)

Pn= 2 Px _—Eygz_’ P3= ay2
UY 1 ¢ s
a0 =2 L [y
! o, 20, j' @
U 1

o =~ 2L+ L [vipg,

bt = Y J (4)
(no summation over i; i = 1 for the layer and i = 2 for the half-space) where
o = A+p, 1
7N +20, 21-0)

VU =g+ -(5)

¢ being the Poisson’s ratio.
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We assume that the surface of the layer (z =0) is traction-free and the layer and
the halfspace are in welded contact along the plane z = H yielding the boundary
conditions

(U] (]

p23=p3-3=0 a.tZ=0
Pa=pm Py=p3  atz=H
U 2 O 2 —
uz=u;,u3 =u; atz=H (6)
Let L7, M, P, Q be the values of L, M, P, Q,» respectively, valid for z <h and

L, M', P*, Q be the values of L, M, P, Q,, respectively, for z > h. Inserting the
expressions for the stresses and the displacements into the boundary conditions (6),

* we obtain two sets of equations for the determination of the twelve unknowns, namely,
L,M,P,Q, ..., Q;- These two sets are :

L [~ eMme” =
L : LM+ M‘kh) o )
L ~(L =M" + Mk (H-h))e*#*P
g Mo ||~ M KH= ' : «(7)
M, (L + M'k(H-hy- M* /o)) & *#P
LMy ] L - M Mk H=By M ) O
and
P (P + Qe ™ 7
B2 P -0 +Qkye™
J Py | = | P -0+ Q'k(H-hy) e **P
Q ~(P* + Q' k(H-h)) e @ .(8)
Q | | PTG kR ray e
L Q 1 L-(P -0 +0 k(H-W+Q 1oye™®h |
where ‘ |
b= /by - (9)

and J denotes the 6 x 6 matrix




Solving the matrix equations (7) and (8) by Cramer’s rule, we obtain

1 2 222 84 Zy | waen
= |{*Z A+ 2kH) ([ - M kh)+ 28° ZK'H' - —2 + )M
h 4v28281AH A+ 2D AR 2 +2) }e

2, 2 84 2, 2 - M- —~kQH+h)
+54(E+M‘kh)e"‘"+szz(L*—M*kh)e"““""’]

- (52, oL - M +2m iy VM {252, (C + M k)

4 8 5, A
~8%Z (1+2kH) M} ' 1 {(z,+8° 2, (4k2 H - 2kH)) M*

+48°ZKH (L - M* kh)}e"‘”"")]

—ZHS Z, (1+2kH) (P*-Q'kh) + (28 Zszz ¥ Zl )Q } —k2H-1)
1%

{(28 ZKH - az 4)Q +8°Z (1-2kH) (P" +Q kh)} ~kaHh)

 +8Z, (P +Q k) e +8Z,(P* - 0" kh) e"“‘”"”"]
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Q= PR [sz QP -0 +20° kh)e +SZZQ e"“"?'"” {25 Z(P‘ +Q kh)

~8,0+ 24 & } ez, +az WCH? — 2KH)) O +45 ZuH P - 0 kh)} «w.m]
' o (13)

i 1 2 2 SZ Z '—Kz;i;h)_
2 Z (1 +2kH) (L' — M*kh) +| 25 kH M
b= 255A“ 20+ )( H[ ZZ 2 .2]' }e :

+{-{2szzk2 0 Z JM +( z(1+2kH)+452k21~1a 3 ;+2)

WM kh)}e"“”’*"’+SZZ(L‘ + M"kh) £Heih -8z (E—M*kh)'e"“%h)] O (19)

- [8 z{~akH(L + M k) + H =DM i “"’”*"’+5 2z - My
4v56A

+(2kH DM } —k(2H~h) SZIM_ _k(4H+h)+822{2(E M kh) M }._,«H h)]

1

2
ZSZSA[{SZ(HZkH)(P Qkh)+(26&kH 54 4)Q}"“””">

{[25;1(112 84 ]Q +(8 z(1+2kH)+45kHz 82 +2,)

P G} P a7, Q'kh) ef"“”*’” -87,(P' - @'k ] (16)

- 2525 [8’ —4kH(P'+Q'kh)+(2kH l)Q'} ""”*"’+5;{2<P

_ Q kh) + (zkH— 1) Q+ } e_k(ZH—h) = SZZQ“e'k(“.HHI) + 5% {2(P+ _ Q+kj’l)— Q+} e-k(41-[4,)]...(17)

1
= 4] = 48 - G- 82 (L + Mk Z,-8Z)M
L, A{(alvsu) . Z) J( - )8v8 @-52) }

(z SZ)M

L) 2kH -1 2(v8 +1)
8’570 oV,

(E M+kh)}e +{—(v )(1-2kH)L + M kh)+

oy

| -0 REY |
Z 8 —_ M :
[8 828 ( a ooy J }e




DEFORMATION OF LAYERED HALF-SPACE _ o 231

ovdd, o

+{[M — (=1~ 2kH)kH](E M*kh)

oy

4v-1H .
[8262 Z,-8Z)+ ——————_]M}e"z"")] x -(18)

M, = % [{‘2(3 ~)(L +M kh)y+ P - N+ 2kH) M_} e-k(2H+h) B @ M

+{-4kH('L*-1v1.+kh)+(1_+2kH)M*}(ﬁ;l)e“"”"”> (‘”’8)(2(5 Mkn-M)e ]
| | (19)
1 o
SV_ZH[—( +5)——8§(Z4—-82)kHJ(P +Qkh) - 2828 (Z4 aa)Q}
J { L z,-5°z)0 - X% +1)(P Qkh)} '{——(v 1) (1= 2kH) (P + @ kh)
o, oy
Av-DEH ) | e [[26-18) D,
[8 % (Z,-8Z)+ BT JQ }e + " 0t]v(v 1) (1- 2kH) kH)
+ At 1 2,  Hv-1) kZH? + | ~kH-h)
x(P"-Q k}l)+[8—vi8—2-§l-(z4—sz+—;;——JQ }e ..(20)
1 S R 8) .
o=1[{2B-0 o+ @-nara g} - D gret

+{—4kH (P~ Q'kh) + 1+ 2kH) Q" }([3 1) e R (W'B) {(2(P‘ O khy-Q") }e”"’]

| ~(21)
* where
=Jl=— ”‘”+szze“"‘”]
1 2 1 2 +(22)
g &‘1‘—1 3- 40' 8 (1—2—1‘—3-40.2
v=p,/u =1/
Z =4v-1) (v, +1)
Z,=4(v-1)(v5, -8)
Z=4(v+8)(v8,+1) :
Z,=4(v+8)(v5,-8) _ -(23)
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The determinant A of equation (22) coincides with the corresponding determi-
nant given by Ben-Menahem and Singh'” (equation 11-49) except for a multiplying
constant. The quantities Z,, Z,, Z,, Z, defined in equation (23) are also from Ben-
Menahem and Singh'’ (equation 11-52).

Equations (1) - (5) yield the expressions for the stresses and the displacements. On
putting z=0 and inserting the values of the constants L, M,, etc. given above, we obtain
the following expressions for the surface displacements

2l = j { o [ 2L + M khy—SZM ™~ 252, (" - M iy

—M*} N | 57 M 4 87 {014+ 2KH) (L + M khy ~4KHM” | &%

+{287 QUH -1 (L - My + 7, + 87, W 4kt + )M} 70 |

M _u 1 _ _ 1
+7]€ }COS@_{M[{ZSZJ(P +Q kh)—SZjQ }e
257, {P" - 0'kh- 0 | M + 52,07 M 4 57, {201+ 2kH) (P + O k)
~4kHQ } R {252 (2kH-1) (P" - Q"kh)+ (Z, + 8°Z (4k*H

~4kH+1)Q"} e"“z”'f"’] + % e"“’} sin ky} dk

1

2448 =IH71 [{2523 (L + M kh)-8ZM | & +257, (L

4oy 8% A

~-M Ky e P _ sz M P 1 577 {2(,1 —2kH) (L + M kh)

—2M"} R {282(2kH+ 1)(L - M*kh)+(Z,+ 5°Z(4k’H’
oyt VoM e 1

) }e ] o e psinky+ ————4a1v28281A
x [{2523 (P +Q kh)- saQ‘} e 4287, (P - 0" kh) e KR _ 57, 0r ¢ HHHD

+8'Z, {2(1 —2kH) (P +Q kh) - 2Q‘} e D

{25 Z, QkH+1) (P* - Q"k) + (Z, + 8°Z(4k'H’ -1)Q" } KZH—h)]

—g—:e' }coskyjldk
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Dip-Slip Fault

The source coefficients for a vertical dip-slip hne source (Fig. 1a) in the layer are
given by (Singh and Garg’®, Rani ez al’)

N\
AN /

\
AN
N\

X3
(b)

Fig 1 Representation of a (a) vertical dip-slip line source; (b) 45° dip-slip line source. X,-axis is parallel to the line source
M- = - (/m)oup, bds, M" = (I/m)a,pbds ...(26)
where b is the slip and ds is the width of line source. On putting these values of the

source coefficients in equations(24) and (25), the expressions for the surface
displacements for a vertical dip-slip line source in the layer are found to be

o_bds 1 _ —kh KA oy KAHER)
= -[[4v25281A {ész3 (1-2kh) e +28Z, (1+ kh) e 8Z, e
-0

+28°Z, (2kH - kh—2k’hH) €™ " + {z,+5%7 @r?

—4KkH +1 - 2kh(2kH - 1))}5’“”""’} - e"‘"] cos ky dk

o _ bds J'[——] {62, (1-2kh) " — 267, khe™ ¥ + 57, &4

5T )| ws%a
. 0

1287 (1- kh+ 2K°hH) & {7, + 87, (@B ~2kH -1

—4k2hH)} e KD e_kh] sin ky dk ..(28)

Taking the limit H.., equations (27) and (28) yield the following expressions
for the surface displacements for a vertical dip-slip line source in a uniform half-
space
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%=%J e (kh—1) cos ky dk
%

_bds| ok’
n | OP+RY

%=ES_J e;k"khsinkydk
- / .

_bis[_ o8
n | P+ R |

The above expressions coincide with the corresponding results of Maruyama'.

The source coefficients for a dip-slip line source dipping at 45° (Fig. Ib) situated o
in the layer are given by

L=L=M =M =P =P"'=0
0 =0"=(0/m)o, p, bds (29)

From equations (24), (25) and (29) the corresponding expressions for the
displacement components are '

bds r 1 —MaH- R

(1) | —kh K4H-h) IR

u, =— || —55— 823 2kh~1 +2622 1+ kh) e +SZ2
2n o|:4v28281A { ( )e ( : )e ¢

+28°Z, (kh— 2kH + 2k*hH) P 4 {Z4 +8%Z,

X (ACH ~ 4kH + 1~ 2Kh(2kH ~ 1)} 0} 4 e"‘"]sin ky dk

T om

W [ {52, kh-1) £ - 262, ke
0

4v28281A

+{ Z+ 52 (4k°H* -1 2kh - 4k2hH} _m"'h)} - e'kh] cos ky dk ..(31)

Taking the limit H — w, equations (30) and (31) yield the following expressions
for the surface displacements for a 45° dip-slip line source in a uniform half-space
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u2=%f e—kh(]—kh)sink%zdk
0

_bds[ yo* =)
n (y2+h2)2
_bds
L@-—;—‘J.e kh cos ky dk
0

_ bds [ h(hz-y%’]

7| P4y |
* The displacement components due to dip-slip onan inclined plane can be expressed in
; the form : :
7 u = cos 2§ u(VDS) + sin 25u (45° DS) o , ' -(32)
P where § is the'dip angle and u(VDS) is given by equation (27) or (28) and u(45°DS) is given

by equation (30) or (31), depending upon the component under reference.

Numerical Procedure
The integrals appearing in equations (27), (28), (30) and (31) are of the form

TG tp ,q[C0S Ky
Tkl
{ A’ [sin ky)dk .(33)
where | |
qg=0,1,2;G=- %%, sP=h2Hthd4H+h | 34
b= ws%, ' g b ‘ : .(34)
. 1 : '
v The occurrence of the factor 3 in the integrand makes integration by analytical

methods difficult. However, Sneddon'* suggested a method of approximate evalua-
tion by which this difficulty is overcome. In this method, the factor A" is replaced by
a finite sum of exponential terms in such a way that the error is made as small as
desired. Once the integral is expressed in this way, an exact quadrature can be made.
From'(22) and (34), we have ' o
' G 1 - -

-p

A 1+ (A+ Bi*H?) e 4 D ' ce o .(35)
- where - ' _. o :
) .
A.—_-"Z4+8Z-'_B= 45&,D=é %

82, =z
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By binomial expansion, we have

G

= L{ABRT)e ¢ (AD + 2ABKH? + Blk'Hf)e #+ ... .. (37)

As in Ben-Menahem and Gillon'®, we make the approximation

G

N 1- (A +BkH2)e? + (C+ a'k"Hr)eP*H ‘ ...(38)
over the entire range of integration, where

2
coAHDAD 1234,
1+ A+D
and o', B' (>2) are to be chosen in such a way so as to ensure a best fit in the least-
square sense. [he value of C is obtained by equating (35) and (38) for H=0. Clearly s
o', p’ and n have to be re-evaluated for each set of values of the parameters-H, 3,0,
and v. Using the approximation (38), the integral (33) can be expressed as a linear
combination of standard integrals of the form (Gradshteyn and Ryzhik'®)

..(39)

_°° m —kx _(_ mji X
Cm(x,y)—j K" e cosky dk=(-1) axm(x2+y2) ...(40)
0 .

o0

S, (x,y)= J K™ e sin ky dk = (-1) ’"_a_.( Y )

7
™ K +y
0

(m=0,1,2,3,..) -(41)

Ben-Menahem and Gillon' used the least-square procedure to obtain a suitable
approximation of G/A for different values of n in equation (38) and found that for
realistic Earth models, n = 2 yields satisfactory results. Therefore, we use the
approximation -

>1Q

= 1(A+BKIH)e + (C + ok H)e P4 .. (42)

Inserting the expression (42) for G/A in equations (27), (28), (30) and (31), it is
found that the surface displacements can be expressed as a linear combination of
C_(x,y) and S_(x,y) with m =0, 1,234

) For numerical computations, the values for the parameters v, G, Gy o', p' are
taken from Ben-Menahem and Gillon'. These values for three crustal models are
given in Table I for ready reference.

< AR RS i —
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TableI

K o
1, . - ] » . B

V=

1. 76 (oceanic) 1027 ’ 0.27 0.438716 3.31986
2. 22 (continental) B 027 0.27 0.703604 ) 3.22888
5.00 0.23 0.30 1.175744 ’ 2.92960

Figs. 2-4 show the variation of the horizontal and vertical displacements at the

surface with the horizontal distance from the fault for the rigidity contrast ﬁ_ 1.76

_(oceanic crust model) for three values of the fault depth, viz.,h=0.1H, 0.5H a.nd 0.9H,
respectlvely. Figs 5-7 show the variation of the displacements with the distance from

niH=110
8y /,u‘ =1.76
01:03=0.27

.

DISPLACEMENT

L " s
DL 06H
DISTANCE FROM THE FAULT

Variation of the dimensionless horizontal (U,) and vertical (U,) surface displacements with the distance from a vertical
dip-slip line source situated ata depth h=0.1H in an oceanic Earth model (11,/, = 1.76) consisting of a layer of uniform
thickness H overlying a half-space. The displacements are measured in units of bds/tH, where  is the slip on the fault
and ds is the fault width.

h/H=1/2
Hy /,u1=l-76
Oy= 03027

DISPLACEMENT

2H
DISTANCE FROM THE FAULT

Fig 3 Same as in Fig 2 for the source depth h = 0.5H
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h/H=0.9
,uz //“1 =1.76
07 =07 =0.27

CiSPLACEMENT

Z:

I 1 1 1

L
H 2H 3H
DISTANCE FROM THE FAULT

Fig 4 Same as in Fig 2 for the source depth h = 0.9H

h/H=1/10
pz /,LJ] :2.22
0i= 03 =0.27

DISPLACEMENT

Uz

1 ) -

' A i 'y
02H 04H 06H
NMSTANCF FROM THE FAULT

Fig 5 Variation of the dimensionless surface displacements when the line source
is situated at a depth h =0.1H in a continental Earth model (u,/u, = 2.22)




DISPLACEMENT

D_iSPLACEMENT

h/H=1/2
g /My =2.22
0‘=O’2 =0.27

1

1
H 2H
DISTANCE FROM THE FAULT

Fig 6 Same as in Fig. 5 for the source depth h = 0.5H

o o o o
N W~

o

h/H=09
dy= 0}:0.27

(=]

A A d

'y
H 2H IH
DISTANCE FROM THE FAULT

Fig 7 Same as in Fig 5 for the source depth h = 0.9H
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n 2
the fault for the rigidity contrast f =2.22 (continental crust model). In all the cases,

the vertical displacement u, is zero ]aty =(). Both vertical and horizontal displacements
tend to zero as y tends to infinity. Source depth has a significant effect on the
magnitude of the displacements. The maximum and the minimum values of the
displacements decrease as the source depth increases. The epicentral distance at
-which the horizontal or the vertical displacement changes sign increases as the source
depth increases. For realistic Earth models, the maximum and the minimum values
of the displacements are almost inversely proportional to the source depth and the
epicentral distance at which the horizontal or the vertical displacement changes sign
is almost directly proportional to the source depth.
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