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Abstract

In this article, we review the step-by-step progress made in the recent past in the direction of forward
modelling of thescrustal deformation associated with strike-slip and dip-slip faulting in the Earth. We
- confine ourselves mainly to those studies which strive to find analytical closed-form solutions of-the
corresponding two-dimensional problems. Three Earth models are considered : a uniform half-space,
two half-spaces in welded contact and a layered half-space. The effect of nununiform slip on the fault

is also discussed.

(Keywords : co-seismic deformation/crustal deformation/dip-slip fault/displacement dislocation/
half-space/long fault/nonuniform slip/strike-slip fault)

Introduction

The elasticity theory of dislocations developed by Steketee'?, Maruyama™* and others,
has proved to be a very useful tool in the analysis of processes taking place in tectonically
active areas. Dislocations are commonly used as models of earthquake foci and are also
applied in the mterpretatmn of observed aseismic deformations. As a mathematical model
of faulting, Steketee'? assumed a displacement dislocation surface, i.e. a surface across
which the displacement vector is discontinuous. Extensive reviews of the applications of
the elast1C1ty theory of dislocations to earthquake faulting have been given by Savage
Mavko®, and Rybicki’. These reviews include thorough discussions of 2-D models of
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faulting. Although a 2-D model is an oversimplification of the physical system, these models -
are very useful in gaining insight into the relationsip among various fault parameters.
Moreover, there are faults, the most obvious being the San Andreas fault in California,
- which are sufficiently long and shallow that the 2-D approximation may be used.

The crustal deformation cycle can be:divided into four time phases relative to the
earthquake : interseismic, preseismic, coseismic and postseismic. Coseismic deformation
f,-‘flelds have been observed for strike-slip and subduction zone thrust earthquakes. This
" deformation is produced by the strain rehef upon dynamic faulting. The duration of this

_process is relatively short, of the order of a few minutes.atthe most. The medium in which
+* faulting 'occurs ‘¢an be considered ‘as perfectly. elastic for this time scale., The coséismic
phase is well explained by dislocation models of faulting in the Earth.

In order to model crustal deformations associated with faulting at a transform plate
boundary, the problem of a long inclined strike-slip fault in a layer overlying a uniform
half-space is considered (see, e.g. Rybicki®, Nur and Mavko’, Garg and Singh'?, Singh and
Rani'""'?). Closed-form expressions for the static displacements, strains and stresses are
obtained when the two media are elastic. The correspondence principle' ' is then used to
obtain the viscoelastic quasi-static field when the layer is elastic and the half-space is
Maxwell viscoelastic. In this model the elastic layer represents the lithosphere and the
Maxwell half-space represents the asthenosphere. The coseismic field is given by the static
response and the postseismic field is given by the quasi-static response minus the static
response. '

In order to model crustal deformations associated with thrust faulting at a subduction
zone, the problem of a long inclined dip-slip fault in a uniform half-space is considered
(see, e.g.Freund and Barnett”, Rani et al.ls, Rani and Singh'g., Singh and Ranizo). Closed-
form expressions for the static displacements, strains and stresses are first obtained. The
quasi- static viscoelastic field is then obtained from the static elastic field with the help of
the correspondence principle. It is customary to assume Maxwell rheology for the half-
space for which the initial viscoelastic response coincides with the elastic response. The
coseismi¢ deformation is modelled with the static elastic field. To model the postseismic
deformation field, the static reponse is subtracted from the quasi-static response. It is found
that surface displacements are independent of the elastic moduli. Therefore, at the surface,
the quasi-static displacements are identical with the static displacements. It is thus apparent
that a simple half-space model is not adequate to explain time-dependent postseismic surface
displacements. To calculate the deformation field due to a thrust fault in the lithosphere-
asthenosphere composite, one must solve the problem of a long inclined dip-slip fault in
an elastic layer overlying a viscoelastic half-space. A beginning has been made by Punia®'
by solving analytically the problem of a dip-slip line source in an elastic layer overlying
an elastic half-space. The integrals occuring in-the elastic solution have been evaluated

~
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approximately by Sneddon’s method (see, Sneddon?, Ben-Menahem and Gillon™). For
multilayered half-space, one can use the Thomson-Haskell matrix method?* % to compute
_the deformation field.

Uniform Half-Space

Okada®’ obtained a complete set of analytical expressions for the deformation due to
three-dimensional shear and tensile faults in a half-space. We present in a uniform notation
a complete set of closed-form analytical expressions for the subsurface displacements and
strains due to two-dimensional, inclined, strike-slip and dip-slip faults in a uniform
half-space. The expressions for the displacements have appeared in the literature in various
forms. Most of the results for the strains are taken from Singh and Rani’®. The stresses
can be obtained by a direct application of the generalized Hooke’s law.

The problem of the static deformation of a uniform half-space by a long strike-slip
fault has been discussed by several investigators. Maruyama“ calculated the Green’s
functions for two-dimensional elastic dislocations in a Poissonian half-space. Freund and
Barnett'” gave a two - dimensional analysis of surface deformation due to dip -slip faulting
in a half-space, using the theory of analytic functions of a complex variable. Rani et al.'®
obtained closed-form expressions for the displacements and stresses at any point of a
uniform half-space caused by various two-dimensional sources. Rani and Singh'? derived
the expressions for the displacements and stresses at any point of a uniform half-space due
to a dip-slip fault of finite width and infinite length.

Let the Cartesian coordinates be denoted by (x,, x,, x;) with the x;-axis vertically
downwards. Consider a two-dimensional approximation in which the displacement
componets u,, u, and u, are independent of x, so that d/0x, = 0. Under this assumption,
the plane strain problem (x, = 0) and the antiplane strain problem (u, = u; = 0) are
independent of each other. The problem of a long strike-slip fault striking in the x,-direction
located in a uniform half-space occupying the region x, > 0 is an antiplane strain problem.
In contrast, the problem of a long dip-slip fault striking in the x,-direction located in a
uniform half-space occupying the region x, 2 0 is a plane strain problem. We assume that
the boundary x, = 0 of the half-space is traction-free and that the line source, which is
parallel to the x,-axis, passes through the point (0, y,, y;). We use the notation

R = (x, - y,)* + (x3 = ) , (1)

=(x,—-s cosd)? + (x5—s sind)?,
§* = (x, - )’2)2 + (x3 + )’3)2

=(x,—§ cosd)? + (xy +s sind)?,
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where (s, 8) are the polar coordinates corresponding to the Cartesian coordinates Ogs ¥3)s
so that (Fig. 1) '

Yo = §CO8 8, y, =5 sin 8. : (3
Wealséput
| _A+p 1 .
“=r+m - 20 -9 | ©

where A; u are the Lamé constants and o is the Poisson’s ratio.

Fig. 1 - Geometry of a long strike-slip fault. The ciisplacemem discontinuity on the fault is parallel to the X,-axis.
The sign O indicates displacement in the direction of the x,-axis, the sign ® in the opposite direction.

The Cartesian coordinates of a point on the fault are (y,, y,) and its polar coordinates (s,8), where § is
the dip angle and s, < s <5, :

(24

*
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Strike-Slip Fault in a Uniform Half-Space
(1) Line source

For a line source of the strike-slip type parallel to the x, -axis and passing through the
. point (0. ¥,. ¥;) of a uniform half-space x; 2 0, the deformation field is given by

Xy — ¥ X3 +y
[cos& [3R2'3— : )3J—sin8(x2-—y2) [l+—

s? R*

- X3 X3 + ¥3
+

. X3 7 )
+ 2sind (x5 — w) [ Iz

where b'is the displacement discontinuity (5]1p) in the x, »dlrecuon ds is the width of the
line dislocation and 8 is the dip angle (Fig. 1).

(11) Finite fault

" For a strike-slip fault of finite width L = s, — s, and infinite length (Fig. 1) located in
a uniform half-space x, 2 0 parallel to the x,-axis, the deformation field is given by .

§ =Xy CO$ O — xy 8ind

Xy €cOs 8 — x, sind
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. ¥y
., [5 = x,cosd + x;sind :
— tan :
Xy c0sd + x, sind
) §

ou, b | ssind — x; X3 + 5 sind "
—_— = e -
dx, 2m R? s?

aul b l RN "
3 [ 34|

N

-y

F&) | = fls) - fls) | | » (13)

Yy

On putting & = 90° in egn. (10) - (12) we get the results for a long vertical strike-slip
fault in a half-space (Chinnery™).

Dip-Slip Fault in a Uniform Half-space
(i) Line source -

For a line source of the dip-slip type. the deformation field is given by

obds l+o) X3 X3 (Xs—)’_z)3 xX3=yy X3+ 3y,
u2: 21t C0828 ‘(X RZ —2‘ R4 T S2 = (sz .

i 1
=2 (x5 + ¥ {( +yy) (03 — x5 — 23/0) —6xy y_,} 3

S6 2

3+ yy)° 1 (X3 = y3)?
— 16 x4 ys ———— |+ (X, = y,) sin 2 8| — —~+2 -
33 N NPT ‘R o 8
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' 1 (3 + J’3)2
+2 {3 + y5) (5 — 3+ 295/ @) + 223 3} r 16xyy;— & (14)

-y’ (-
o oS

aubds N
u; = X l(xz—yz) cos 26 lr(l/on—l)Ez-+2

1 (x5 + J’3)2
-2 {(x3 +y3) (ix3 +y;—2y3/0) + 2x, y3} ? +16 x5 y3 ——ST—-

- : ‘; .
: - Xy = Xy — - X, + X, + 3
+sin28 1 20) %3 }’3+2(3 4)’3) _ 9 3 2}’3+ 3 2)’3
o R , R S oS

: | 1

(x5 + )’3)3

- 16 X3 Y3 —-——?6——}}

obds (1 + ) (x5 — ¥y (X3 = y3)°

- v - + 4
o {Z(xz‘ ’yz) cos28[ _ . T _ R

' 1 I
+ {3 — y3 + (x3 + 3yy)/a -—+4v(x3+y3) (y%—x§—6x3y3)—
st %

(3 + 39’ <x3;+,y3>3} \ n2s [L

+48 x:;}b—iT (XRZ

- 8y, ———
)

CRREA CE PR
-203+1/0 - + 8 -+
( _ ) R R® s
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' : 1 X+ Tyy
-6 (x5 -y + 2% — =2 (X + y5) -
3~ Y3 3‘y3)54 (x5 + y3) oy

_ ' ; o1
+ 8 (x5 + y9)” {053 + y3) (53 = y5 + 29/0) + 12x, y3} &

. \ .
.—96 X3 Y3 9—3—%—[“ . ' (16)

duy  abds X3=y; (=39 3x;+ 5y,
E——H 2(x3=y,) cos28 B-1/m T -4 B 5

o

X3 + 3y,
o st

_ _ 1
+4 (X + ;) (05 + 3%+ 10x,y,) —

s

(5 + ) A NS
- 8y, s 48 %5 3 (5 + y2)® g+ 51é28 (1/0-2) -5

IRy N
+2(5—1/a).(x3 R4y3) _ g R6y3)

, 1
+'(1/0c - 2). ke

1 .
255 + 11 )] + 2xy,) & 20ty (g + Ty ﬁ _

: ' 1 1
- 8 (x +y)2(x2+3y2+16x ) = + 16 X3+ y3) —
3+ ¥3)" (5 3 393 G y3 (%3 + y3) oS

SS

4.
+ 96 x3 7, Tt ” I an

U,  qbds
dx; 2=

- : ' y - 2
{éos_28 {(1+1/a) é C 2@+t B 4y3)

w

N\
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1 | . 1- . 1
- (I_H/a) at 8.0y +y)? + 122,y @ 20t Ty —g

: : 1 (x5 + )’
-8 (x; + y3)2 (x% + y% + 14 x5 y,) . 16 y, _——30(563

+96x3y3a%8—y"—)4J+2(x2—y2) sin28[(2+ 1/0) x3;4y3._4 (x3;6y3)3
-F% +2 xg;'ys ‘."4(x3 + y) (xg + y§ +8 x3vy) %
- 8y %— + 4.8 X33 (x3 +- y3) ” | (18)
3
g—:z B O;bzs [ 828[(1_1/a) — +2(1/0-4) & y3) + .8(x3;6y;)4

1 1 ' : 1
(= 1/a)—s7+{8_ (3 +y3)” + 121, J’3}§'2 (x3+ ¥3) (x3+7)’3)a??
. . 1 "
—8 (i +y)’ 2+ + 14 — 4+ 16y, (x3 + y3)® —=
. (x3 + y3)° (x5 4 Y3 X3 Y3) < y3 (x3 + y3) o S°

+ 96 x3y;3 (x3 +y3) ] + 2(x—-y,) sm26 [(2— l/oc)

(%3 ')’3)3 X3+y; X3+ 3y

-4 g -+2 G — 4(x3+y3)(,\)+y3+8x3y3)s6
: (x5 )? ’ '
+ 8y, —% + 48x, y, (x3 + 37 ” (19)
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: Fig. 2 —Geometry of a long dip-slip fault. The displacement discontinuity b is perpendicular to the x,-axis,
parallel to the fault plane.

where b is the displacement discontinuity (slip) prependicular to the x,-axis, parallel to the
fault plane, ds is the width of the line dislocation and 8 is the dip angle (Fig. 2).

(ii) Finite fault

Fora dip-slip fault of finite width L =5, —s, and infinite length (Fig. 2), the deformation
field is given by '

| x, — scos &
{(l/oc— 1) sind In (R/S) + <280 I:tah_l' L_____J
: o X3 + ssind

| _t [*2 — scosd : 1 1
- tan” m (x,8ind — x5 cos ) (x, — scos d) —RE - ?

T
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1
. 1 . : . s
+ 2s1}n5 {a (x3 5in8 — x; cOsd + 5) — x3 sm§] e

A\‘2

.‘ : + 4 x, sind (x, sin & + x5co8 ) (x, — scos d) gi-} . (20)
& _’ i ) ) 5
‘? 1 sin & _ [% = ssind
S uy = o {(1 —1/0) cosd In (R/S) + Ty l:tan [—————-—xz T o0s SJ
RO . : i [* + ssind - 5 X3 — ssin 8
TR - tan |x = scosd - (x, sin 0 — x; cos )4 2
. x5 + §sind _ X, 8in & + x5 cos & . | s
g . _ - + 2sin p” — (x, sin & + 2x; cos ) ¢
. . T
K + 4x, sind (x,sin 8 + x3cosd) (x; + ssind) ?} 21
JEEN 5 :
du, ob xésinﬁ—.x_qcosﬁ. . ,
Ry 3 — — (x,8ind + x5 cosﬁ.—§81n25)
"‘ﬁu : 1 1 2ssin2d n ) ‘ (%3 — ssin §)
,' X F—EE +T_2(x281n6ﬂx3co'58) ——_154——
,: (x5 + s sin §)? 4in 5 (x, sin & : 8)[ Xy +ssind| g
, - |-4sind(x,sind+x;3c08) |x3+—— |
54 2. 3 3 SA
,i " - _ 4x, sin28 (x; + ssind) s
23 G
+ 16 x; sin & (x, sin & + x3 cosd) (x5 + s sin 8)’ %} l (22) %
5 : : U i
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dus ab .v
3x, ~ 2nm {[(3);3 c§58 - x, sin d) ,+

du, ‘o ‘ | _1 1
a—xz'=2—1; {(l+1/ot) (x2c0s8+;3snn8~s) [_,:__)

[«5]
1S
w

|
|

(<%}
R
(M)
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a P—Ei

xzsinS—x3cos8ﬂ[1 1]
. ]

5 —(x — s'sin 8)?
- ssin2d (1% + % - -CX'Z?J+ 2 (x,5in 8 — x5 cos d) =

R4

(x5 + s sin §)? _ o ' X, +ssind| ¢
R +4sm8(xzsm8+x3c058) Xy- T T
+ 8 sind (x,sind + 2xyc0s &) (x; + ssin §) Esz _

5

-16 x; sind (x, sin 8 + x; cos d) (x; + ssin 5)> %} l (23)

M|

b

. _ . 8? + '8.2
-2 (xy Cosd + x, sind — s) {(x" ssind)f  (x3 Ssm)]

R . s

. : Xy + ssind|
+ 4 8ind (x;c088 ~ x38in 8 — ) x3+—a— E

)

st

— 8x; sin® 8 (x; + ssin §)

. ) . , .\'z
= 16 x; sind (x, cos § — x; sind — s5) (x; + s5sin J)> %} ' (24)

N Q
S

- {(l—l/a) (x,co8 & + x3si'n8>— s) (;%5 - Eli]

.t

v

'3
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' (x3 — ssin 5)? (x5 + ssin 5)°
= 2 (x;co8d + xy5ind — s . — = = '
(x, 3 ) ’: R s
- o _ X3+ ssind| ¢
+4s1n8(x20058—x3s1n8—s) Xy — - &
- 8 x; sin® 8 (x3 + ssin 9) —;7
.\'2
— 16 x; sind (x, cos & — x; sind - 5) (x; + s sin §)? F} l (25)

On puttmg x; = 0in eqn. (20) and (21), we get the surface displacements (Freund and -
Barnett'”). There is a printing error in eqn. (10) and (11) of Freund and Barnett'’. The -

second term on the right hand side of these equations should be multiplied by 1/x (se¢ also
Savage®). The deformation field for a strike-slip fault is independent of the elastic constants.

~ For a dip-slip fault, the elastic constants occur in combinations of the form Q, -A, where

___2p 2p -
= 302w = S e g (k= bulk moldulus) (26)

and A can assume the values 0, 1/3, 4/9, 2/3, 1 and 4/3. From the correspondence principle,
the quasi-static field can be obtained on replacing O, ~ A by (Singh and Singh'®)

2p (3% 1)
[3k +4p P ( S+ ap Xp| TARHO

where ¢, is the relaxation time and H(?) is the unit step function. The above result assumes
the medium to be elastic in dilatation and Maxwell viscoelastic in distortion and the tlme-
variation of the source to be the unit step function. For the Poxsson s case A=w,0,-A

is to be replaced by

2 5t
[6 exp (— -thJ —A] H(t)_

Y

PR
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Nonuniform Slip on a Long Faultin a Half-space

The problem of the static deformation of a uniform half-space caused by long strike-slip
and dip-slip faults has been discussed by several investigators. However, most of these
studies assume uniform slip on the fault. The assumption of uniform slip makes the edges
of the fault plane singular where the displacement is indeterminate and the stress is infinite.
For this reason, uniform slip models cannot be used in the near field. There are a number
of interesting phenomena which occur near the edge of the fault zone; e.g. vertical movements
associated with strike-slip faulting.In order to study these phenomena, it is necessary to
consider models of earthquake faulting with nonuniform slip on the fault.

- Chinnery and Petrak®® used numerical integration to compute the elastic field due to
a vertical strike-slip fault with slip that varies over the face of the fault. The exponential
variation in slip was chosen so as to remove the stress singualrity that occurs at the edge
of the fault plane in some earlier models. Freund and Barnett'” gave a two-dimensional
analysis of surface deformation due to dip-slip faulting. They also resorted to numerical
. integration for computing the elastic field for variable slip on the fault plane. Mahrer and
Nur’! studied the deformation of an inhomogenous half-space, the shear modulus of which
increases monotonically with dépth, due to strike-slip fauling. They examined two general
classes of faults : those which broke the surface, smoothly reducing the slip to zero at some
depth; and those-faults which were completely buried, with smooth closure at both upper
and lower ends, and evaluated the deformation numerically.- Yang and Toksoz*? used a
finite element scheme to study a trapezoidal type of variable slip on a strike-slip fault.
Wang and Wu™? obtained closed-form analytical expressions for the displacements and -
stresses for the same model. Singh et al.** obtained closed-form analytical expressions for
the displacements caused by nonuniform slip on long, vertical, strike-slip and dip-slip faults
in a uniform half-space. They considered four slip profiles : elliptic, parabolic, linear and
cubic. They assumed that the slip b decreases from a value b, at the surface to zero at the
depth L. The value of the surface-slip b, is common to all the porfiles but the depth L for
a particular porfile is chosen in such-a manner that the source potency is the same for all
the profiles. By performing detailed numerical computations, Singh et. al** demonstrated
that, at the surface, the fall - off of the displacement with the distance from the fault is not
much affected by the details of the slip at depth. However, this is not true for subsurface
deformations. At depth, the deformation near the fault depends upon the slip porfile. There
is qualitative as well as quantitative change in the subsurface deformation near the fault -
for any significant change in the details of the slip profile.

Consider a homogeneous, isotropic, perfectly elastic half-space ocupying the. region
x, 2 0. A vertical stike-slip fault of infinite length and finite depth (width) occupies the
region —e0. < x; < o0, x, =0,0<x <L (Fig. 3). Let.the slip (dislocation) on the
fault be denoted by b which is nonuniform in general. We are considering a two-dimensional
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Fig. 3 — Geometry of a surface-breaking, vertical, long strike-slip fault in a uniform half-space x,20.

approximation in which bis independent of x,. Following Maruyama®, the displaccincnt
at any point of the half-space due to the slip b on the fault can be. expressed in the form

L . : .
w=[ b)) G, (. x5, b) b, . @7
]
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R=x+ -, S=x5+@+h, : (29)

1 ‘ : ' '
- — 30
¢ = 20-0 " : 30)
o being the Poisson’s ratio.

The expressions for the displacements for various slip profiles can be obtained from
eqn. (27) by integrating analytically. Following Singh et. al. 34 we have the following
results.

(1) Elliptic

Let the slip on the fault very according to the law

hzvz
b (k) = b [1 - ;}

(OShSL)

where b is the surface-slip and L is the fault-depth. Inserting the expression for b(h) in
eqn. (27) and integrating, closed-form expression for the displacement can be obtained.
The expressmn vahd at the surfacc (xz 0) is

u = % .[- Y+ (P + 1)‘/2] (32

(¥ 20)

Y = x,/L.
(i) Parabolic . |
Let the slip on the fault be givcri by
b(h) = by (1 = K/L% -

(0O<h<L)
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The expression for the displacement obtained from eqn. (27) and (34) is

b
u = =~ {- 2Y - 2YZ In (A/B)

2n
X f' 2 _ 2 a(1-Z -1 (1+2 3
3 q‘g.g + (1 +Y -2 [tan [_Y J+ tan [———Y , | (35)
where
A=Y+ @Z-1P,B=Y+Z+ 1) (36) °
(iii) Linear |
For the linear slip porfile
i bih) = by (1 = h/L) , | (37)
i .- _
' (O<hsL)
we obtajh
i e 2D q vz e [LEZ
3 “ T 2m Y Y
¥ i , .
L ~YIn@AB) +2 YA -2Zan @], - (38) _;
. where . : y
P A=Y+ 2 ‘ 4

(iv) Cubic’

Let the slip on the fault vary according to the law

b(h) = by (1 - K/LY” | - (39)

0<h<L
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The expression for the displacement obtained from eqn. (27) and (39) valid at the

surface (x; =0) is )

by
2

u =

[- Y (P +3/2)+ (1 + Yz)%] (40)

Y 20

Singh et al** have also obtained closed-form analytical expressions for the
displacements caused by nonuniform slip on a long, vertical dip-slip fault in a uniform
half-space for the four slip profiles described above. For all the slip profiles considered,
the slip decreased from a value b, at the surface to zero at the depth L. If the surface-slip
b, and the fault-depth L are assumed to be the same for all the cases, then the source potency
L

j b (h) dh per unit length of the fault is different for different porfiles. One is not justified
0
in comparing deformation of sources of different potency. Before making any comparison,
a parity in source potency must be assured. A parity in source potency for different slip
porfiles can be achieved by adjusting either the surface-slip or the fault-depth. If the
surface-slip b, is the same for all the slip profiles, but the fault- -depth L is so adjusted that
parity in source potency is achieved, then we find.

1 3n
Ly=—1L,= Ly=5 L= L . (41

&7
wN

where L, is the fault-depth for the uniform slip model and L,, L, L, and L, are, respectively,
the fault depths for the elliptic, parabollc linear and cubic porﬁles

Two Half-Spaces in Welded Contact

To investigate the effect of a structural discontinuity on the elastic field, it is instructive
to find analytical solution of the problem of a long fault in a model consisting of two
homogeneous half-space in welded contact. Sharma et al.* obtained closed-form analytical
expressions for the displacements and stresses at any point of either of the two homogeneous,
isotropic, perfectly elastic half-spaces in welded contact due to a horizontal or a vertical
long stike- sllp fault. Begmmng thh the expressions for a strike-slip line source given by
Sharma et al.*, Rani and Singh™ obtained the displacement field for a long strike-slip fault
‘of arbitrary dip placed inahalf-space in welded contact with another half-space by integration
over the width of the fault. The inclinaton of the fault introduces asymmetry of various
degrees in the displacement field depending upon the dip angle.

. e

__/




Medium 1

Fig. 4 - Two half-spaces in welded contact with a long strike - slip fault in the lower half-space.

Singh et al.¥? obtained the elastic field at any point of either of the two homogeneous,
isotropic. perfectly elastic half-spaces in welded contact due to various two-dimensional
sources. Beginning with the expressions for a dip-slip line source given by Singh et al’’
and integrating over the width of the fault, Rani and Singh™ obtained the field due to a
- long dip-slip fault of arbitrary dip placed in a half-space in welded contact with another

half-space.

Letthe Cartesian coordinates be denoted by (x,, x,, x;) with X3-axis vertically downwards.
Consider two homogeneous, isotropic. perfectly elastic half-spaces that are welded along
the plane x; = 0. The upper half-space (x, < 0) is called medium I and the lower half-space
(xy>0) is called medium II with rigidities p; and 1, respectively (Fig. 4). In the following
the superscript (1) denotes quantities related to medium I and the superscript (2) denotes
those related to medium II. ‘

Using the results of Sharma er. al.*, the expressions for the displacements in the two
half-spaces due to an inclined strike-slip line dislocation parallel to the x,-axis and passing
through the point (y,,y,) in the lower half space (medium II) are found to be*
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{

bd ~ ' :
u(ll) - ;(_l-!-E)—RZ [()c.4 — y3) c0sd - (x, — y,) sin 8] . | ; (42)
“ =g T
‘R
1 bl ‘ . - N e ! :

where
b = displacemcnt‘discgnltinuit"y (slip)
ds = width of the linqéislocati“on
(x; , x3) = receiver location
O, . ¥3) = source location

R = (xz - )’2)2 + (x5 ~ )’3)2~

? = (x; — y2)2 + (X + ."3).2* .
Bo=n/p, | . @h
Weput(F‘i'g.A‘i) T o -
Y, =5 cosd, » ‘ ¥; =5 sind - (45)

Inserting the values of y, and y; into eqn. (42) and (43) and integrating over s between

the limits (sl ,5,),Raniand Smgh obtainbed the following expressions for the displacements
for a long } strike- sllp fault of width L = s, — s, :

b (s = x, cos &~ Xy sin & L
m_ b 1 2 ;
- w1+ P) [tan [ X3 c0s & — x, sind JJ ‘ ) (46)
. ' .. ) s,
; o (s-x cos & — x, sind
WP = L ,:tan“1 [ 2 - ] ’ :
2n X3 CO$d — x, sind

_1-B ran-! [s— x, cosd + x; sind " ' 47
T T+P an. X3 €0s & + x, sin & 3 47)
’ . .h'l
The corresponding expressions for the stresses are
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b ssind - x k
m_ M | 5800 7 X3
. LR 5
_ Wb (%, - scos8] | o :
P13 —m , R2 ] ’ ’ e (49)
. .\'l
oMb [ssind o iop(uessn8) T
. P12. 21 R? 1+B s | T
. - 5
=Rl s (L - =B S EE 51
PR =n [T R T hap S -6
i : s
wherendw :
R* = (x, — 5 cosd)’ +(x,—ssm 8) | | (52)
S —(xz—scos 8)* +(x,+ssm8) A o (53)

Eqn. (46) (51) glve the re51dual elastlc field at any point of the two half-spaces due
to a long strike-slip fault of finite width and arbltrary dip. The: correspondmg results for a
dip-slip fault have been given by Rani and Singh™®.

Layered Half-Space‘

A model for the crustal deformation field should consist of a layer (representmg ‘

lithosphere) overlying a viscoelastic half-space (representing asthenosphere). Rybicki®

found a closed-form analytical solution for the problem of a long vertical strike- slip fault
in a two-layer model of the Earth. Rybicki’s solution has been used by Nur and Mavko’

and Cohan’9 amongst others, to explain the postsiesmic surface deformation. While Nur
and Mavko® assumed the lithosphere- asthenosphere composite as an elastic layer overlying
a standard linear viscolastic half-space, Cohen® assumed a standard linear viscoelastic
layer overlying a Maxwell viscoelastic half-space. Bonafede et al. % modelled a microplate
as an elastic plate with two. long strlke-sllp boundaries lymg over a Maxwell viscoelastic

asthenosphere
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Singh and Rani'? generalized Rybicki’s solution to a fault of arbitrary dip. The
correspondence principle of linear viscoelasticity was used to obtain the quasi-static field
when the layer is elastic and half-space. Maxwell viscoelastic. The static field was used to
model the coseismic deformation following a strike-slip earthquake at a transform plate
boundary and the quasi-static field minus the static field was used to model the postseismic
deformation. They performed detailed numerical computations and showed that the field
caused by a surface-breaking fault is characteristically different from the field caused by
a fault at depth. The main advantage of considering the 2-D problem of a long strike-slip
fault in an elastic layer over a viscoelastic half-space instead of the corresponding 3-D
problem is that one is in a position to obtain closed-form analytical solution of the problem.
In the 3-D case, one is forced either to use approximate Green’s functions or to resort to
numerical integration.

We consider an Earth model consisting of a homogeneous, isotropic, elastic layer of
thickness H lying over a homogeneous, xsotroplc elastic half-space (Fig. 5). We place the
origin of a Cartesian cgordinate system (x,, x,, x;) at the free surface and the x;-axis is
drawn into the medium.A long inclined strike-slip fault, with strike along the x;-axis, is

S

. .
A \\‘)S | » '3

) \\\ (s".S)
®
4
© (52.8)

.

\ 4
Xq-

Fig. 5 —~ Geometry of a long stfike-slip fault situated in a layer of uniform thickness H lying over a ha‘lf-space..
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situated in the layer and (y,, y,,y;) is any point on the fault (0 < y, < H). Let i, and W, be
the rigidities of the layer and of the half-space, respectively. The superscript (1) deriotes
quantities related to the layer and the superscript (2) denotes those related to the half-space.
Singh and Rani'? have shown that the displacement field due to an inclined strike-slip line

dislocation passing through the point (0, y,, y3) is given by

7

ay _ bds X3 = y3 X3t s = ) 2nH — x3 — ¥,
W' =5 kcosS 2 {2 +ZH e —

n=1

2nH + x3 —y; 2nH — x3 +7y3 2nH+x3+y3}]
+ - -_—

1111 '
M+ s+ 5+ : (34)
’ [72 V2 U? Wz]] ,

oo

. . 1 1
—sin 8 (x, — y3) F+§2_'+

n=

‘(2)_:@ X3~ )3 _ X3+y3 < n 2HH+X3—y3
u o (1+7) [coss b 7 +2r ———————-—v2

n=1

MmHAx+y;) ] I 1 w1, 1
__—}]—31n8(x2—y2) —R_2+§2-+2/(F+W) J (55)

w? =
& | where
r=u - W)/t ),
4 R = (- 3+ ()
§? = (x, - ) + (5 + ¥ s
T =0 - y,) + QnH — x5 - )
L. U2 =ty — y)* + @nH — x3 + )

V2 o=(x, — y)° + Q@nH + x3 — ),
W = (x, — yp)? + @nH + x5 + y3)° " (56)

b is the slip and ds is the width of the line dislocation.
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Changing to polar coordinates (Fig. 5)
y2'= 5088, y; =5 sind
in eqn. (54) and (55) and integrating over s between the limits (s> s,), Singh and Rani'?

obtained the following expressions for the displacements due to a long inclined strike-slip

fault of finite width s,=8

' 5 — x,c088 — x,sind
u(') = —1' MO tanTl 2 3
. 2m X3€088 — x,sin &

_l‘[s ~ X, €08 8 + x, sinSH
tan

X3 c0s O + x,sin

0 s — X, 08 & + x; sin& ~ 2nH sin &
an 2nH cos & — x3 cos & ~ x, sin &

> w,

n=1

§ — X, c0s® ~ x; sin8 ~ 2nH sin §

2nH cos & + x; cos & — x, sin &

§ — x) €088 — x; sind + 2nH sin §

2nH cos & — x; cos § + x, sin &

5§ — X, €088 + x5 sin8 + 2nH sin
2nH cos § + x, cos 8 + x, sin &

1 [$ =X cosd - x; sind
N, | tan ; :
X3 €088 ~ x, sind

1 [ 8= X cosd + x; sind
— tan y
X3 COS 8 + x, sin
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3 : - : ' s—'x cosd — x; sind — 2nH sin §
14T ) N -1 2 3
. e S .+n§‘ " [tan [ 2nH cos & + x3 cos d — x, sind J
4[5 =X, c088 + x5 sind + 2nH sin § "
~ tan : - ‘ 1 (58)
2nH cosd + x; cos & + x, sin &
. ‘
where
. 5,
f(s) = fls) = flsp).
5
| WY ’ -
M,=b|—| , 59
* (“1 + “2) &)
N, = by, TR
, (M + 1)
The corresponding expressions for the stresses are s
a M ' _x3—‘ssin8 X3 + 5ssind )
Piz T2 {Mo[ R + s2

- X +s§in5—2nH X, — ssind + 2nH
¥ z M, 3 _ . X3 .
n=1 ) T2 V 4

xy = ssind ~ 2nH  x; + ssind + 2nH 2o
+ , (60)

U2 . | _WZ

Ky o 1 1
9(113) = Et— (x, — 5 cos d) [Mo ['1? - ?]
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- (61)

‘ 1 Xy — ssind X3 + ssind
(2)

= — - +
P2 n{Po( R 52

>

n=1

Xy — ssind + 2nH x3+ssin8,+2nH—
P,|- 2 + W2

oo

1 1
_n(xzu—scosﬁ) PO(EZ-—EZ‘)+ Y P"(—

V2

n=1

(“1 - “2: )"
P =5 -— 64
‘ n "‘l'l u’l (u] + )n+l - ( )

In order to calculate the elastic deformation due to a thrust fault in the lithosphere -
asthenosphere composite, Nur and Mavko® used the exact solution of Mura®*' for an edge
dislocation parallel to the boundary of two elastic half-spaces in welded contact. They took
into account the effect of the free surface approximately by cosidering Mura’s solution for
two equal and opposite edge dislocations with the free surface midway between them. By
considering a simpler problem of a long dip-slip fault in a uniform half-space, Singh and
Punia*? have shown that the approximate method used by Nur and Mavko does not yield
satisfactory results. For small dip angles and beyound a certain epicentral distance, while
the exact solution predicts subsidence, the approximate solution predicts uplift. Moreover,
the approximate solution yields non-zero values for the surface tractions at the free surface.

Recently, Punia®' has found analytical solution of the porblem of a long dip-slip fault
in a layer overlying a uniform half-space. He used the expressions for the Airy stress
function in an unbounded medium given by Singh and Garg® to obtain the integral
expressions for the displacements at the surface by applying suitable boundary conditions.
As expected, these expressions are rather lengthy. Punia’' used Sneddon’s method of
approximations (Sneddon®?, Ben-Menahem and Gillon™) to perform numerical

computations.
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Conclusions

The purpose of this article has been to describe closed-form analytical solutions of the
porblems relating to the permanent deformation of plane layered Earth models caused by
long displacement dislocations. These analytical solutions are useful in modelling the crustal
deformation associated with strike-slip and dip-slip faulting in the Earth.

Closed-form analytical solutions are always superior to numerical solutions which are
prone to computational errors, beside taking more time on the computer. We have seen
that closed - form solutions are available for long strike-slip and dip-slip faults in a uniform
half-space and in a two-phase medium consisting of two uniform half-spaces in welded
contact.Such a solution is also available for a long strike-slip fault in a layered half-space.
However, in the case of a long dip-slip fault in a layered half-space,the analytical solution
is available only in the form of an infinite integral. This integral can be modified by using
Sneddon’s method of approximating the integrand in such amanner that analytical integration
is possible. For multilayered Earth models, one can take recourse to the Thomson- Haskell
matrix method, modified by Singh®* to computc permanent residual deformations in 3-D
configurations and by Singh and Garg® in 2 D configurations. This method has been
successfully applied by several mvcstlgators %8 in the recent past for modelling the crustal

- :,deformatlon of the Earth.
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