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The two-dimensional problem of the static deformation of a transversely
isotropic, multilayered, elastic half-space by surface loads is studied. Both
plane strain and annplane strain cases are consxdered The method of layer
. “matrices is used to obtain the field at any pomt of the medium. Explicit ex-
pressions for stresses caused by a surface line load on a transversely isotro-
pic uniform half-space ‘are derived. The present formulation avoids the
cumbersome nature of the problem and is quite convenient for numerical
_computation.

1. INTRODUCTION

Kuo' studied the three-dimensional problem of an inclined static load on a circular
area of the surface of a multilayered isotropic halt-space. Singh? solved the corres-
ponding problem for three-dimensional buried sources. The two-dimensional plane
strain and antiplane strain problems of the static deformation of a multilayered isotropic
half-space by surface loads has been discussed by Garg and Singh?, who have considered
in detail the particular cases of a normal lme load and a shear line load.

In the present paper, we have formulated the two-dimensional problem of the
static deformation of a transversely isotropic mulnlayered half-space by surface ‘loads.
Both plane strain and antiplane strain cases are considered. The Thomson‘-Haskell®
matrix method is used to obtain the required field. The particular cases of a normal

lineload and a shear line load are considered in detail. It is shown that in the case of

a transversely isotropic uniform half-space the integrals giving the stresses can be evalu-

-ated analytically. The corresponding axially-symmetric problem. has earlier been .

discussed by Singh®.

The importance of the problem considered in the present paper lles in the fact
that the crust of the earth is anisotropic and, therefore, it will be useful to study the
effect of anisotropy on the static field due to surface loads. It may also find some

-applications in engineering, since the materials used are not always isotropic.
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2. Basic EQUATIONS

In the cartesian coordinates (x,, x,, xs), the equations of equilibrium for zero
body forces are :
opn opy S Opi ‘ ’ A o (2.1)
ox; + ox, + Pxa. =0, » ) ' ~(2.1)
%y | On_ , .2
Xg .

ész
+ Oxg

ox, 2

ops 9Ps3 Opss . . . l ’ 2.3) -
ox, + ox, + 0x; =0 (2 ).

Y

where py; is the stress tensor. If (u,, u,, us) denote the components of the displace-
ment vector, the strain-displacement relations are :

ey = %(

T+ W) Gi=123,

(2.9

-For a transversely isotropic medium, whose axis of symmetry coincides with the

X3-axis, the stress-strain relations are given by (Payton’, p. 3)
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An isotropic solid is a special case of a transversely .isotropic solid for which
Ca=Ci3 =X ¢35 = ¢ =X+ 2p, 000 =cCe = p (2.7

where 2, p are the Lamé constants. , v

We shall be considering a two-dimensional approximation in which the., displace-
-ment components and consequently stresses are independent of x, so that dlox, =-0.
Under this assumption, the plane strain problem (z, = 0) and the antiplane . strain -
problem (u, = us = 0) are decoupled and, therefore, can be treated separately. In the
following, we shall write (x, y, z) for (x15 X3, x3) and (u, v, w) for (us, g, Ug). .

.. 3. ANTIPLANE STRAIN PROBLEM
For the antiplane strain problem

u=u(y,z), V=w=0 .
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The non-zero stresses are

u u
szf_‘ Cgs 6—y’ D1z = Cyy 2z °

Using (3.1) and (3.2), eqns. (2.1) — (2.3) give one non-trivial equation :

o* o* ) ’ |
(Sz‘a—yz + )u -0 (3.3)

where
_ s = (cos/Caa)' 12 ...(3.4)
A solution of (3.3) is of the from

Cu(ne) =] (et Besr (52 kﬁ) ke RNCE)

where 4, B are functions of k£ only. From (3.2) and (3.5), we have ‘

J— ® — —sk2 skz (Sin ky) .
Pz (9, 2) t (j, (—Ae™*** 4 Be*s) cos ky ) k dk o ...(3.6)

where - N A ] T
= (044 666)]/2- ' . . o--(3.7)

Equations (3.5) and (3.6) may be written as V
(8

.(3.9)

U(2) ch (skz)  —sh (skz) A4 B
T(Z)J_ [ t sh (skz) —t ch (skz) :] ’ [A _ B] - (3.10)

and ch and sh stand for hyperbolic cosine and sine, respectively.
" In the case of an isotropic medium s = 1, ¢ =p and egns. (3.5) and (3.6) coincide -

with the corresponding equations for an isotropic medium obtained by Singh and Garg®.

4. PLANE STRAIN PROBLEM

For the plane strain problem

v=vy2),w=w(z2)u=
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and the non-zero strains are

oy .
» 2653 = 67 + = = ...(4.2)

€y =

oy’

Equation (2.5) then yieids

' Pu=Cp e+ 0 en | - - (4.3
P22 = €y, €55 + €13 €33 ‘ _ ...(4.4)
Pis = Gy €35 + Cs3 €30 | | : L4.5)
Pis = 2c4q € ' - .(4.6)

Pe=p3=0. ' . ‘ (%))

' Usmg (4.7), We find that eqn. (2.1) is 1dent1cally satisfied and egns. (2.2) and (2 3) take
the form - _

Opsy 9P =0

% = (4.8)

[ Opss ' . ‘ 3
Ty + oz = 0. | o ...(4.9)

~ Therefore, there exists an Airy stress funétion F(,2) éuch that

aQF S 02F o°F '
Py = oz y Pog = — ayaz:!’sa= a—y,,- . ...(4.10)

The equlllbnum equations (4 8) and (4.9) are 1dent|cally satlsﬁed The compatibility
equation is (Sokolnikoff®, p. 28)

0° €y 32833 — 8’e23
0z® oy? 2 dydz : - (&11)

Ellmmatmg €, €3; and e,, from 4. 4)-(4 6) and (4.11) -and then using (4.10), we
obtain

7

[ B @we—-p L. Troo (4.12)
a ay4 (ac B ayz 822 € 9z° A N )

where

a = cylegy, b= c,:,/cn.Ac = Ca3/cqs. . ...(4.13)
We may write (4.12) as _ ‘
: . 02 a” 02
2 _ 7 2 ==
(m ot ) (g 5+ o ) F=o. .(4.13)
where « and B are given ‘by the relations

o’ + B = (ac — 2b — b2)/c, o2 g2 - alc. ' .. (4.15)
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In the case of an isotropic body, (2.7), (4.13) and (4.15) reveal that
a=c=() +2b=Npa=8=1
and eqn. (4.14) becomes biharmonic. ‘ ‘
" A solution of (4.14) is of the type (assuming « 7 B)
F= (aemr+ Bem 4 ot 4 Debvs) (Z‘o“s 113; )
‘where 4, B, C, D may be functions of k ‘ |
Usiﬁg (4.10) and (4.16), the stresses are found to be

Pay = ?O[A «? e-®%% 4 B «? e*kz 4 C B2 é‘”‘ + D p? ellkz]

[

x (s“‘ "y) k* dk
cos ky

. w ) . .
Pys = | [—A ez — B e*: — C e Bk D e“"’](
B _

o .
pis = | [Aae*k2 — Bae**: + CBePz — DB ePt]
0 :

(L5 ) e
—sin ky

sin ky
cos ky

767

..(4.152)

dk ...(4.16b)

. (4.17)

)'kde...(4.1s)

...(4.19)

The expressions for the displacements can be obtained by integrating the stress-

displacement relations, which can be written as

ow

© v
Py = 1y g("f‘ Ci3 77

ov ow
_pas = €3 E+ C§3 2z

| o ow
Pza=c44(—52-+ E’)-

Solving (4.20) and (4.21), we obtain

ov ‘
5~ A1 (csy Pas — €13 Pas)_
ow :

—a-—z— = A-! (011 Pss — C';aPz‘z)

where .

A=ocyc3— €y

...(4.20)

...(4.21)

..(4722)

...(4.232)

...(4.23b)

...(4.24)
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Integrating (4.23a, b), we find

vV = Al J (cas P2y — €13 Psa) dy + F(z)

..(4.252)
w=A"1f (6‘1‘1 Pss — €13 Pgy) dz + G(y)

where F (z) and G (y) are arbitrary functions. Equation (4.22) shows that F and G re-

...(4.25b)
present a rigid b_o@y displacement and can thus be disregarded in the analysis of de-
formation., Taking F = G = 0, (4.17) (4.18) and (4.25a, b) yield

v Tlp (4 e 4 Bew 4 p, (Cete 4 p ooy
¢

x (—cos ky )kdk

sin ky

w

= [q1 4 e %kz _'p exkz) 4 g, (C e Bz _ p eB"‘)]
x(on 2 ) ke
cos ky
- Py= A7 (33 0 + cy), pp = A (cas B + ¢y9)
q =

A7 e300 + (eufa)], g, = A? [C;a B +(011/B)]
We may write (4.18),- (4.19), (4.26) and (4.27) in the form

o0 —coskj/)
V
Y 6‘ ( sin ky 'k dk
W Cj’o,W(sm ky)kdk‘
o \cosky

o 00 cosky
Pus = {s(fsin ky) ke dk
°°"Sinky . -
P33 {N(COS ky) k? dk.

The functions V, W, S, N are given by the matrix relation
| ¥ @] =1Z ()] K]
where

-

W@hﬂ%m&Mum=M+&A—&c+ac—m7
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and [...]7 denotes the transpose of the matrix [...]. The matrix [Z (z)] is given below :
[ p, ch (akz) —p,sh (okz)  p, ch (Bkz) —p, sh (Bkz))

| =gy sh(ok2)  gi'ch(ok2) ~ g sh (Bkz) g, ch (Bk2) |
| ~osh(akz) - ach(ekz) —B sh(Bkz) B ch (Rkz) |
'L — ch(zkz) . sh(ekz)  —ch(Bkz)  sh (akz);'
. ...(4.35)

[Z(@)] =

5. DEFORMATION OF A MULTILAYERED HALF-SPACE BY SURFACE LOADS

We consider a semi-infinite medium made up of p —1 parallel, homogeneous,
transversely isotropic layers lying over a homogeneous, transversely isotropic half-
space. The layers are numbered serially, the layer at the top being layer 1 and the
half-space is designated as layer p. We place the origin of the cartesian coordinate
system (x, y,2) at the boundary of the semi-infinite medium and the z-axis is drawn into
the medium. The nth layer is of thickness d, and is bounded by interfaces z = z,-,, z,
so thatd, = z, — z,-,. Obvxously zo = 0 and z,-; = H, where H is the depth of the
last interface. ' ‘ ' T

5.1. Antiplane Strain Problem
Ihtroducing the su-bscript n to the quantities pertaining to the nth layer, (3.10)
U, (2) z ()][ 4, + B, ] i ' .0
= [Z,(z ...(5.
g Tn (Z) A,, - Bn ) X

where the matrix [Z, (2)] is given-by

- ch (sn k2) ;—sh (sqkz)
Z, = : R ...(5.2
(2. [ 1y sh (s,kz) — 1, ch (s,kz) ] 62
Following Sihghz’“’, we obtain (see the Appendix) v
Uﬂ—l (Zn—l)\ Un (Zn)
=[a, : (5.3
[Tn--l (Z"_l) [a ][Tn (Zn) ‘. ' . ( )

where the layer matrix [a,] is given by _
ch(s,kd) —t - sh(s,kd) '
[an} = ( 1. -_ ..(5.4)
—1, sh (s, k d,) ch (s, k d,) :

For the half-space, B, = 0. Equavtions (5.1) and (5.3) then yield

[(7{:22; -[][ ] ‘ | _ ...(5.5)

[Fl={a]la,} ... [a,-1] [z, (H)] - ‘ --(5.6)

with




770 C NAT RAM GARG AND SARVA JIT SINGH

Equation (5.5) gives the following two equations
U, (0) = (Fy, + Fy,) 4, v . «.(5.7)
T} 0) = (Fyy + F,,) Ap- N ..(5.8)

From (5.7) or (5.8), 4, is known. Equatior (5.7) is applicable when the surface dis-
placement is prescribed and (5.8) is applicable when the surface load is prescribed. We
shall confine our discussion to the latter case only.

When the surface load is prescribed the boundary condition is of the form

Py =f(y)atz=0 . , ..(5.9)
We shall write
sin ky , .
roy =T 7w () k. (5.10)

Equations (3.9), (5.8) and (5.10) yield

Ao = T (Rlk (Fyy + Fao)). : (8.11)

The field at any point of the medium can be obtained. For Zyy < Z < 2,
| U,,'(Z) AI’ . ) y
= : ; ...(5.12
Lrg J=wen[? ] i (5.12)
where o ' '
G @] = @, (2, — 2} [@upa] [Gnsa] .. [@p 3] [Z, ()] «(5.13)

and [a, (z,‘, — z)] is obtained from [a,,] of (5.4) on replacing d, by z, — z.

Inserting the value of 4, given in (5 11) mto (5.12) and makmg use of (3.8) and
and (3.9), we find

0= (Gy+ G\ (sinky \ , ..
=1 7 (——F21 T )(cos.ky) k-1dk (5.14)
- s G21+G22) (Sin ky ' .

=7 70 ( oy ) ak. | (5.15)

cos ky
5.2‘. Plane Strain Problem - .
For the nth léyer, we obtain 4
(V-1 (za-1)] = [a,] [, (2,)] L , - (5.16)

where the elements of the layer matrix [a,] are listed in fhe Appendix. Proceeding as in -
the case of the antiplane strain problem and putting B, =.D, = 0, we find
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. V1 (0), W, (0), S, (0). N (O = [F][4p, 45, Cp, O] «(5.17)
with [F] of (5.6). Equation(5.17) gives the following four equatiqns
V1(0) = (Fu + Fua) 4p + (Fis + Fiy) Cp.. ...(5.18a)
W, (0) = (Fy + Fo) Ap + (Fas + F0) Co ‘ - ...(5.18b)
S, (0) = (Fs; + Fs) Ap + (Fs3 + F3) Cp. | ...(5.192)
Ny (0) = (Fgy + Fu2) Ap + (Fia + Fyy) Co. *...(5.19b)

For given dxsplacements at the surface, 4, and C, are known from (5.18a,b).
For given surface loads, Ap and C) are known from (5.19a ,b).

When the surface load is prescribed the boundary conditions are of the form

P =280, P = h(p)atz =0 o o .(5.20)
As before, we put
N cos ky) | ’ 7
s=Taw( 7)) (521)
_  [sin ky o o L
hoy = TH (30 ar | e

Equations (4.31), (4.32), (5. l9a b), (5.21) and (5 22) .give the values of Ap and. Cp

A, = (1QK) [(Foo + F) g — (Fsa+ F) Bl - . (5.232)
Cp = (1/Q k) [(Fs; + Fs) B — (Fay + F)2). ...(5.23b)°

where - ‘ B
@ = (B + F) (Fa + Fud — (P + F) Fu + Fud. | .(524)

The field at any pbint of the medium can be obtained from the relation
@nr < 2 < 2,) ' |
Vo (), Wa (2D, 5 @ Na D =[G @] [Ap, 4 Co G ...(5.25)

where [G] is defined in (5.13). From (4.29)-(4.32), (5.23a, b) and (5.25), we obtain
[~ =] ’ —
Vo= J' (G + Gua)- {$E43 + Fu) 8 — (F33 + Fz) h}

—cos ky ) -1

+ (G + G (P + F) B = (P + FolBl ( o

x Q- ldk S ’ ' ...(5.26)
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00 -
W= jo [(Ge1 + Gyo) {(Fus + Fuy) 8 — (Fsy + F3o)h}

N X — ' . k .

x0-ldk o | ..(5.27)

T G + Gu) (Fas + F 2 — (s + Fa) By

L . . . s - k
.+ (Gus + Gy) {(Fay+Fa) b — (Foy + Fy) ?}](—:ions kyy )

x@rdk . | S (528)

T UG + 6 ((Fis + F) 2 = (s + F) B

cos ky
x o dk. : ...(5.29)

6. PARTICULAR CAsEs-SURFACE LOADS - |

The results obtained in Section 5 are of general nature. We now consider a few
particular cases in which the surface load is precisely defined.

. 6.1.  Antiplane Strain Problem
* Let :
fO)=—R3(y) .(6.1)

where & (y) denotes the Dirac delta function. We use the representation .

5(9) = (1jm) °J cos Ky dk. | ...(6.2)
: 0 . .
From (5.10), (6.1)-and (6:2), we find that

7 (0= - Rj o S (6.3)

and that the lower solution must be taken. Putting this value of 7 (k) in (5.14) and
(5.15), we obtain . .

o0

o _R G,,+Gm) ‘._1... 4.
“ TI (le T B, ) oSk kT dk. ...(6.4)

-
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0

Dis = :_R; I(Gzl + Gzz) cos ky dk. ‘ ) (65) .

w
0

Fgl + Fg:

6.2. Plane Strain Problem

For plane strain problem, we shall be considering the particular cases of a normal

. line load and a shear line load.

Normal Line Load—Let a normal line load p per unit length be applied at the
origin to the surface z = 0 in the positive direction of the z- axis. Then

gO) =0, K =—p3®») : .(6.6)
where 8 (y) is defined in (6.2). From (5.21), (5.22) and (6.6), we obtain
g(k) =0, h(k) = —P|n : : ..(6.7)

and that the lower solution must be taken. The’ displacéments and stresses at any point

of the medium are given by (5.26) — (5.29) and (6.7) :
b L . '
V= (_'P/") { [(613 + Gu) (F31 + F3z) - (Gll + .ze) (F33 + qu)] .
x k-1 Q71 sin ky dk : _ ...(6.8)
W= (=Pln) TUGr + Gad (Fur + Fr) = (Gos + Gan) (Fos + Fay)]
x k-1 Q1 cos ky dk A ...(6.9)
P = (P /")T [(Gss + Gay) (Fax + Fap) — (G, + Ga) (Fys + Fay)]
X Q-'sinky dk ..(6.10)
D3z = (“P/")jo [(Gys + Gy) (Fa1 + Fsz) - (Gy + Gn)l(Fss + F34216 1"

X Q1 cos ky dk.

Shear Line Load—Suppose that a shear line load @ per unit length is applied at
the origin to the surface z = 0 in the positive direction-of the y-axis. A Then

g =-23%0, h(») =0 . .-(6.12)
From (5.21), (5.22) and (6.12), we find ' '
gk) =~ Qln, h(k) =0 : . ..(6.13)

and that the upper solution must be taken. The displacements and stresses are given
by (5.26) — (5.29) and (6.13):

*«
¥
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v = (@) [ (G + G (Fag + Fi) = Grs + Gu) (Fur + Fup)
x.k-2 Q71 cos ky dk | (6.14)
W= (=0 TUCu+6) (s + Fu) ~ Gus+ Gud (Pt Fu)

x kLo sinkydk o L(6.15)

o= (=0 TG + Gu) (Fis +Fu) — Gos + Ga) (Faa + Fo)

X Q*cos ky dk _ . ...(6.16)

po = (=010 T (Gu + o) (Fas + Fu) — @ + Gu) (Fu + Fu)) -

x 0 sin ky dk. ' T (6.17)

7. UNIFoRM HALF-SPACE

In Section 6, we have derived the displacements and stresses at any point of the
_ medium caused by surface loads acting on the surface of a transversely isotropic mul-
.tflayered half-space. These results are in the form of integrals over the variable k.
These integrals can be evaluated numerically by using the method ‘suggested by
Jovanovich e al.)'’%" In the case of a transversely isotropic uniform half-space the

integrals giving the stresses can be integrated analytically. The basic transform inte-
grals used are listed below : i

€% sin ky dk = yzi_gz o | wi(1.1)

e % cos ky dk = ﬁ+€2 o ‘ (72) .
For a half-space, p = 1 and

| (P =1ZO)6G1=1Z@
7.1, -Antiplane Strain Problem ‘

In this case,

=[]
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and :
ch (skz ——sh skz
_[ (), () (1.5
t sh (skz) —tch (skz) -
Using (6.5), (7.2), (7.4) and (7.5) we ﬁnd : .
—R e S
= [ Iz + 2+ 53zt :] S . R M ""(7“6)
- In the case of an isotropic half-space s =1 and (7.6) reduces to - o
e
72 Plane Strain Problem AR e B S
In this case, usmg (4.35) and (7. 3), we obtain
ﬁm,ﬁ,m,OT
[F] = | w0 .(1.8)
li Y B .
| — 0 -1 0 _]l '

Normal Line Load——Makmg ‘use of 4. 35), (5. 24) (6 10), (6 11), (7 l) (7.2) and
(7.8), we ﬁnd :

~ 2Bp ) — y.T . (7.9

Pss (2) (B — )Ly + p%2° )’2 ] t?‘zzz ] - ‘ ( )
«fp B z . z , 0

Pas (Z) = (B — (l) L,V 5222 - .—2"| a‘zz'z" ]. ' ...(7.1 ) .

The stresses for an isotropic uniform half-space can be deduced from (7.9)-and (7.10).

ahrst cancelling the factor (B — «) from the numerator and denominator. and then putt-
" ing o = B = 1, we shall find

‘ =2 yzi - =2 28 ] ' ‘
'p23 - T [(yg + ZZ)Z ]', p33 = _T[ (yz + 22)2 . ...(7.11)

The results obtained here coincide with the corresponding results of Snendon*® (p..409).

Shear Line Load Usmg . 35), (5.24), (6.16), (6.17), (7.1) (7 2) and (7.8), we
obtain .

g%z

MHazﬂwa[fﬂw 5f+mﬁ] Jyn
=0 [y _ y : :
@ = e T~ I ] (7.13)

For an isotropic uniform half-space, (7.12) and (7.13) take the form .

e i) - B ] 00
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APPENDIX
(i) Derivation of equation (5.‘3)' -

Putting z =z,_,, z, in (5.1), we obtain

U, (2,) A, + B,

T oy ) = @) [

U, (zn-1) ' A, + B, .
[Tn s ] = o [ p

Eliminating 4, + B,, 4, — B, from (A.1) and (A.2), we find
U, (zu1) U (zn)
[T, (zn-,)] = [T @)
where the layer matrix [a,,]' is given by (Singh?)’

[a"] = [Z (2.-)] [Z, (20)]?
= [Z, (=d)I[Z, (O] 1

(A1) <

..(A.2)

(A3)

- (A4)

The matrix [Z, (—d,)] is obtamed from [Z, (z)] given in equation (5. 2) on replacmg z

by —d,.
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The boundary conditions at the interface z = z,_, yield

Un (Z,,_]) n-1 (Zn 1) h

LTn (Z,,_l)] [: T, (z”_l) (A-S)
‘Equanons (A-3) and (A 5) yleld o

[ Un-1 (20-1) U, (z,) ,

LT -y (20-1) & [T (z.) L .'..(A.6)

whxch coincides with (5 3). Equatnons (5.2) and (A. 4) yleld equation (5 4).
(ii). Elements of the layer matrix [a,] for plane strain
From (4.35), we obtain o _
' ~1/0, 0° 0 —p)o,

- _ lf 7, :
N Q —qQ .0 |
[Z(O)]‘.’ - ’ B/, 7,/Qs o

} 1/Q, 0 0 J Ao ’I
¢t 0 —ew/ /2 @ 0

where

Q = p,’— py, ’92 =q; B— gy

Following Singh?, it is found that the elements of the layer matrix [a,] for ‘the plane

strain problem are (omitting the subscript n) :
(1) = (=pich 6+ p.ch §)Qy, (12) = (p, B 5h 6 — gy 5h $)[Qs
(13) = (—pg2 sh 6 + P2 01 sh $)/Q,, (14) = pip, (—ch 6-+ ch'$)[Q,
@) = (~q:15h0 + . sh ), (22) =(q, 8 ch § g, xch $)[0,
(23) = qqe (—ch 0 + ch )]0,  (24) = (—qp2 sh 0 + qup, sh D)
@) = (~asho + Bsh ), | (32) = af (ch 8 —ch $)IQ,

() = (~uquchb+ By, ch §)[Qsy (34) = (—a Py sh 6 + B pa sh ¢)/
A1) = (cho —ch ¢)/n,, (42) = (—B sh 8 + a sh $)/
43) = (qash 0 — qush §)0s,  (44) = (po ch 0 —-py ch P

- where -

0= akd ¢ =Bkd : . R .

A







