
Multiobjective Optimization UsingNondominated Sorting in Genetic Algorithms�N. Srinivas and Kalyanmoy DebDepartment of Mechanical EngineeringIndian Institute of TechnologyKanpur, UP 208 016, INDIAe-mail: deb@iitk.ernet.inAbstractIn trying to solve multiobjective optimization problems, many traditional methods scalar-ize the objective vector into a single objective. In those cases, the obtained solution is highlysensitive to the weight vector used in the scalarization process and demands the user to haveknowledge about the underlying problem. Moreover, in solving multiobjective problems, design-ers may be interested in a set of Pareto-optimal points, instead of a single point. Since geneticalgorithms(GAs) work with a population of points, it seems natural to use GAs in multiobjec-tive optimization problems to capture a number of solutions simultaneously. Although a vectorevaluated GA (VEGA) has been implemented by Scha�er and has been tried to solve a numberof multiobjective problems, the algorithm seems to have bias towards some regions. In thispaper, we investigate Goldberg's notion of nondominated sorting in GAs along with a niche andspeciation method to �nd multiple Pareto-optimal points simultaneously. The proof-of-principleresults obtained on three problems used by Scha�er and others suggest that the proposed methodcan be extended to higher dimensional and more di�cult multiobjective problems. A numberof suggestions for extension and application of the algorithm is also discussed.1 IntroductionMany real-world design or decision making problems involve simultaneous optimization of multipleobjectives. In principle, multiobjective optimization is very di�erent than the single-objectiveoptimization. In single objective optimization, one attempts to obtain the best design or decision,which is usually the global minimum or the global maximum depending on the optimization problemis that of minimization or maximization. In the case of multiple objectives, there may not exist onesolution which is best (global minimum or maximum) with respect to all objectives. In a typicalmultiobjective optimization problem, there exists a set of solutions which are superior to the rest ofsolutions in the search space when all objectives are considered but are inferior to other solutionsin the space in one or more objectives. These solutions are known as Pareto-optimal solutions ornondominated solutions (Chankong and Haimes 1983; Hans 1988). The rest of the solutions are�This paper has appeared in the Journal of Evolutionary Computation, Vol. 2, No. 3, pages 221{248.1



known as dominated solutions. Since none of the solutions in the nondominated set is absolutelybetter than any other, any one of them is an acceptable solution. The choice of one solution overthe other requires problem knowledge and a number of problem-related factors. Thus, one solutionchosen by a designer may not be acceptable to another designer or in a changed environment.Therefore, in multiobjective optimization problems, it may be useful to have a knowledge aboutalternative Pareto-optimal solutions.One way to solve multiobjective problems is to scalarize the vector of objectives into one objec-tive by averaging the objectives with a weight vector. This process allows a simpler optimizationalgorithm to be used, but the obtained solution largely depends on the weight vector used in thescalarization process. Moreover, if available, a decision maker may be interested in knowing al-ternate solutions. Since genetic algorithms (GAs) work with a population of points, a number ofPareto-optimal solutions may be captured using GAs. An early GA application on multiobjectiveoptimization by Scha�er (1984) opened a new avenue of research in this �eld. Though his algorithm,VEGA, gave encouraging results, it su�ered from biasness towards some Pareto-optimal solutions.A new algorithm, Nondominated Sorting Genetic Algorithm (NSGA), is presented in this paperbased on Goldberg's suggestion (Goldberg 1989). This algorithm eliminates the bias in VEGA andthereby distributes the population over the entire Pareto-optimal regions. Although there exist twoother implementations (Fonesca and Fleming 1993; Horn, Nafpliotis, and Goldberg 1994) based onthis idea, NSGA is di�erent from their working principles, as explained below.In the remainder of the paper, we briey describe di�culties of using three common classicalmethods to solve multiobjective optimization problems. A brief introduction to Scha�er's VEGAand its problems are outlined. Thereafter, the nondominated sorting GA is described and appliedto three two-objective test problems. Simulation results show that NSGA performs better thanVEGA on these problems. A number of extensions to this work is also suggested.2 Multiobjective Optimization ProblemA general multiobjective optimization problem consists of a number of objectives and is associatedwith a number of inequality and equality constraints. Mathematically, the problem can be writtenas follows (Rao 1991): Minimize/Maximize fi(x) i = 1; 2; : : : ; NSubject to gj(x) � 0 j = 1; 2; : : : ; Jhk(x) = 0 k = 1; 2; : : : ; K (1)2



The parameter x is a p dimensional vector having p design or decision variables. Solutions to amultiobjective optimization problem are mathematically expressed in terms of nondominated orsuperior points. In a minimization problem, a vector x(1) is partially less than another vectorx(2); (x(1) � x(2)), when no value of x(2) is less than x(1) and at least one value of x(2) is strictlygreater than x(1). If x(1) is partially less than x(2), we say that the solution x(1) dominates x(2) orthe solution x(2) is inferior to x(1) (Tamura and Miura 1979). Any member of such vectors whichis not dominated by any other member is said to be nondominated or non-inferior . Similarly if theobjective is to maximize a function we de�ne a dominated point if the corresponding componentis not greater than that of a nondominated point. The optimal solutions to a multiobjective opti-mization problem are nondominated solutions. They are also known as Pareto-optimal solutions.The concept of Pareto-optimality is further illustrated in the next section by presenting an exampleproblem. Mathematically, an optimization algorithm should be terminated if any one of the Paretooptimal solution is obtained. But in practice, since there could be a number of Pareto-optimalsolutions and the suitability of one solution depends on a number of factors including designer'schoice, problem environment, �nding the entire set of Pareto-optimal solutions may be desired.In the following section, we describe a number of classical approaches to the solution of multiob-jective optimization problems and discuss their di�culties by illustrating a simple two-objectiveoptimization problem.3 Classical MethodsA common di�culty with multiobjective optimization is the appearance of an objective conict(Hans 1988)|none of the feasible solutions allow simultaneous optimal solutions for all objectives.In other words, individual optimal solutions of each objective are usually di�erent. Thus a mathe-matically most favorable Pareto-optimum is that solution which o�ers least objective conict. Suchsolutions can be viewed as points in the search space which are optimally placed from individualoptimum of each objective. But such solutions may not satisfy a decision-maker because he/shemay want a solution that satis�es some associated priorities of the objectives. To �nd such pointsall classical methods scalarize the objective vector into one objective. Many classical algorithmsfor non-linear vector optimization techniques de�ne a substitute problem, reducing the vector opti-mization to a scalar optimization problem. Using such a substitute, a compromise solution is foundsubjected to speci�ed constraints.In the following subsections, three commonly-used methods|method of objective weighting,3



method of distance functions, and method of min-max formulation|are discussed.3.1 Method of Objective WeightingThis is probably the simplest of all classical techniques. Multiple objective functions are combinedinto one overall objective function, Z, as follows:Z = PNi=1wifi(x);where x 2 X; X{ the feasible region; (2)the weights wi are fractional numbers (0 � wi � 1), and all weights are summed up to one, orPNi=1 wi = 1. In this method, the optimal solution is controlled by the weight vector w . Itis clear from above equation that the preference of an objective can be changed by modifying thecorresponding weight. Mathematically, a solution obtained with equal weights to all objectives mayo�er least objective conict, but as a real-world situation demands a satisfying solution, prioritymust be induced in the formulation. In most cases, each objective is �rst optimized and all objectivefunction values are computed at each individual optimum solution. Thereafter, depending on theimportance of objectives a suitable weight vector is chosen and the single-objective problem givenin equation 2 is used to �nd the desired solution. The only advantage of using this technique is thatthe emphasis of one objective over the other can controlled and the obtained solution is a usuallya Pareto-optimum solution.3.2 Method of Distance FunctionsIn this method, the scalarization is achieved by using a demand-level vector �y which has to bespeci�ed by the decision maker. The single objective function derived from multiple objectives isas follows: Z = " NXi=1 jfi(x)� �yijr#1=r; 1 � r <1; (3)where x 2 X (the feasible region). Usually an Euclidean metric r = 2 is chosen, with �y as individualoptima of objectives (Hans 1988). It is important to note that the solution obtained by solvingabove equation depends on the chosen demand-level vector. Arbitrary selection of a demand levelmay be highly undesirable. This is because a wrong demand level will lead to a nonPareto-optimalsolution. As the solution is not guaranteed, the decision maker must have a thorough knowledgeof individual optima of each objective prior to the selection of demand level. In a way this methodworks as a goal programming technique imposing a goal vector, �y (demand level), on the givenobjectives. This method is similar to the method of objective weighting. The only di�erence is4



that in this method the goal for each objective function is required to be known whereas in theprevious method the relative importance of each objective is required.3.3 Min-Max FormulationThis method is di�erent in principle than the above two methods. This method attempts tominimize the relative deviations of the single objective functions from individual optimum. Thatis, it tries to minimize the objective conict. For a minimization problem, the correspondingmin-max problem is formulated as follows:minimize F(x) = max [Zj(x)]; j = 1; 2; : : : ;N; (4)where x 2 X (the feasible region) and Zj(x) is calculated for nonnegative target optimal value�fj > 0 as follows: Zj(x) = fj � �fj�fj ; j = 1; 2; : : : ;N: (5)This method can yield best possible compromise solution when objectives with equal priority are re-quired to be optimized. However, priority of each objective can be varied by introducing dimension-less weights in the formulation. This can also be modi�ed as a goal programming technique byintroducing a demand-level vector in the formulation.3.4 Drawbacks of Classical MethodsIn all above methods, multiple objectives are combined to form one objective by using some knowl-edge of the problem being solved. The optimization of the single objective may guarantee a Pareto-optimal solution but results in single point solution. In real world situations decision makers oftenneed di�erent alternatives in decision making. Moreover, if some of the objectives are noisy orhave discontinuous variable space these methods may not work e�ectively. Some of these methodsare also expensive as they require knowledge of individual optimum prior to vector optimization.The most profound drawback of these algorithms is their sensitivity towards weights or demand-levels. The decision maker must have a thorough knowledge of the priority of each objective beforeforming the single objective from a set of objectives. The solutions obtained largely depend on theunderlying weight-vector or demand-level. Thus, for di�erent situations, di�erent weight-vectorsneed to be used and the same problem needs to be solved a number of times. We illustrate thisaspect by considering a simple example.A simple two-objective problem F1 of one variable is considered to illustrate the concept ofmultiple Pareto-optimality. This problem was used for the same purpose by Vincent and Grantham5



Figure 1: Functions f11 and f12 are plottedversus x. Figure 2: The performance space of problemF1 is shown.(1981) and subsequently by Scha�er (1984). The problem has two objectives and is shown in �gure 1and �gure 2: Minimize f11 = x2 ,Minimize f12 = (x� 2)2 . (6)From the plot showing the performance space, it is clear that the Pareto-optimal solutions constituteall x values varying from 0 to 2. The solution x = 0 is optimum with respect to f11 but not sogood with respect to f12 and the solution x = 2 is optimum with respect to function f12 andnot so good with respect to f11. Any other point in between is a compromise or trade-o� to theabove two functions and is a Pareto-optimum point. But the solution x = 3, for example, is not aPareto-optimum point since this point is not better than the solution x = 2 with respect to eitherobjective.Among the possible Pareto-optimal points, the decision maker may want to prefer one pointover the other depending on the situation; but before taking any decision, he or she may want toknow the other possible Pareto-optimal solutions. The traditional methods cannot �nd multiplePareto-optimal solutions simultaneously. For example, with all the above methods and with equalpriority to both functions having a weight vector (0.5,0.5), and demand-levels as individual optima,the obtained solution is x� = 1. A weight vector (1; 0) results in a scalarized objective as f11. Thesolution obtained in this case is x� = 0, which is optimum in f11 but not so good in f12. Similarlythe weight vector (0; 1) produces the solution x� = 2, which is the minimum point of f12. Any pointin the range 0 � x � 2 may be a valid compromise and can be obtained with a particular choice6



of a weight vector. Thus, in order to obtain a particular solution, the decision maker has to knowthe corresponding weight vector, which is a di�cult problem by itself. Another problem of usingclassical methods is that oftentimes some objectives may involve uncertainities. If the objectivefunctions are not deterministic, the �xation of a weight vector or a demand-level may becomeeven more di�cult. This discussion suggests that the classical methods to handle multiobjectiveoptimization problems are inadequate and inconvenient to use. A more realistic method would beone that can �nd multiple Pareto-optimal solutions simultaneously so that decision makers maybe able to choose the most appropriate solution for the current situation. The knowledge of manyPareto-optimal solutions is also useful for later use, particularly when the current situation haschanged and a new solution is required to be implemented. Since genetic algorithms deal with apopulation of points instead of one point, multiple Pareto-optimal solutions can be captured inthe population in a single run. In the following section, we describe previous studies and currentimplementation of GAs to solve multiobjective optimization problems.4 GA ImplementationAs early as in 1967, Rosenberg suggested, but did not simulate, a genetic search to the simulation ofthe genetics and the chemistry of a population of single-celled organisms with multiple propertiesor objectives (Rosenberg 1967). The �rst practical algorithm, called Vector Evaluated GeneticAlgorithm (VEGA), was developed by Scha�er in 1984 (Scha�er 1984). One of the problemswith VEGA, as realized by Scha�er himself, is its bias towards some Pareto-optimal solutions.Later, Goldberg suggested a nondominated sorting procedure to overcome this weakness of VEGA(Goldberg 1989). Our algorithm, Nondominated Sorting Genetic Algorithm (NSGA), is developedbased on this idea. There exists at least two other studies, di�erent from our algorithm, basedon Goldberg's idea. In the rest of this section, we discuss the merits and demerits of VEGA andNSGA, and the di�erences between NSGA and the two other recent implementations.4.1 Scha�er's VEGAScha�er modi�ed the simple tripartite genetic algorithm by performing independent selection cyclesaccording to each objective. He modi�ed Grefenstette's GENESIS program (Scha�er 1984) bycreating a loop around the traditional selection procedure so that the selection method is repeatedfor each individual objective to �ll up a portion of the mating pool. Then the entire population isthoroughly shu�ed to apply crossover and mutation operators. This is performed to achieve the7



mating of individuals of di�erent subpopulation groups.The algorithm worked e�ciently for some generations but in some cases su�ered from its biastowards some individuals or regions. The independent selection of specialists resulted in speciationin the population. The outcome of this e�ect is the convergence of the entire population towardsthe individual optimum regions after a large number of generations. Being a decision maker, wemay not like to have any bias towards such middling individuals, rather we may want to �nd asmany nondominated points as possible. Scha�er tried to minimize this speciation by developingtwo heuristics | the nondominated selection heuristic (a wealth redistribution scheme), and themate selection heuristic (a cross breeding scheme) (Scha�er 1984). In the nondominated selectionheuristic, dominated individuals are penalized by subtracting a small �xed penalty from theirexpected number of copies during selection. Then the total penalty for dominated individualswas divided among the nondominated individuals and was added to their expected number ofcopies during selection. But this algorithm failed when the population has very few nondominatedindividuals, resulting in a large �tness value for those few nondominated points, eventually leadingto a high selection pressure. The mate selection heuristic was intended to promote the cross breedingof specialists from di�erent subgroups. This was implemented by selecting an individual, as a mateto a randomly selected individual, which has the maximum Euclidean distance in the performancespace from its mate. But it failed too to prevent the participation of poorer individuals in themate selection. This is because of random selection of the �rst mate and the possibility of a largeEuclidean distance between a champion and a mediocre. Scha�er concluded that the random mateselection is far superior than this heuristic.One method to minimize speciation is through a nondominated sorting procedure in conjunctionwith a sharing technique, as suggested by Goldberg (1989). Recently Fonesca and Fleming (1993)and Horn, Nafpliotis, and Goldberg (1994) implemented that suggestion, and successfully appliedto some problems. These methods are briey discussed later. But before that, we discuss ouralgorithm NSGA which is also developed based on Goldberg's suggestions.4.2 Nondominated SortingThe idea behind the nondominated sorting procedure is that a ranking selection method is used toemphasize good points and a niche method is used to maintain stable subpopulations of good points.Our algorithm is developed based on this concept. Since the algorithm is based on nondominatedsorting procedure, we call this algorithm as the Nondominated Sorting Genetic Algorithm, NSGA.8



4.2.1 Nondominated Sorting Genetic Algorithm (NSGA)NSGA varies from simple genetic algorithm only in the way the selection operator works. Thecrossover and mutation operators remain as usual. Before the selection is performed, the populationis ranked on the basis of an individual's nondomination described in section 2. The nondominatedindividuals present in the population are �rst identi�ed from the current population. Then, all theseindividuals are assumed to constitute the �rst nondominated front in the population and assigneda large dummy �tness value. The same �tness value is assigned to give an equal reproductivepotential to all these nondominated individuals. In order to maintain diversity in the population,these classi�ed individuals are then shared with their dummy �tness values. Sharing methods arediscussed elsewhere (Goldberg and Richardson 1987; Deb 1989). Sharing is achieved by performingselection operation using degraded �tness values which are obtained by dividing the original �tnessvalue of an individual by a quantity proportional to the number of individuals around it. Thiscauses multiple optimal points to co-exist in the population. After sharing, these nondominatedindividuals are ignored temporarily to process the rest of population in the same way to identifyindividuals for the second nondominated front. These new set of points are then assigned a newdummy �tness value which is kept smaller than the minimum shared dummy �tness of the previousfront. This process is continued until the entire population is classi�ed into several fronts.The population is then reproduced according to the dummy �tness values. A stochastic re-mainder proportionate selection is used in this study. Since individuals in the �rst front have themaximum �tness value, they always get more copies than the rest of population. This was intendedto search for nondominated regions or Pareto-optimal fronts. This results in quick convergence ofthe population towards nondominated regions and sharing helps to distribute it over this region.By emphasizing nondominated points, NSGA is actually processing the schemata representingPareto-optimal regions. The e�ciency of NSGA lies in the way multiple objectives are reduced toa dummy �tness function using nondominated sorting procedure. Another aspect of our methodis that practically any number of objectives can be solved. Both minimization and maximizationproblems can also be handled by this algorithm. The only place a change is required for above twocases is the way the nondominated points are identi�ed, as discussed in section 2.Figure 3 shows a ow chart of this algorithm. The algorithm is similar to a simple GA exceptthe classi�cation of nondominated fronts and the sharing operation. The sharing in each frontis achieved by calculating a sharing function value between two individuals in the same front as9



follows: Sh(dij) = 8<: 1� � dij�share�2 ; if dij < �share;0; otherwise: (7)In the above equation, the parameter dij is the phenotypic distance between two individuals iand j in the current front and �share is the maximum phenotypic distance allowed between anytwo individuals to become members of a niche. Some guidelines to set these parameters appearelsewhere (Deb, 1989). A parameter niche count is calculated by adding the above sharing functionvalues for all individuals in the current front. Finally, the shared �tness value of each individual iscalculated by dividing its dummy �tness value with its niche count.Fonesca and Fleming (1993) implemented Goldberg's suggestion in di�erent way. In this study,the multiobjective optimization GA (MOGA) uses a similar sorting procedure presented in thispaper. In MOGA, the whole population is checked and all nondominated individuals are assignedrank `1'. Other individuals are ranked by checking the nondominance of them with respect to therest of the population in the following way. For an individual point, the number of points thatstrictly dominate the point in the population is �rst found. Thereafter, the rank of that individualis assigned to be one more than that number. Therefore, at the end of this ranking procedure, therecould be a number of points having the same rank. The selection procedure then uses these ranksto select or delete blocks of points to form the mating pool. As discussed elsewhere (Goldberg andDeb, 1991), this type of blocked �tness assignment is likely to produce a large selection pressurewhich might cause premature convergence. MOGA also uses a niche-formation method to distributethe population over the Pareto-optimal region. But instead of performing sharing on the parametervalues, they have used sharing on objective function values. Even though this maintains diversity inthe objective function values, this may not maintains diversity in the parameter set, a matter whichis important for a decision maker. Moreover, MOGA may not be able to �nd multiple solutionsin problems where di�erent Pareto-optimal points correspond to the same objective function value(Srinivas, 1994). However, the ranking of the individuals according to their nondominance in thepopulation is an important aspect of this work.Horn, Nafpliotis, and Goldberg (1994) used a Pareto domination tournaments instead of non-dominated sorting and ranking selection method in solving multiobjective optimization problems.In this method, a comparison set comprising of a speci�c number (tdom) of individuals is picked atrandom from the population at the beginning of each selection process. Two random individualsare picked from the population for selecting a winner in a tournament selection according to thefollowing procedure. Both individuals are compared with the members of the comparison set for10
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domination with respect to the objective functions. If one of them is nondominated and the otheris dominated, then the nondominated point is selected. On the other hand, if both are eithernondominated or dominated, a niche count is found for each individual in the entire population.The niche count is calculated by simply counting the number of points in the population within acertain distance (�share) from an individual. The individual with least niche count is selected. Thee�ect of multiple objectives is taken into the nondominance calculation. Since this nondominanceis computed by comparing an individual with a randomly chosen population set of size tdom, thesuccess of this algorithm highly depends on the parameter tdom. If a proper size is not chosen,true nondominated (Pareto-optimal) points may not be found. If a small tdom is chosen, this mayresult in a few nondominated points in the population. Instead, if a large tdom is chosen, prematureconvergence may result. This aspect is also observed by the authors. They have presented someempirical results with various tdom values. Nevertheless, the concept of niche formation among thenondominated points is an important aspect of this work.NSGA implements both aspects of Goldberg's suggestion in a better way. The ranking clas-si�cation is performed according to the nondominance of the individuals in the population and adistribution of the nondominated points is maintained using a niche formation technique. Boththese aspects cause the distinct nondominated points to be found in the population.5 Simulation ResultsIn this section, we apply NSGA and VEGA on three test problems of which two were used byScha�er (1984) and other one was solved by Chankong and Haimes (1983). In all simulations, theGA parameters used in the experiments are as follows:Maximum generation : 500Population size : 100String length (binary code) : 32Probability of crossover : 1.0Probability of mutation : 0.0Mutation probability is kept zero in order to observe the e�ectiveness of NSGA alone. Theparameters are held constant across all runs. Unbiased initial population is generated randomlyspreading over entire variable space in consideration. To make the comparison fair, exactly the sameinitial population has been used in VEGA and NSGA. To con�rm and recheck the solutions, eachexperiment is repeated �ve times with di�erent initial populations and the average performance ispresented in each case. 12



5.1 Problem F1This problem is de�ned in section 3. Initial range for the design variable used in simulations is(�10; 10), but the nondominated region is only (0; 2). A comparison of population drift with NSGAand VEGA is shown in �gures 4 through 11. These �gures are drawn in performance space and�share parameter used is 0:1. As mentioned earlier, the initial population (at generation 0) isexactly same for both VEGA and NSGA. At generation 10, both methods show the convergence ofthe population towards the nondominated region. At generation 100, the di�erence in distributionis clear, and at generation 500, VEGA's population converged to only three sub-regions which areclose to individual optima. This �gure also shows the ability of NSGA in distributing the populationuniformly and maintaining it till generation 500.In order to study the distribution pattern better, the nondominated search space (0; 2) is dividedinto 10 equal sub-regions. Since the population size is 100, we can expect to have about 10individuals in each sub-region. Figures 12 and 13 show plots drawn with number of individualsin each sub-region and generation number. In case of VEGA (�gure 12), after some generations,some of the sub-regions do not have any representation at all. These sub-regions represent middlingindividuals. Observations based on a number of simulation results reveal that atmost three sub-regions are populated by VEGA. These are the points around individual optima. Whereas, in caseof NSGA (�gure 13), the number of individuals in each sub-region uctuated around a value 10,which is exactly the expected number of points in each sub-region. It is important to note thatnone of the sub-regions have zero individuals. Experiments are also carried out by considering alarge search space, �1000 � x � 1000, compared to the nondominated region, 0 � x � 2, so thatthe initial random population of size 100 has no Pareto-optimal points. Figure 14 shows that atgeneration 20 or so, the population is almost �lled with nondominated points. The �gure alsoshows that NSGA maintains a large proportion of the population at the nondominated region. Asimilar trend is also observed till generation 500. The distribution of points in the nondominationregion is similar to that in the earlier experiments.To quantify this distribution capability of population over nondominated regions, we calculatea performance measure, which is discussed in the following subsection.5.1.1 Performance measureIn order to investigate how well NSGA and VEGA have distributed individuals over the nondomi-nated region, we use the chi-square-like deviation form distribution measure used elsewhere (Deb,13



Figure 4: Population at generation 0 obtainedusing NSGA for problem F1 is shown. Figure 5: Population at generation 10 ob-tained using NSGA for problem F1 is shown.
Figure 6: Population at generation 100 ob-tained using NSGA for problem F1 is shown. Figure 7: Population at generation 500 ob-tained using NSGA for problem F1 is shown.14



Figure 8: Population at generation 0 obtainedusing VEGA for problem F1 is shown. Figure 9: Population at generation 10 ob-tained using VEGA for problem F1 is shown.
Figure 10: Population at generation 100 ob-tained using VEGA for problem F1 is shown. Figure 11: Population at generation 500 ob-tained using VEGA for problem F1 is shown.15



Figure 12: Number of individuals in each sub-region versus generation for F1 using VEGAis shown. Figure 13: Number of individuals in each sub-region versus generation for F1 using NSGAis shown.

Figure 14: The number of Pareto-optimal points at each generation is plotted for problem F1. Theinitial population did not have any Pareto-optimal points.16



1989). Performance measure, � =vuutq+1Xi=1�ni � �ni�i �2 , (8)where q is the number of desired optimal points and (q + 1)-th sub-region is the dominated region,ni is actual number of individuals serving i-th sub-region (niche) of the nondominated region, �niis expected number of individuals serving i-th sub-region of the nondominated region, and �2i isthe variance of individuals serving i-th sub-region of the nondominated region. Using probabilitytheory it was estimated elsewhere (Deb 1989) that�2i = �ni �1� �niP � , i = 1; 2; : : : ; q;where P is the population size. Since it is not desirable to have any individual in the dominatedregion ((q + 1)-th sub-region), �nq+1 = 0. That study also showed that �2q+1 = Pqi=1 �2i . If thedistribution of points is ideal with �ni number of points in i-th sub-region, the performance measure� = 0. Therefore, an algorithm with a good distributing capability is characterized by a lowdeviation measure.To analyze the distribution using this measure, the nondominated region is divided into thesame 10 equal sub-regions (each having a length 0:2 units in the variable space). Since a popu-lation of 100 individuals is used, the expected number of points per sub-region (�ni) is 10 with avariance �2i = 9. Therefore, the expected variance of dominated individuals �211 = 90. The actualnumber of individuals in each sub-region is counted and the deviation measure is calculated usingequation 8. Figures 15 and 16 show the deviation measure versus generation number for VEGAand NSGA applied on F1. Figure 15 shows the average performance of �ve runs with di�erentinitial populations while taking the same initial population for VEGA and NSGA. Initially bothmethods start with a high performance measure because the initial population is spread over theentire variable space with less number of individuals in the nondominated region. VEGA's increas-ing measure with generation indicates its poor distributing ability. The initial descent is due tothe convergence of population towards the nondominated region. At the same time, NSGA with�share = 0:1 (induced number of niches in nondominated region is 10), uctuated at a low devia-tion measure. This is continued until generation 500 which is long enough to justify the stabilityof the population distribution in 10 sub-regions. This shows the ability of NSGA in distributingpopulation over the nondominated region.In order to investigate how sensitive the NSGA results are on �share values, a number of �sharevalues are tried. Figure 16 shows performance of NSGA with di�erent �share values. To make17



Figure 15: Performance measure � for NSGA and VEGA on problem F1 is plotted versus generationnumber. An average of �ve runs is plotted.

Figure 16: E�ect of varying �share values is shown for problem F1.18



a fair comparison among these results, the initial population is taken to be the same in all cases.There is not much di�erence in performance with �share = 0:1 and �share = 0:2. This showsthat both the values resulted in successful distribution of population. But with a considerably highsharing parameter, �share = 1:0, NSGA's performance is poor. Similar observation can be madein the case of negligible �share or without sharing. It is important here to note that although thesetwo cases exhibit increasing deviation measure they are not as poor as that in VEGA. This is dueto the fact that equal reproductive potential (dummy �tness) is maintained for all nondominatedindividuals, thereby minimizing the bias against middling points.These results suggest that NSGA is e�ective in �nding multiple Pareto-optimal solutions andis better than VEGA in that respect. To consolidate our results better, we try using NSGA onanother multiobjective optimization problem used by Scha�er.5.2 Problem F2The second problem is given in the following (Scha�er, 1984):Minimize f21 = �x if x � 1= �2 + x if 1 < x � 3= 4� x if 3 < x � 4= �4 + x if x > 4Minimize f22 = (x� 5)2 (9)Functions f21 and f22 are shown in �gures 17 and 18. The specialty of this problem is its disjointednondominated regions. These can be seen in �gure 18 as regions 1 � x � 2 and 4 � x � 5. Herethe net length of this region is 2 units in the variable space.The population evolution is shown in �gures 19 through 26. Both algorithms successfullyidenti�ed disjointed nondominated regions. But the di�erence in distribution is clearly visibleat 100-th and 500-th generations. This result reiterates the ability of NSGA in distributing thepopulation. The nondominated region is divided into 10 sub-regions to analyze the distribution ofpopulation. Figures 27 and 28 show the number of individuals in each sub-region versus generation.In this problem also VEGA failed to sustain some of the sub-regions, whereas NSGA successfullydistributed individuals over both disjointed Pareto-optimal fronts. The deviation measure for thesealgorithms was similar in pattern to that of problem F1.19



Figure 17: Problem F2 is plotted betweenf21,f22 and x. Figure 18: Problem F2 is plotted between f21and f22.5.3 Problem F3This problem is used to test NSGA's ability in optimizing multiparameter, multiobjective problemsas well as handling constrained search spaces:Minimize f31 = (x1 � 2)2 + (x2 � 1)2 + 2; andMinimize f32 = 9x1 � (x2 � 1)2,Subject to x21 + x22 � 225 � 0,x1 � 3x2 + 10 � 0. (10)The unconstrained version of the above problem was solved by Chankong and Haimes (1983)using a goal vector and weights for objectives. But here we make the problem more di�cult byconstraining the search space.The �rst objective function, f31, is a smooth unimodal function which has a minimum at pointx�31 = (2; 1)T . The second objective function, f32, decreases monotonically with decreasing x1 orwith increasing absolute value of x2. A contour plot of these two functions is shown in �gure 29.The contours of the �rst function are concentric circles with the center at (2; 1)T . This functionvalue increases with increasing diameter of the circle. The second function (parallel parabolas)constantly decreases along the line x2 = 1 towards decreasing x1. Careful observation reveals thatthe tangential points of circles and parabolas dominate all other points. This is because any suchtangential point is better in the second objective than all other points belonging to the same circle(same f31 value). These tangential points are Pareto-optimal points. Therefore, Pareto-optimalpoints may be found by equating the slopes (�rst di�erentials) of contour curves at common points20



Figure 19: Population at generation 0 ob-tained using NSGA for problem F2 is shown. Figure 20: Population at generation 10 ob-tained using NSGA for problem F2 is shown.
Figure 21: Population at generation 100 ob-tained using NSGA for problem F2 is shown. Figure 22: Population at generation 500 ob-tained using NSGA for problem F2 is shown.21



Figure 23: Population at generation 0 ob-tained using VEGA for problem F2 is shown. Figure 24: Population at generation 10 ob-tained using VEGA for problem F2 is shown.
Figure 25: Population at generation 100 ob-tained using VEGA for problem F2 is shown. Figure 26: Population at generation 500 ob-tained using VEGA for problem F2 is shown.22



Figure 27: Number of individuals in each sub-region versus generation for F2 using VEGAis shown. Figure 28: Number of individuals in each sub-region versus generation for F2 using NSGAis shown.: �dx2dx1�from f31 = �dx2dx1�from f32or, � (x1 � 2)(x2 � 1) = 92(x2 � 1) :Assuming x2 6= 1, and solving yield, x1 = �2:5.Since the second objective, f32, is monotonically decreasing, the unconstrained Pareto-optimalregion, represented by the straight line x1 = �2:5, is unbounded. Because of the constraints,the above unconstrained Pareto-optimal region is now shortened. The constraints make the upperhalf of the circular region feasible, thereby making the Pareto-optimal region to lie in the regionx1 = �2:5, 2:5 � x2 � 14:79, as shown in �gure 29.NSGA is applied to this problem considering the variable space �20 � x1; x2 � 20. A stringlength of 30 (15-bit string for each variable) is considered. The other parameters such as populationsize, crossover probability, etc. are kept same as in the previous experiments. This problem istransformed into an unconstrained optimization problem using an exterior penalty function (Rao,1991). Both the objectives, f31 and f32, were penalized if any point lies in the infeasible region. Thepopulation movement, in case of NSGA with �share = 9:0 (for inducing 10 niches in the variablespace, calculated using suggestions given elsewhere (Deb, 1989)), is shown in �gures 30 through 33.It can be observed that at generation zero less than 20% of the population was feasible and23



Figure 29: Contour map of problem F3.by generation 10 the entire population converges to the feasible region. At generation 20, thepopulation starts to move towards the feasible Pareto-optimal line x1 = �2:5. Later on, sharinghelps to distribute these nondominated points over the entire Pareto-optimal region. This can beobserved at generation 100. Our experiments reveal that this distribution is maintained even athigher generations, observed up to 500.Figure 34 shows the population distribution at generation 100 obtained using VEGA for prob-lem F3. The speciation in the population can be seen in this �gure. This experiment has beencarried out with the same initial population (at generation 0) as in case of NSGA (�gure 30).The population movement is similar to that of NSGA during the initial generations upto gener-ation number 20. At generation 100, as shown in �gure, the population drifted towards threesub-regions. Our experiments, observed up to generation 500, revealed that the entire populationconverged towards two sub-regions which are nearer to the individual optima of the objectives.This experiment reiterates the distributive ability of NSGA in handling complicated multiobjectiveproblems.6 ExtensionsA number of extensions of this study can be pursued:1. Even though two objectives are used in problems presented in this paper, more objectives canbe handled with NSGA. Moreover, the objectives need not be all of minimization type, some24



Figure 30: Population at generation 0 obtainedusing NSGA for problem F3 is shown. Figure 31: Population at generation 10 ob-tained using NSGA for problem F3 is shown.

Figure 32: Population at generation 20 ob-tained using NSGA for problem F3 is shown. Figure 33: Population at generation 100 ob-tained using NSGA for problem F3 is shown.25



Figure 34: Population at generation 100 obtained using VEGA for problem F3 is shown.of them could be of mixed type. In both situations, the de�nition of nondominated pointswill change, but the NSGA algorithm can still be used.2. The other two studies (Fonesca and Fleming, 1993; Horn, Nafpliotis, and Goldberg 1994)stress the importance of su�cient population size and suitable �share value to yield properdistribution of population. Although the problems presented in this paper used a populationsize of 100, experiments with a smaller population size of 50 on problems F1 and F2 have alsoshown similar performance. The population size requirement may be more for more numberof objectives, but how would this size requirement increase is a matter of interesting futureresearch.3. It has been found elsewhere (Goldberg and Deb, 1991) that tournament selection puts a morecontrolled selection pressure and has a faster convergence characteristic than the proportion-ate selection method used in this study. The niching technique suggested by Oei, Goldbergand Chang (1992) can be tried with tournament selection to replace sharing and proportionateselection in NSGA for more controlled and hopefully faster solutions.7 ConclusionsEven though there exists a number of classical multiobjective optimization techniques, they requiresome a priori problem information. Since genetic algorithms use a population of points, they maybe able to �nd multiple Pareto-optimal solutions simultaneously. Scha�er's Vector Evaluated Ge-26
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