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Abstract. Certain nice trinomials have the projective linear groups as their
Galois groups. This was proved using considerable group theory. Here is an
easier proof based on the observation that the said trinomials are what may
be called projective polynomials. It extends the results to a local situation.

1. Introduction

Let K be a field of characteristic p > 0. Let q > 1 be a power of p and let m > 1
be an integer. Let A 6= 0 6= B be elements in K and let

F (Y ) = Y 〈m−1〉 +AY +B and Φ(Y ) = Y qm−1 + AY q−1 +B

where, for every integer i ≥ −1, we are using the abbreviation 〈i〉 = 1 + q + q2 +
· · · + qi with the conventions 〈0〉 = 1 and 〈−1〉 = 0. In Propositions (5.1), (5.2)
and (5.3) of Section 5, we shall respectively prove detailed versions of the following
Claims (1.1), (1.2) and (1.3):

Claim (1.1). If K = kp(X) for an algebraically closed field kp, and (A,B) =
(X, 1), then Gal(F,K) = PSL(m, q) and Gal(Φ, K) = SL(m, q).

Claim (1.2). If K = kp(X) for a field kp with GF(q) ⊂ kp, and (A,B) = (1, X),
then Gal(F,K) = PGL(m, q) and Gal(Φ, K) = GL(m, q).

Claim (1.3). If K is the quotient field of a regular local domain R of dimension
d ≥ 2 with GF(q) ⊂ R, and (A,B) = (Z,X) where (X,Z,Z3, . . . , Zd) is a basis of
the maximal ideal of R, then Gal(F,K) = PGL(m, q) and Gal(Φ, K) = GL(m, q).

The first two Claims (1.1) and (1.2) were originally proved in [2] and [3]. The
m = 2 case of (1.1) was also proved by Carlitz [11] and Serre (Appendix of [2]).
Here we give a more direct proof of (1.1) and (1.2) which yields a proof of (1.3).
Briefly, by the shape of F we see that it is a “projective polynomial” and hence,
assuming GF(q) ⊂ K, its Galois group Gal(F,K) may be regarded as a subgroup
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of PGL(m, q). Next, by “throwing away a root” of F , we get the 2-transitivity
of Gal(F,K). In case of m > 2, in [3], we then invoke Cameron-Kantor Theorem
I of [10] which characterizes 2-transitive collineation groups. The said Cameron-
Kantor Theorem I says that, for m > 2, a 2-transitive subgroup of PGL(m, q)
either contains PSL(m, q) or it is the alternating group A7(15) inside PSL(4, 2).
In our original proof of the m = 2 case of (1.1) given in [2], instead of Cameron-
Kantor Theorem I, we invoked the Zassenhaus-Feit-Suzuki Theorem (see page 83 of
[2]) which characterizes 2-transitive permutation groups in which only the identity
fixes 3 points. In Section 4, we shall put in proper perspective the calculation of
the first two “twisted derivatives” of F obtained by successively “throwing away”
two roots of F , which was originally given in [2] and [3]. This yields an estimate
for the order of Gal(F,K), and as we shall show in Section 5, coupled with the
above observation that Gal(F,K) may be regarded as a subgroup of PGL(m, q),
finishes off the proof of the m = 2 case of (1.1) to (1.3) without invoking any
further group theory. In Section 3, we recall Proposition (3.2) of [3] dealing with
the m > 2 case of (1.1) and (1.2). In the proof of this Proposition given in [3], the
Sylow Subgroup Lemma (2.2) [3] was used for showing that A7(15) does not occur
while applying Cameron-Kantor Theorem I to our situation. The refinements of
this Lemma, needed for extending this to (1.3), are discussed in items (3.4) to (3.8)
of Section 3.

To introduce the notion of a projective polynomial, let f(Y ), φ(Y ) and φ̂(Y )
be monic polynomials in Y with coefficients in a field K of characteristic p. We
call f(Y ) a projective q-polynomial if it is of the form f(Y ) = Y 〈m−1〉 +∑m

i=1 biY
〈m−1−i〉 with bi ∈ K and integer m > 0; note that then: f(Y ) is separable

(i.e., its Y -discriminant is nonzero) ⇔ bm 6= 0. Likewise we call φ(Y ) a subvecto-

rial q-polynomial if it is of the form φ(Y ) = Y qm−1+
∑m

i=1 biY
qm−i−1 with bi ∈ K

and integer m > 0; again note that then: φ(Y ) is separable ⇔ bm 6= 0. Now clearly
f(Y ) 7→ φ(Y ) = f(Y q−1) gives a bijection of projectives to subvectorials. Finally we

call φ̂(Y ) a vectorial q-polynomial if it is of the form φ̂(Y ) = Y qm+
∑m

i=1 biY
qm−i

with bi ∈ K and integer m > 0; note that then: φ̂(Y ) is separable ⇔ bm 6= 0. Ob-

viously φ(Y ) 7→ φ̂(Y ) = Y φ(Y ) gives a bijection of subvectorials to vectorials.
Note that the above polynomials F (Y ) and Φ(Y ) are respectively projective and
subvectorial q-polynomials.

In (2.5) of [3] I noted the well-known Fact (1.F1) that if φ(Y ) is separable

subvectorial and GF(q) is a subfield of K then, upon letting φ̂(Y ) = Y φ(Y ), in

a natural manner we have Gal(φ,K) = Gal(φ̂,K) < GL(m, q) where < denotes
subgroup, and where in case of Gal(φ,K) we regard GL(m, q) as acting on the

nonzero vectors of GF(q)m whereas in case of Gal(φ̂,K) we regard GL(m, q) as
acting on the entire vector space GF(q)m. As a straightforward consequence of this,
in (2.5) of [3] I deduced the Fact (1.F2) that if f(Y ) is separable projective and
GF(q) is a subfield of K then in a natural manner we have Gal(f,K) < PGL(m, q)
in such a way that Gal(f,K) is the image of Gal(φ,K) with φ(Y ) = f(Y q−1) under
the canonical map of GL(m, q) onto PGL(m, q). In (2.3) of [3] I also noted the easy
to prove Fact (1.F3) that if f(Y ) is separable projective and GF(q) is a subfield
of K then: SL(m, q) < Gal(φ,K) ⇔ PSL(m, q) < Gal(f,K) with φ(Y ) = f(Y q−1).
Finally in (2.5iii) of [3] I easily deduced the Fact (1.F4) that if f(Y ) is separable
projective then Λq−1 = (−1)〈m−1〉f(0) for some element Λ in the splitting field of
f(Y q−1) over K.
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2. Coverings

In my 1957 paper [1] I noted that the trinomial equation F (Y ) = 0, with (A,B) =
(X, 1) and K = k(X) where k is an algebraically closed field of characteristic p > 0,
gives an unramified covering of the affine line Lk over k, and suggested that the
Galois group Gal(F, k(X)) be computed. My interest in Galois theory was revived
when, in September 1988, Serre wrote me a letter saying that he could prove that
if (A,B) = (X, 1) and m = 2 then Gal(F, k(X)) = PSL(2, q), i.e., he settled Claim
(1.1) for m = 2. He called his proof a descending proof as opposed to the ascending
proof which I later found. Both of these appeared in my 1992 paper [2]; while
this paper was in press, Serre discovered that his proof was similar to the proof
which Carlitz [11] had given in 1956. Now the Carlitz-Serre proof is based on
“modular” considerations, whereas my proof was based on the Zassenhaus-Feit-
Suzuki Theorem. Then, as said above, by replacing the Zassenhaus-Feit-Suzuki
Theorem by Cameron-Kantor Theorem I, in my 1994 paper [3] I settled Claims
(1.1) and (1.2). Note that the trinomial equation Φ(Y ) = 0, with (A,B) = (1, X)
and K = k(X), also gives an unramified coverings of the affine line Lk. Also
note that the trinomial equations F (Y ) = 0 and Φ(Y ) = 0, with (A,B) = (1, X)
and K = k(X), give unramified coverings of the (once) punctured affine line Lk,1
(punctured at X = 0). Thus in (1.1) we are dealing with unramified coverings of
Lk, and in (1.2) we are dealing with unramified coverings of Lk,1.

Actually, in the 1957 paper [1] I wrote down several explicit families of equations
giving unramified coverings of the affine line and higher dimensional affine spaces.
Many of these are defined over the prime field GF(p), and indeed have (0, 1,−1) as
the only coefficients. In [3] to [8] I have shown that their Galois groups encompass
all the alternating, symmetric, and Mathieu groups as well as all the symplectic,
odd-dimensional unitary, and even-dimensional elliptic-type orthogonal groups over
finite fields.

As said before, the extra dividend of the more direct proof of Claims (1.1) and
(1.2) given in this paper is that it yields a proof of Claim (1.3). In the forthcoming
paper [9] I shall show how (1.3) leads to some progress in the calculation of local fun-
damental groups. In brief, for d ≥ 2, let P be the origin of the d-dimensional affine
space Ldk over k with coordinates (X,Z,Z3, . . . , Zd), let R = k[[X,Z,Z3, . . . , Zd]] =
the completion of the local ring of P on Ldk, and let K = k((X,Z,Z3, . . . , Zd)) =
the quotient field of R. Now the equation F (Y ) = 0 with (A,B) = (Z,X) gives a
covering of Ldk whose branch locus is the hyperplane M : X = 0, and by (1.3) we
get

Gal(F,K) = GL(m, q).

Thus GL(m, q) belongs to the local algebraic fundamental group of Ldk −M at P .

3. Core and inertia

Recall that K is a field of characteristic p > 0, and q > 1 is a power of p, and
m > 1 is an integer. Let b1, . . . , bm be elements in K with bm 6= 0, and consider
the projective polynomial

f = f(Y ) = Y (qm−1)/(q−1) +

m∑
i=1

biY
(qm−i−1)/(q−1)
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and the corresponding subvectorial polynomial

φ = φ(Y ) = Y qm−1 +

m∑
i=1

biY
qm−i−1.

Concerning the Galois groups of these polynomials, in Proposition (3.1) of [3] we
proved the following:

Proposition (3.1). For some Λ in the splitting field of φ over K we have Λq−1 =
(−1)νbm where ν = 1 + q+ · · ·+ qm−1. Moreover, if GF(q) ⊂ K then, in a natural
manner, we may regard Gal(φ,K) < GL(m, q) and Gal(f,K) < PGL(m, q) in such
a manner that θ(Gal(φ,K)) = Gal(f,K) where θ : GL(m, q) → PGL(m, q) is the
canonical epimorphism.

As a consequence of the above Proposition, together with Lemmas (2.1), (2.2)
and (2.3) of [3], in Proposition (3.2) of [3] we proved the following:

Proposition (3.2). Recall that k is an algebraically closed field of characteristic p,
and let k0 be a subfield of k such that k is an algebraic closure of k0 and GF(q) ⊂ k0.
Assume that K = k0(X). Let 1 ≤ µ < m be an integer such that GCD(ν, τ) = 1
where ν = 1+q+ · · ·+qm−1 and τ = 1+q+ · · ·+qµ−1. Assume that bm−µ = −aXρ

and bm = bXσ where a and b are nonzero elements in k0, and ρ and σ are integers
such that ρ 6= σ(ν − τ)/ν (for instance ρ 6= 0 = σ or ρ = 0 6= σ). Also assume that
b1 = · · · = bm−µ−1 = bm−µ+1 = · · · = bm−1 = 0. Then we have the following:

(3.2.1) We have PSL(m, q) < Gal(f, k(X)) < Gal(f, k0(X)) < PGL(m, q) and
we have [Gal(f, k(X)) : PSL(m, q)] ≡ 0 mod GCD(m, q − 1)/GCD(σ,m, q − 1).
Also, if σ ∈ νZ then Gal(f, k(X)) = PSL(m, q). Likewise, if GCD(σ,m, q − 1) = 1
then Gal(f, k0(X)) = PGL(m, q).

(3.2.2) The polynomial f is irreducible in k(X)[Y ], and X = 0 and X = ∞ are
the only valuations of k(X)/k which are possibly ramified in the splitting field of
f over k(X). Moreover, if ρ > σ(ν − τ)/ν and the valuation X = 0 of k(X)/k is
ramified in the splitting field of f over k(X) then it is tamely ramified. Finally, if
ρ > σ(ν − τ)/ν and σ ∈ νZ then X = ∞ is the only valuation of k(X)/k which is
ramified in the splitting field of f over k(X).

(3.2.3) We have SL(m, q) < Gal(φ, k(X)) < Gal(φ, k0(X)) < GL(m, q) and
we have [Gal(φ, k(X)) : SL(m, q)] ≡ 0 mod (q − 1)/GCD(σ, q − 1). Moreover, if
σ ∈ (q − 1)νZ then Gal(φ, k(X)) = SL(m, q). Likewise, if GCD(σ, q − 1) = 1 then
Gal(φ, k0(X)) = GL(m, q).

(3.2.4) The polynomial φ is irreducible in k(X)[Y ], and X = 0 and X = ∞ are
the only valuations of k(X)/k which are possibly ramified in the splitting field of
φ over k(X). Moreover, if ρ > σ(ν − τ)/ν and the valuation X = 0 of k(X)/k is
ramified in the splitting field of φ over k(X) then it is tamely ramified. Finally, if
ρ > σ(ν − τ)/ν and σ ∈ (q − 1)νZ then X = ∞ is the only valuation of k(X)/k
which is ramified in the splitting field of φ over k(X).

Remark (3.4). In the proof of Proposition (3.2) on page 19 of [3], in line 15, the
reference to Proposition 3.1 should be changed to a reference to Lemma 2.3. Like-
wise, in the proof of Lemma 2.2 on page 12 of [3], the phrase “some integer e we
have σe(l) = j” should be changed to “some power σ′ of σ we have σ′(l) = j”, and
in the remaining three sentences everywhere change σ to σ′. Now replacing (2, 7)
by (u, v) and replacing the alternating group An by the symmetric group Sn in the
said proof we get:



PROJECTIVE POLYNOMIALS 1647

Lemma (3.5). If u 6= v are primes and H < Sv with |H | ≡ 0 mod v then H
cannot have a nonidentity normal subgroup whose order is a power of u.

Recall that for a finite group H and prime u, the u-core Ou(H) of H is defined
by putting Ou(H) = the intersection of all u-Sylow subgroups of H = the (unique)
largest normal subgroup of H whose order is a power of u = the subgroup of H
generated by all of its normal subgroups whose orders are powers of u. Clearly
Ou(H) is a characteristic subgroup of H , and hence: H ′ / H ⇒ Ou(H ′) / H and
Ou(H

′) /Ou(H), where / denotes normal subgroup. Also clearly: Ou(H) = 1 ⇔ H
has no nonidentity normal subgroup whose order is a power of u. Therefore by
(3.5) we get:

Lemma (3.6). If u 6= v are primes and H ′ / H < Sv with |H | ≡ 0 mod v then H ′

cannot have a nonidentity normal subgroup whose order is a power of u.

From the above proof of (3.6) we also get the following variation of it:

Lemma (3.7). If w > 0 is an integer which is nondivisible by a prime u and H is
a transitive subgroup of Sw, then Ou(H) = 1 and more generally Ou(H

′) = 1 for
every H ′ / H.

Remark (3.8). The fact that the inertia group H ′ of a valuation (of any rank) with
residue characteristic u > 0 has a unique (and hence normal) u-Sylow subgroup can
be restated by saying that Ou(H

′) is a (and hence the only) u-Sylow subgroup of
H ′; since H ′ / H where H is the splitting group of the said valuation, we also get
Ou(H

′) / H .

4. Calculations

Recall that K is a field of characteristic p > 0, and 〈m−1〉 = 1+q+q2+· · ·+qm−1

where q > 1 is a power of p and m > 1 is an integer. Also recall that A 6= 0 6= B
are elements in K and

F (Y ) = Y 〈m−1〉 +AY +B and Φ(Y ) = Y qm−1 +AY q−1 +B.(4.1)

Let V be a root of F (Y ) in an overfield of K. Let F ′(Y ) be the twisted derivative
of F (Y ) at V , i.e.,

F ′(Y ) = Y −1[F (Y + V )− F (V )].(4.2)

Then F ′(Y ) = Y −1[(Y + V )〈m−1〉 − V 〈m−1〉] +A and hence

F ′(Y ) = Y q〈m−2〉 + V Y q〈m−2〉−1 +
(∑∗

V iY q〈m−2〉−i
)

+ (V q〈m−2〉 +A)(4.3)

where
∑∗

denotes summation over integers i which are in the range 1 < i < q〈m−2〉
and whose q-adic expansion contains only 0’s and 1’s, and where we note that if
m = 2 then the summation

∑∗
is empty and hence its value is 0. Since F (V ) = 0

we get

V 〈m−1〉 +AV +B = 0(4.4)

and hence

V F ′(Y ) = V Y q〈m−2〉 + V 2Y q〈m−2〉−1 +
(∑∗

V i+1Y q〈m−2〉−i
)
−B.(4.5)

Let E(Y ) be obtained by reciprocating F ′(Y ). Then

E(Y ) = −B−1V Y q〈m−2〉F ′(Y −1)(4.6)
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and hence

E(Y ) = Y q〈m−2〉 −
(∑∗

B−1V i+1Y i
)
−B−1V 2Y −B−1V.(4.7)

Let W be a root of E(Y ) in an overfield of K(V ). Let E′(Y ) be the twisted
derivative of E(Y ) at W , i.e.,

E′(Y ) = Y −1[E(Y +W )− E(W )].(4.8)

Let K∗ be the splitting field of E′(Y ) over K(V,W ). Now clearly: Description
(4.9) K∗ is the splitting field of F (Y ) over K, and it is also the common splitting
field of F ′(Y ) and E(Y ) over K(V ); moreover the Galois groups of F ′(Y ) and E(Y )
over K(V ) are isomorphic as permutation groups. Hence in particular

F ′(Y ) is irreducible over K(V ) ⇔ E(Y ) is irreducible over K(V ).(4.10)

Also clearly: Description (4.11) if F (Y ) and E(Y ) are irreducible over K and
K(V ) respectively then Gal(F,K) is a 2-transitive subgroup of the symmetric group
S〈m−1〉 and its 2-point stabilizer is Gal(E′, K(V,W )), and for their orders we have
|Gal(F,K)| = (q + 1)q|Gal(E′, K(V,W ))|. By (4.7) and (4.8) we see that

if m = 2 then E′(Y ) = Y q−1 −B−1V 2.(4.12)

5. Consequences

As consequences of the calculations of Section 4, we shall now prove the following
three Propositions.

Proposition (5.1). Assume that K = kp(X) for a subfield kp, and (A,B) =
(X, 1). Then we have the following:

(5.1.1) F (Y ) and E(Y ) are irreducible over K and K(V ) respectively, and we
have K(V ) = kp(V ).

(5.1.2) The V -adic valuation J of kp(V )/kp has a unique extension I to K(V,W ),
and for it we have I(V ) = q〈m − 2〉, and upon letting H to be the inertia group
of an extension of J to K∗ we have H < Gal(E,K(V )) < Gal(F,K) with |H | ≡
0 mod q〈m− 2〉 and H has a unique normal p-Sylow subgroup.

(5.1.3) If m = 2 and GF(q) ⊂ kp then Gal(F,K) = PSL(2, q).
(5.1.4) If m > 1 and kp is algebraically closed then Gal(F,K) = PSL(m, q) and

Gal(Φ, K) = SL(m, q).

Proposition (5.2). Assume that K = kp(X) for a subfield kp, and (A,B) =
(1, X). Then we have the following:

(5.2.1) F (Y ) and E(Y ) are irreducible over K and K(V ) respectively, and we
have K(V ) = kp(V ).

(5.2.2) If m = 2 then E′(Y ) is irreducible over K(V,W ).
(5.2.3) If m = 2 then the V -adic valuation J of kp(V )/kp has a unique extension

I to K(V,W ), and for it we have I(V ) = q.
(5.2.4) If m > 1 and if GF(q) ⊂ kp then Gal(F,K)=PGL(m, q) and Gal(Φ, K)=

GL(m, q).

Proposition (5.3). Assume that K is the quotient field of a regular local domain
R of dimension d > 1, and (A,B) = (Z,X) where (X,Z,Z3, . . . , Zd) is a basis of
the maximal ideal M(R) of R. Then we have the following:

(5.3.1) F (Y ) and E(Y ) are irreducible over K and K(V ) respectively; R[V ] is a
d-dimensional regular local domain with M(R[V ]) = (V, Z, Z3, . . . , Zd)R[V ].
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(5.3.2) The real discrete valuation J of K(V ), whose valuation ring RJ is the
localization of R[V ] at the prime ideal V R[V ], has a unique extension I to K(V,W ),
and for it we have I(V ) = 1, and upon letting H ′ and H to be the inertia and
splitting groups of an extension of J to K∗, we have H ′ / H < Gal(E,K(V )) <
Gal(F,K), with |H | ≡ 0 mod q〈m− 2〉 and |H ′| ≡ 0 mod q, and H ′ has a unique
normal p-Sylow subgroup.

(5.3.3) If m = 2 then E′(Y ) is irreducible over K(V,W ).
(5.3.4) If m > 1 and GF(q) ⊂ R then Gal(F,K) = PGL(m, q) and Gal(Φ, K) =

GL(m, q).

To prove (5.1), first assume that K = kp(X) for a subfield kp, and (A,B) =
(X, 1). Then F (Y ) is linear in X , and hence by Gauss’s Lemma F (Y ) is irreducible
over K, and we clearly have K(V ) = kp(V ). Let J be the V -adic valuation of
kp(V )/kp, i.e., the unique real discrete valuation of kp(V )/kp with J(V ) = 1. Since
B = 1, in view of (4.7), by Eisenstein’s Criterion E(Y ) is irreducible over K(V )
and J has a unique extension I to K(V,W ), and for it we have I(V ) = q〈m − 2〉,
and upon letting H be the inertia group of an extension of J to K∗ we have
H < Gal(E,K(V )) < Gal(F,K) with |H | ≡ 0 mod q〈m− 2〉 and H has a unique
normal p-Sylow subgroup. If m = 2 then by (4.12) we get E′(Y ) = Y q−1 − V 2,
and clearly GCD(q − 1, I(V 2)) = 1 or 2 according as p is even or odd, and hence
if also GF(q) ⊂ kp then Gal(E′(Y ), K(V,W )) is a cyclic group of order (q − 1) or
(q−1)/2 according as p is even or odd, and therefore by (4.11) we get |Gal(F,K)| =
|PSL(2, q)|. Obviously PSL(2, q) is the only subgroup of PGL(2, q) whose order
coincides with the order of PSL(2, q). Hence in view of Fact (1.F2) we see that if
m = 2 and GF(q) ⊂ kp then Gal(F,K) = PSL(2, q). For the rest of (5.1.4) see
Proposition (3.2).

To prove (5.2), next assume that K = kp(X) for a subfield kp, and (A,B) =
(1, X). Then F (Y ) is linear in X , and hence by Gauss’s Lemma F (Y ) is irre-
ducible over K, and we clearly have K(V ) = kp(V ). Let J be the V -adic valuation
of kp(V ). Let E∗(Y ) = E(Y − 1). If m = 2 then by (4.4) and (4.7) we get
E∗(Y ) = (Y − 1)q + (V 1+q + V )−1V 2(Y − 1) + (V 1+q + V )−1V = Y q +A∗Y +B∗

where A∗ = −B−1V 2 = (V q + 1)−1V and B∗ = −1− (V q + 1)−1V + (V q + 1)−1 =
−(V q + 1)−1(V q−1 + 1)V , and hence J(A∗) = J(B∗) = 1, and so by Eisen-
stein’s Criterion E∗(Y ) (and therefore E(Y )) is irreducible over K(V ) and J has a
unique extension I to K(V,W ), and for it we have I(A∗) = I(B∗) = I(V ) = q,
and by (4.12) we get E′(Y ) = Y q−1 − B−1V 2 = Y q−1 + A∗, and clearly
GCD(q − 1, I(A∗)) = 1, and hence E′(Y ) is irreducible over K(V,W ), and if also
GF(q) ⊂ kp then Gal(E′, K(V,W )) is a cyclic group of order (q − 1) and so by
(4.11) we get |Gal(F,K)| = |PGL(2, q)|. Consequently in view of Fact (1.F2) we
see that if m = 2 and GF(q) ⊂ kp then Gal(F,K) = PGL(2, q). For a proof
of the irreducibility of F ′(Y ) (and hence of E(Y )) over K(V ) = kp(V ) which is

valid for all m > 1, note that F ′(V Y ) = Y −1[(Y + 1)〈m−1〉 − 1]V q〈m−2〉 + 1 where
Y −1[(Y + 1)〈m−1〉 − 1] is a product of q〈m − 2〉 > 0 pairwise distinct monic linear
factors in kp[Y ], where kp is the algebraic closure of kp, and hence F ′(V Y ) is irre-
ducible in kp(Y )[V ] and therefore by Gauss’s Lemma it is irreducible in kp(V )[Y ],
and hence F ′(Y ) is irreducible in kp(V )[Y ]. For the rest of (5.2.4) see Proposition
(3.2).

To prove (5.3), finally assume that K is the quotient field of a regular local
domain R of dimension d > 1, and (A,B) = (Z,X) where (X,Z,Z3, . . . , Zd) is a
basis of the maximal ideal M(R) of R. Now by a Generalized Eisenstein Criterion
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we see that F (Y ) is irreducible over K, and R[V ] is a d-dimensional regular local
domain with M(R[V ]) = (V, Z, Z3, . . . , Zd)R[V ]; also R[V ] is the integral closure
of R in K(V ), and K(V ) is the quotient field of R[V ]. Let J be the real discrete
valuation of K(V ) whose valuation ring RJ is the localization of R[V ] at the prime
ideal V R[V ]. Let t : RJ → K = RJ/M(RJ) be the residue class map. Then K is
the quotient field of the (d−1)-dimensional regular local domain R = t(R[V ]) with
M(R) = (t(Z), t(Z3), . . . , t(Zd))R. By (4.3) we see that F ′(Y ) ∈ S[Y ] and upon

letting F
′
(Y ) ∈ K[Y ] be obtained by applying t to the coefficients of F ′(Y ) we get

F
′
(Y ) = Y q〈m−2〉 + t(Z). Now t(Z) ∈ M(R) \M(R)2, and hence by Eisenstein’s

Criterion F
′
(Y ) is irreducible over K, and J has a unique extension I to K(V,W ),

and for it we have I(V ) = 1. Clearly the residue degree of I over J is q〈m − 2〉
out of which q is the purely inseparable part, and hence upon letting H ′ and H
be the inertia and splitting groups of an extension of J to K∗ we have H ′ / H <
Gal(E,K(V )) < Gal(F,K), with |H | ≡ 0 mod q〈m− 2〉 and |H ′| ≡ 0 mod q, and
H ′ has a unique normal p-Sylow subgroup. By (4.4) we get J(B−1V ) = 0 and
hence I(B−1V 2) = 1. Therefore by (4.12) we conclude that if m = 2 then E′(Y ) is
irreducible over K(V,W ), and if also GF(q) ⊂ R then Gal(E′, K(V,W )) is a cyclic
group of order (q− 1) and hence by (4.11) we get |Gal(F,K)| = |PGL(2, q)| and so
by Fact (1.F2) we must have Gal(F,K) = PGL(2, q). In view of Cameron-Kantor
Theorem I and Facts (1.F1) to (1.F4) together with Lemma (4.6), the rest of (5.3.4)
follows as in the proof of Proposition (3.2) given in [3].
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