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Multicolor urn models with reducible

replacement matrices
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Consider the multicolored urn model where, after every draw, balls of the different colors are
added to the urn in a proportion determined by a given stochastic replacement matrix. We
consider some special replacement matrices which are not irreducible. For three- and four-color
urns, we derive the asymptotic behavior of linear combinations of the number of balls. In par-
ticular, we show that certain linear combinations of the balls of different colors have limiting
distributions which are variance mixtures of normal distributions. We also obtain almost sure
limits in certain cases in contrast to the corresponding irreducible cases, where only weak limits
are known.

Keywords: martingale; reducible stochastic replacement matrix; urn model; variance mixture of
normal

1. Introduction

Consider an urn model with balls of K colors. The row vector C0 will denote the number
of balls of each color we start with. (By abuse of terminology, we shall allow the number
of balls to be any non-negative real number.) The vector C0 will be taken to be a
probability vector, that is, each coordinate is non-negative and the coordinates add up
to 1. Suppose R = ((rij)) is a K ×K non-random stochastic (i.e., each row sum is one)
replacement matrix. The results of this paper extend to non-random replacement matrices
with constant (not necessarily one) row sums by an obvious rescaling. Let Cn be the row
vector giving the number of balls of each color after the nth trial. At the nth trial, a ball
is drawn at random, and so a ball of ith color appears with probability Ci,n−1/n. If a
ball of ith color appears, then the number of balls of jth color is increased by rij . If R
equals the identity matrix, then it is well known (see, e.g., [3]) that Cn/(n+1) converges
almost surely to a Dirichlet random vector with parameters given by the starting vector
C0.

Let 1 or 0 stand respectively for the column vector of relevant dimension with all
coordinates 1 or 0. For any vector ξ, ξ2 will be the vector whose coordinates are the
square of those of ξ.
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In Section 2, we consider two color models (K = 2). If the replacement matrix R is
not the identity matrix, then it has two right eigenvectors, 1 and ξ corresponding to the
principal eigenvalue 1 and the non-principal eigenvalue λ, respectively, with |λ| < 1. If R
is irreducible, the asymptotic properties of Cn1 and Cnξ are well known in the literature,
see Proposition 2.1.

When the replacement matrix R is reducible but not the identity matrix, then, after
possibly interchanging the names of the colors, R is an upper triangular matrix

R =

(

s 1− s
0 1

)

, (1)

for 0 < s < 1. Here the non-principal eigenvalue is s with the corresponding eigenvector
ξ = (1,0)′. The asymptotic behavior of the linear combinations is given in Proposition 2.2.
In this case, Cnξ/ns = Wn/ns converges almost surely for all values of s in contrast to the
irreducible case. See also Theorems 1.3(v), 1.7, 1.8 and 8.8 of [7], where the distribution
of the limiting random variable was identified using methods from the branching process.

In the multicolor case, when R is irreducible, the weak/strong laws corresponding
to different linear combinations are completely known, see [1, 6]. Gouet [4] considered
(reducible) replacement matrices that are block diagonal, with all but the last block irre-
ducible. The last block was taken to be block upper triangular, which cannot be converted
into a block diagonal one, and each diagonal subblock of the last block was assumed to be
a multiple of some irreducible stochastic matrix. He showed (cf. Theorem 3.1 of [4]) that
the proportions of colors converge almost surely to a constant vector where the non-zero
coordinates correspond to all but the last diagonal block and the last diagonal subblock
of the last diagonal block. We call the corresponding colors dominant. To avoid trivial
situations, we shall always assume positive contribution to at least one non-dominant
color in the initial vector C0.

We shall consider three- and four-color urn models with block upper triangular re-
placement matrices that are not block diagonal. The diagonal blocks will be taken to be
irreducible and we shall extend the result obtained in [4] by obtaining the limiting results
for linear combinations corresponding to a complete set of linearly independent vectors.

Specifically, in Section 3, we consider three colors – white, black and green – and the
3× 3 replacement matrix

R =

(

sQ
1− s
1− s

0 0 1

)

, (2)

where 0 < s < 1, and Q is a 2× 2 irreducible aperiodic stochastic matrix with stationary
distribution πQ. Here green alone is the dominant color and we assume that W0 +B0 > 0.

We show in Theorem 3.1(iv) that (Wn,Bn)/ns a.s.→ πQV , where P (V > 0) = 1 and V is
non-degenerate. If ξ is the eigenvector corresponding to the non-principal eigenvalue λ of
Q, weak/strong laws for (Wn,Bn)ξ are also provided in Theorem 3.1. If λ ≤ 1/2, then the
weak limit is a variance mixture of normal, in contrast to the irreducible model, where
the weak limit is normal.
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In Section 4, we consider another type of reducible replacement matrix with two dom-
inant colors:

R =

(

s (1− s)p
0 P

)

, (3)

where P is a 2 × 2 irreducible stochastic matrix, p is a row probability vector and
0 < s < 1. If the eigenvalues of P are λ and 1, then s, λ and 1 are eigenvalues of R. Clearly
(1,0,0)′ is the eigenvector corresponding to s and the behavior of the corresponding linear
combination, Wn, follows directly from Proposition 2.2.

Now consider the eigenvalue λ. If R is diagonalizable, then the weak/strong law of
the linear combination given by the eigenvector corresponding to λ is summarized in
Theorem 4.1. If R is not diagonalizable, then one of the eigenvalues is repeated, namely
λ = s, and the repeated eigenvalue has eigenspace of dimension 1, spanned by (1,0,0)′.
Consider the Jordan decomposition of R, RT = TJ , where T is non-singular and

J =





s 1 0
0 s 0
0 0 1



 . (4)

The first and the third columns of T can be chosen as (1,0,0)′ and 1 respectively. For the
linear combination corresponding to the middle column, we get weak/strong law. The
convergence is in the almost sure sense, whenever λ ≥ 1/2, unlike the irreducible and
the diagonalizable reducible cases. For λ = 1/2, in the irreducible and the diagonalizable
reducible cases, we have weak convergence only. Also, the scaling for the irreducible

case is
√

n log3 n and for the diagonalizable reducible case is
√

n logn, unlike the non-

diagonalizable reducible case, where the scaling is
√

n log2 n.
Other interesting reducible three-color urn models have been considered in the litera-

ture. For example, [2] and [9] consider three-color urn models with triangular replacement
matrices. Our emphasis is on replacement matrices with block triangular structure, given
by (2) and (3). Note that Q in (2) is assumed to be a stochastic matrix. However, our
techniques do not have a direct extension to the case where Q does not have a constant
row sum. In another related work, Pouyanne [8] allows eigenvalues of the replacement
matrix to be complex and obtains interesting results for appropriate linear combinations.
For example, in his Theorems 3.5 and 3.6, rates are given for the linear combinations
corresponding to the eigenvalue with the second largest real part, where it is bigger than
1/2. In our setup, all the eigenvalues are real and we obtain the rates for all possible
linear combinations.

The results for three-color urn models are extended to four-color (white, black, green
and yellow) urns with the reducible replacement matrix given by

R =

(

sQ E
0 P

)

, (5)

where each component is a 2×2 matrix and furthermore P and Q are irreducible stochas-
tic matrices, 0 < s < 1. The results are summarized in Propositions 4.2–4.5. An interesting
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phenomenon is observed in Proposition 4.5, where the replacement matrix is not diago-
nalizable and the repeated eigenvalue is zero. Unlike the behavior of the corresponding
linear combination in other cases, where it remains a constant, we get a weak limit of
variance mixture of normal distribution in this case.

Before proceeding with the details, note that the proofs are based on studying the
behavior of appropriate martingales with the filtration Fn being the natural filtration of
the sequence {Cn}.

2. Two-color urn models

Define

Πn(λ) =

n−1
∏

j=0

(

1 +
λ

j + 1

)

. (6)

Recall that Euler’s formula for gamma function gives

Πn(λ) ∼ nλ/Γ(λ + 1), λ not a negative integer. (7)

This will be used at several places later.
We first mention the asymptotic behavior in two-color irreducible urn models. The

following results are well known. See, for example, [1, 6].

Proposition 2.1. In a two-color urn model with irreducible replacement matrix R,

Cn

n + 1

a.s.→ πR, (8)

where πR is the stationary distribution of R. Further, we have:

(i) If λ < 1/2, then Cnξ/
√

n⇒N(0, λ2

1−2λπRξ2).

(ii) If λ = 1/2, then Cnξ/
√

n logn⇒N(0, λ2πRξ2).
(iii) If λ > 1/2, then Cnξ/Πn(λ) is an L2-bounded martingale and converges almost

surely, as well as in L2, to a non-degenerate random variable.

Remark 2.1. Since Wn + Bn = n + 1, we have from (8),

(Wn,Bn)/(Wn + Bn)
a.s.→ πR. (9)

Remark 2.2. From (8), we see that Cnξ/(n + 1)
a.s.→ πRξ. However πRξ = πRRξ =

λπRξ, and since λ 6= 1, we have πRξ = 0. This explains the appropriate scaling up of
Cnξ/(n + 1) to obtain the weak laws for the proportions above.

Remark 2.3. When λ > 1/2, using (7), Cnξ/nλ converges almost surely, as well as in
L2, to a non-degenerate random variable. Thus, the scalings in Proposition 2.1(i) and
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(iii) are different. Also, in (iii), the distribution of the limit random variable depends on
the starting value (W0,B0) unlike in (i) and (ii). Furthermore, as in Remark 2.1, we can
conclude that, when λ > 1/2, (Wn,Bn)ξ/(Wn + Bn)λ converges almost surely, as well as
in L2, to a non-degenerate random variable.

Remark 2.4. If λ = 0, both rows of R equal πR. Since πRξ = 0 and clearly Cn =
C0 + nπR, we have Cnξ = C0ξ for all n.

Next, we consider the almost sure limit behavior of the two-color urn model with an
upper triangular reducible replacement matrix given by (1).

Proposition 2.2. In a two-color urn model with an upper triangular replacement matrix
given by (1), we have:

(i) Cn1/(n + 1) = 1.

(ii) Cn/(n + 1)
a.s.→ (0,1).

(iii) Cnξ/Πn(s) = Wn/Πn(s) is an L2-bounded martingale, where Πn(s) is given
by (6). Further, Wn/ns converges to a non-degenerate, positive random variable
almost surely, as well as in L2.

Proof. Statement (i) is trivial. Statement (ii) is same as that of (8) in Proposition 2.1
and a proof can be obtained from Proposition 4.3 of [4].

For (iii), observe that the number of white balls evolves as

Wn+1 = Wn + sχn+1,

where χn is the indicator of a white ball in nth trial. Define the martingale sequence
Vn = Wn/Πn(s), n≥ 1. We shall show that {Vn} is an L2-bounded martingale and hence
converges almost surely, as well as in L2. Also, the variance of Vn increases to that of the
limit and hence the limit is non-degenerate. The proposition then follows from (7), the
distribution of V and the fact that it is almost surely positive, all of which have been
established using branching process techniques in Theorem 1.3(v) of [7].

Clearly, we have

Vn+1 − Vn =
s

Πn+1(s)

(

χn+1 −
Wn

n + 1

)

,

and further, using Vn+1 = Vn + (Vn+1 − Vn) and the martingale property, there exists N
(non-random), such that for all n≥ N ,

E[V 2
n+1|Fn] = V 2

n +
s2

Π2
n+1(s)

[

Wn

n + 1
− W 2

n

(n + 1)2

]

≤ V 2
n +

Vn

(n + 1)Πn(s)

≤ V 2
n + Γ(s + 1)

1 + V 2
n

(n + 1)s+1
= V 2

n

[

1 +
Γ(s + 1)

(n + 1)s+1

]

+
Γ(s + 1)

(n + 1)s+1
.
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The last inequality holds for n ≥ N and follows from the fact that Vn ≤ (1 + V 2
n )/2

and (7). Taking further expectation and adding 1 to both sides, we have, for n ≥N ,

E[V 2
n+1] + 1 ≤

[

1 +
Γ(s + 1)

(n + 1)s+1

]

(E[V 2
n ] + 1).

Iterating, we get for n≥ N ,

E[V 2
n+1] + 1 ≤ (E[V 2

N ] + 1)

n
∏

j=N

[

1 +
Γ(s + 1)

(j + 1)s+1

]

and since s > 0, we further have for all n > N ,

E[V 2
n ] ≤ (E[V 2

N ] + 1) exp

(

Γ(s + 1)

∞
∑

0

j−(s+1)

)

< ∞,

which shows {Vn} is L2-bounded as required. �

3. One dominant color, K = 3

Now we are ready to consider the three-color urn model with only one dominant color,
say green. We shall denote the row subvector corresponding to the non-dominant colors
(Wn,Bn) as Sn. We collect the results in the following theorem.

Theorem 3.1. Consider a three-color urn model with a reducible replacement matrix
R given by (2). Suppose the non-principal eigenvalue of Q is λ and the corresponding
eigenvector is ξ. Then the following hold:

(i) Cn1/(n + 1) = 1.

(ii) Cn/(n + 1)
a.s.→ (0,0,1).

(iii) Sn1/(n + 1)s converges almost surely, as well as in L2, to a non-degenerate pos-
itive random variable U .

(iv) Sn/(n + 1)s a.s.→ πQU .

(v) If λ < 1/2, then Snξ/ns/2 ⇒N(0, s2λ2

s(1−2λ)UπQξ
2).

(vi) If λ = 1/2, then Snξ/
√

ns logn⇒N(0, s2λ2UπQξ
2).

(vii) If λ > 1/2, then Snξ/Πn(sλ) is an L2-bounded martingale and almost surely, as
well as in L2, Snξ/nsλ → V , where V is a non-degenerate random variable.

The random variable U in (iv), (v) and (vi) is the same limiting random variable obtained
in (iii). The distributions of U and V depend on the initial value S0.

Remark 3.1. Note that the eigenvalues of R are 1, s and sλ with corresponding eigen-
vectors 1, (1,1,0)′ and (ξ′,0)′, respectively, yielding the linear combinations Cn1, Sn1

and Snξ.
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Proof of Theorem 3.1. Statement (i) is immediate. Statement (ii) follows from The-
orem 3.1 and Proposition 4.3 of [4].

Note that Sn1 = Wn + Bn. From the structure of R, the pair (Wn + Bn,Gn) yields a
two-color model with reducible replacement matrix

(

s 1− s
0 1

)

.

Statement (iii) then follows from Proposition 2.2. The distribution of U has been iden-
tified in Theorem 1.3(v) of [7].

Consider the successive times τk when either a white or a black ball is observed. Due to
the assumed special structure of the matrix R, it is only at these times that more white
or black balls are added and the total number added is the constant s. Thus Sτk

/Sτk
1 are

the proportions from the evolution of a two-color urn model governed by the irreducible
replacement matrix Q. Hence by the two-color urn result (9), it converges almost surely
to πQ. Note that at all other n, τk < n < τk+1, the vector Sn = Sτk

and hence the ratio

is unchanged. Moreover, from the statement (iii), we have Sn1/ns a.s.→ V . Now combining
all of the above, the proof of the statement (iv) is complete.

For (vii), let χn be the row vector, which takes values χn = (1,0), (0,1) or (0,0)
accordingly as the white, black or green balls are observed in nth trial and consider the
martingale Tn = Snξ/Πn(sλ). Then the martingale difference is

Tn+1 − Tn =
sλ

Πn+1(sλ)

(

χnξ − Snξ

n + 1

)

and hence

E[T 2
n+1] = E[T 2

n ] +

(

sλ

Πn+1(sλ)

)2

E

[

Snξ2

n + 1
−
(

Snξ

n + 1

)2]

= E[T 2
n ]

[

1− (sλ)2

(n + 1)2(1 + sλ/(n + 1))2

]

+

(

sλ

Πn+1(sλ)

)2
1

(n + 1)1−s
E

[

Snξ2

(n + 1)s

]

.

The first term is bounded by E[T 2
n ]. From statement (iii), Sn1/(n + 1)s is L2-bounded

and hence L1-bounded. So Snξ2/(n+1)s is also L1-bounded. Thus, using (7), the second
term is bounded by a constant multiple of n−(1+s(2λ−1)), which is summable as λ > 1/2.
Thus {Tn} is an L2-bounded martingale and hence converges almost surely as well as in
L2.

For (v) and (vi), we start with the case λ < 1/2. Call Xn = Snξ/ns/2. We have the
evolution equation for Snξ given by

Sn+1ξ = Snξ + sχn+1Qξ = Snξ + λsχn+1ξ. (10)

We now use the decomposition of Xn+1 into a conditional expectation and a martingale
difference

Xn+1 = E(Xn+1|Fn) + {Xn+1 −E(Xn+1|Fn)}.
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Using (10) and the fact that (1 + 1/n)−s/2 = (1− s/2n) + O(1/n2) we then get

E(Xn+1|Fn) =
Snξ

ns/2
(1 + 1/n)−s/2 +

λs

(n + 1)s/2

Snξ

n + 1

= Xn

(

1− s

2n
+ O

(

1

n2

))

+ λsXn

(

1 +
1

n

)−s/2
1

n + 1

= Xn

(

1− s(1/2− λ)

n

)

+ XnO(n−2). (11)

On the other hand, the martingale difference is really

Mn+1 := Xn+1 −E(Xn+1|Fn) =
λs

(n + 1)s/2

(

χn+1 −
Sn

n + 1

)

ξ, (12)

so that

Xn+1 = Xn

(

1− s(1/2− λ)

n

)

+ XnO(n−2) + Mn+1. (13)

Iterating the equation above, we get

Xn+1 = X1

n
∏

i=1

(

1− s(1/2− λ)

i

)

+
n
∑

j=1

XjO(j−2)
n
∏

i=j+1

(

1− s(1/2− λ)

i

)

+

n
∑

j=1

Mj+1

n
∏

i=j+1

(

1− s(1/2− λ)

i

)

. (14)

Since λ < 1/2, we have Πn(−s(1/2− λ)) ∼ n−s(1/2−λ)/Γ(1− s(1/2− λ)) → 0, and hence
the first term above converges to 0 for every sample point. The continued product in
the second term is bounded by 1. Since the coordinates of Sn/(n + 1) are bounded by
1, we have that |Xn|/n1−s/2 is bounded for every sample point. Thus the sum of the
elements of the second term above is bounded by a multiple of

∑∞
1 j−(1+s/2), which is

finite; and individually each element tends to zero since each infinite product diverges to
zero. Hence the second term of (14) tends to zero for every sample point.

Now we turn to the third term of (14),

Zn+1 =

n
∑

j=1

Mj+1

n
∏

i=j+1

(

1− s(1/2− λ)

i

)

. (15)

We verify the conditional Lyapunov condition and compute the conditional variance as
n→∞. The conditional Lyapunov condition demands that for some k > 2,

n
∑

j=1

E(|Mj+1|k|Fj)

n
∏

i=j+1

(

1− s(1/2− λ)

i

)k
a.s.→ 0.
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Since each coordinate of χn+1 and Sn/(n+1) is bounded by 1, the martingale difference

defined in (12) is bounded by a constant multiple of (n + 1)−s/2. Thus the above sum is
bounded by a constant multiple of

n
∑

j=1

j−ks/2
n
∏

i=j+1

(

1− s(1/2− λ)

i

)k

,

which tends to zero by the bounded convergence theorem, provided we choose k > 2/s.
Now we compute the conditional variance. An exact computation and the statement

(iv) yields, with probability 1,

E(M2
n+1|Fn) =

(λs)2

(n + 1)s

[

Snξ2

n + 1
−
(

Snξ

n + 1

)2]

∼ (λs)2

n + 1
UπQξ2.

Then, writing
∏n

i=j+1(1−
s(1/2−λ)

i ) = Πn(−s(1/2− λ))/Πj(−s(1/2− λ)) and using (7),
the sum of the conditional variances satisfies, on a set of probability 1,

n
∑

j=1

E(M2
j+1|Fj)

n
∏

i=j+1

(

1− s(1/2− λ)

i

)2

∼ (λs)2UπQξ2

ns(1−2λ)

n
∑

j=1

1

j1−s(1−2λ)
,

which converges almost surely to (λs)2UπQξ
2/s(1 − 2λ). Thus, by martingale central

limit theorem (see Corollary 3.1 of [5]), the limiting distribution of Zn+1, and hence
Xn+1 is the required variance mixture of normal.

Since the analysis for the statement (vi) is similar, we omit the details and provide
only a brief sketch of the arguments. We start with Xn = Snξ/

√
ns logn. The following is

the relevant martingale decomposition now. To express the decomposition, the following
straightforward approximations are used:

(1 + 1/n)−s/2 = 1− s

2n
+ O(n−2) and

logn

log(n + 1)
=

logn

logn + 1/n + O(n−2)

together give

(

n

n + 1

)s/2
√

logn

log(n + 1)
=

(

1− s

2n
+ O(n−2)

)(

1− 1

2n logn
+ O

(

1

n2 logn

))

= 1− s

2n
− 1

2n logn
+ O(n−2).

Using λ = 1/2 carefully, the conditional expectation becomes

E(Xn+1|Fn) = Xn[1− (2n logn)−1] + XnO(n−2)

and, for the martingale difference, we get,

Mn+1 := Xn+1 −E(Xn+1|Fn) =
s

2
√

(n + 1)s log(n + 1)

(

χn+1 −
Sn

n + 1

)

ξ.
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These together give us the recursion on Xn as

Xn+1 = Xn[1− (2n logn)−1] + XnO(n−2) + Mn+1,

a decomposition similar to (13). The rest of the proof follows as before with appropriate
changes. �

Remark 3.2. Theorem 3.1 gives the scaling for all the linear combinations except when

λ = 0, in which case (v) applies and we obtain Snξ/ns/2 P→ 0. However, as discussed in
Remark 2.4, Q has both rows the same as πQ, which satisfies πQξ = 0. Since Sn changes
only when a white or black ball appears, we have Sn = S0 + (Wn + Bn)πQ and hence
Snξ = S0ξ for all n.

4. Two dominant colors, K = 3,4

We now consider the three-color case with two dominant colors. The replacement matrix
R, given by (3), is

R =

(

s (1− s)p
0 P

)

,

where p is a probability vector and P is a 2 × 2 irreducible stochastic matrix. Thus
1 is always an eigenvalue of P with the corresponding eigenvector 1. We shall denote
the other eigenvalue of P as λ with corresponding eigenvector ξ. Then s and 1 are two
eigenvalues of R with corresponding eigenvectors (1,0,0)′ and 1, respectively. Observe
that Cn(1,0,0)′ = Wn. The results for this linear combination follow from two-color urn
model results, and we summarize them below. We shall denote the stationary distribution
of P by πP .

Proposition 4.1. Consider a three-color urn model with two dominant colors and the
replacement matrix given by (3). Then:

(i) Cn1/(n + 1) = 1.

(ii) Cn/n
a.s.→ (0,πP ).

(iii) Wn/ns → V almost surely, as well as in L2.

In (iii), if we start with the initial vector C0 = (W0,B0,G0), then V has the same
distribution as the limit random variable in Theorem 3.1(vii) with the initial vector
(W0,B0 + G0).

Proof. Statement (i) is trivial. The proof of (ii) is given in Theorem 3.1 or Proposition 4.3
of [4]. For the remaining part, consider the two-color urn model (Wn,Bn + Gn) obtained
by collapsing the last two colors. This will have the replacement matrix as in (1) and the
results will follow from Proposition 2.2. �
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However, the one remaining linear combination is more subtle. The choice of the linear
combination depends on whether R is similar to a diagonal matrix or, equivalently, has
a complete set of eigenvectors. Suppose λ 6= s. Then R is diagonalizable and v2 = (c,ξ′)′

is an eigenvector of R corresponding to λ, with c = (1 − s)pξ/(λ − s). If λ = s, then R
is diagonalizable if and only if pξ = 0. In that case, (0,ξ′)′ is another eigenvector of R
corresponding to s independent of (1,0,0)′. Also note that, in that case, p is orthogonal
to ξ and since p is a probability vector we have p = πP . In the diagonalizable case with
λ = s, we denote this remaining vector (0,ξ′)′ by v2 and consider the corresponding
linear combination. The following theorem summarizes the results.

Theorem 4.1. Consider a three-color urn model with replacement matrix R given by (5),
where R is diagonalizable. Then the following weak/strong laws hold:

(i) If λ < 1/2, then Cnv2/
√

n⇒ N(0, λ2

1−2λπP ξ2).

(ii) If λ = 1/2, then Cnv2/
√

n logn ⇒N(0, λ2πP ξ2).
(iii) If λ > 1/2, then Cnv2/Πn(λ) is an L2-bounded martingale and Cnv2/nλ con-

verges almost surely to a non-degenerate random variable.

Proof. The proofs of (i) and (ii) are similar to those of (v) and (vi) of Theorem 3.1, so
we omit them.

Define χn as the row vector that takes values (1,0,0), (0,1,0) and (0,0,1) accordingly
as white, black or green balls appear in nth trial. Also define Zn = Cnv2/Πn(λ). It is
simple to check that {Zn} is a martingale. Note that,

Zn+1 −Zn =
λ

Πn+1(λ)

(

χn+1 −
Cn

n + 1

)

v2,

which gives us

E[(Zn+1 −Zn)2|Fn] =
λ2

Π2
n+1(λ)

[

Cnv2
2

n + 1
−
(

Cnv2

n + 1

)2]

.

Also, Cn/(n+1) is bounded by 1 for each coordinate. Hence, the conditional expectation
above is bounded by a constant multiple of n−2λ. So we get E[Z2

n+1] =
∑n

i=1{E[(Zi+1 −
Zi)

2} is bounded by a constant multiple of
∑∞

1 i−2λ, which is finite, as λ > 1/2. Thus,
{Zn} is L2-bounded. The rest of the statement (iii) follows from (7). �

If R is not diagonalizable, then a complete set of eigenvectors is not available and
one of the eigenvalues must be repeated, which gives s = λ and p 6= πP . So we consider
the Jordan decomposition RT = TJ , where J is given by (4). We can choose the first
and third columns of T as t1 = (1,0,0)′ and t3 = 1. Also the subvector of the lower two
coordinates of t2 is an eigenvector of P corresponding to s. We shall denote it by ξ as
well. The behavior of Cnt2 is substantially different from the irreducible case given in
Theorem 3.15 of [6] or the diagonalizable case in Theorem 4.1 above.
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Theorem 4.2. Consider a three-color urn model with replacement matrix R given by (5),
where R is not diagonalizable. Then, we have:

(i) If s < 1/2, then Cnt2/
√

n⇒N(0, s2

1−2sπP ξ2).

(ii) If s ≥ 1/2, then Cnt2/ns logn converges to V almost surely, as well as in L2,
where V is the almost sure limit random variable obtained in Proposition 4.1(iii).

Proof. We first consider the case when s < 1/2. Call Xn = Cnt2/
√

n. Define the row
vector χn as in the proof of Theorem 4.1. We shall split Xn+1 into conditional expectation
and martingale difference parts as in the proof of Theorem 3.1(v). From the Jordan
decomposition of R and the form (4) of J , the evolution equation for Cn is given by

Cn+1t2 = Cnt2 + sχn+1t2 + χn+1t1.

Hence the conditional expectation becomes

E(Xn+1|Fn) =
Cnt2√
n + 1

(

1 +
s

n + 1

)

+
1

(n + 1)3/2
Cnt1

= Xn

(

1− 1/2− s

n + 1

)

+ XnO(n−2) +
1

(n + 1)3/2
Wn,

since Cnt1 = Wn. Using the notation st = t1 + st2, the martingale difference term be-
comes

Mn+1 := Xn+1 −E(Xn+1|Fn) =
s√

n + 1

(

χn+1 −
Cn

n + 1

)

t.

Putting this together, we get a recursion on Xn as

Xn+1 = Xn

(

1− 1/2− s

n

)

+ XnO(n−2) +
Wn

(n + 1)3/2
+ Mn+1,

and iterating we get,

Xn+1 = X1

n
∏

i=1

(

1− 1/2− s

i

)

+

n
∑

j=1

XjO(j−2)

n
∏

i=j+1

(

1− 1/2− s

i

)

+
n
∑

j=1

Wj

(j + 1)3/2

n
∏

i=j+1

(

1− 1/2− s

i

)

+
n
∑

j=1

Mj+1

n
∏

i=j+1

(

1− 1/2− s

i

)

,

which is similar to the decomposition (14), except for the additional third term. Further
analysis is similar to that done for Theorem 3.1(v), except for the contribution of the
third term, which we now show to be negligible with probability 1. By Proposition 4.1(iii),

writing
∏n

i=j+1(1−
1/2−s

i ) = Πn(−(1/2−s))/Πj(−(1/2−s)) and using (7), the third term
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is of the order of

1

n1/2−s

n
∑

j=1

V

j3/2−s

1

j−(1/2−s)
∼ V logn

n1/2−s
→ 0

almost surely, since s < 1/2.
Using Proposition 4.1(ii), the structure of the vectors t1 and t2 and the fact πP ξ = 0,

the conditional variance term is

E(M2
n+1|Fn) =

s2

n + 1

[

Cnt2

n + 1
−
(

Cnt

n + 1

)2]

∼ s2

n + 1
πP ξ2,

which gives the required variance for the limiting normal distribution.
Now we consider the other situation, where s ≥ 1/2. Using the form (4) of J in the

Jordan decomposition of R, we again have Rt2 = t1 + st2 = st. Thus

Cn+1t2 = Cnt2 + χn+1Rt2 = Cnt2 + sχn+1t,

which implies

E[Cn+1t2|Fn] = Cnt2

(

1 +
s

n + 1

)

+
Cn

n + 1
t1.

This gives us the martingale

Xn =
Cnt2

Πn(s)
−

n−1
∑

j=1

1

j + 1

Cjt1

Πj+1(s)
. (16)

The martingale difference is then given by Xn+1−Xn = s(χn+1 − Cn

n+1 )t/Πn+1(s), which
yields

E[(Xn+1 −Xn)2|Fn] =
s2

Π2
n+1(s)

[

Cnt2

n + 1
−
(

Cnt

n + 1

)2]

, (17)

and using the fact that each coordinate of Cn/(n + 1) is bounded by 1 and Euler’s
formula for gamma function, the conditional second moment above is bounded by a
constant multiple of n−2s. Taking expectation and adding, we get E[X2

n+1] is bounded
by a constant multiple of

∑n
0 i−2s. This implies, {Xn} is L2-bounded if s > 1/2 and,

{Xn/
√

logn} is L2-bounded if s = 1/2. Thus, for s > 1/2, Xn/ logn → 0 almost surely,
as well as in L2. For s = 1/2, Xn/ logn→ 0 in L2.

We now show the convergence is almost sure also, when s = 1/2. For this, consider the
random variables Zn = Xn/ logn and get

Zn+1 −Zn =
Xn+1 −Xn

log(n + 1)
− Xn

logn

[

1− logn

log(n + 1)

]

. (18)
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Since [1− log n
log(n+1) ]/

√
logn ∼ 1/n log3/2 n and Xn/

√
logn is L2-bounded (and hence L1-

bounded), we have E[
∑n

k=2
|Xk|√
logk

1√
logk

{1− log k
log(k+1)}] is bounded uniformly over n and

hence
n
∑

k=2

Xk√
logk

1√
logk

[

1− logk

log(k + 1)

]

converges absolutely almost surely. On the other hand, the first term of (18) is a
martingale difference and, using (17) for s = 1/2, the conditional variance E[(Xn+1 −
Xn)2/log2(n + 1)|Fn} is bounded by a constant multiple of [(n + 1) log2(n + 1)]−1,
which is summable. Hence, the martingale {∑n

k=1(Xk+1−Xk)/log(k + 1)} is L2-bounded
and thus converges almost surely. Combining the two observations above we get that
Zn = Xn/ logn converges almost surely.

Thus Xn/ logn converges to 0 almost surely, and in L2, for all s ≥ 1/2. Hence,
from (16), we have

Xn

logn
=

Cnt2

lognΠn(s)
− 1

logn

n−1
∑

j=0

1

j + 1

Cjt1

Πj+1(s)
(19)

converges to 0 almost surely, as well as in L2. But using (7) and Proposition 4.1(iii), we
know that Cnt1/Πn(s) ∼ Γ(s + 1)Wn/ns → Γ(s + 1)V almost surely, as well as in L2.
Hence the second term in (19) converges to Γ(s + 1)V almost surely, as well as in L2.
Thus,

Cnt2

ns logn
∼ 1

Γ(s + 1)

Cnt2

Πn(s) logn

converges to V almost surely, as well as in L2. �

Remark 4.1. As in the case of one dominant color, we have the correct scaling for all
the linear combinations except when λ = 0 < s. (This situation arises only in the case of
diagonalizable replacement matrix.) But v2 being an eigenvector of R corresponding to
λ = 0, we have Rv2 = 0. Thus Cnv2 = C0v2 for all n.

The three-color urn model with two dominant colors can be easily extended to certain
four-color models. We consider the reducible replacement matrix given in (5),

R =

(

sQ E
0 P

)

,

where P and Q are 2 × 2 irreducible stochastic matrices, 0 < s < 1. The eigenvalues of
Q are λ and 1, with |λ| < 1. The eigenvalues of P are β and 1, with |β| < 1. Then sλ,
s, β and 1 are all eigenvalues of R. If ξ is an eigenvector of Q corresponding to λ, then
v1 = (1′,0′)′, v2 = (ξ′,0′)′ and v4 = 1 are eigenvectors of R corresponding to s, sλ and
1 respectively.



Multicolor urn models 293

If R is diagonalizable, then there is another eigenvector v3 corresponding to β. If R
is not diagonalizable, then one of its eigenvalues must repeat, namely β must equal s or
sλ and we denote the other by α. In this case, we consider the Jordan decomposition
RT = TJ , where T is nonsingular. The fourth column t4 of T can be chosen as v4. The
first two columns t1 and t2 of T can be chosen as the eigenvectors of R corresponding
to α and β. However, the third column t3 of T will not be an eigenvector of R, yet
the two-dimensional vector ν formed by the lower half of t3 will be an eigenvector of P
corresponding to β. We shall only study Cnt3 separately in the non-diagonalizable case.

The following three Propositions are suitable extensions of the three-color results of
this section. The proofs are suitable modifications as well.

Proposition 4.2. Consider a four-color urn model with the replacement matrix given
by (5). Then:

(i) Cn1/(n + 1) = 1.

(ii) Cn/n
a.s.→ (0,0,πP ).

(iii) (Wn,Bn)/ns a.s.→ πQU .
(iv) Cnv1/ns →U almost surely, as well as in L2.

(v) If λ < 1/2, then Cnv2/ns/2 ⇒N(0, s2λ2

s(1−2λ)UπQξ
2).

(vi) If λ = 1/2, then Cnv2/
√

ns logn⇒N(0, s2λ2UπQξ
2).

(vii) If λ > 1/2, then Cnv2/nsλ → V almost surely, as well as in L2.

If we start with the initial vector (W0,B0,G0, Y0), then U and V have the same distri-
bution as the limit random variable in Theorem 3.1(iii) and the positive random variable
in Theorem 3.1(vii), respectively, starting with initial vector (W0,B0,G0 + Y0).

Next we consider the linear combination Cnv3 in the diagonalizable case.

Proposition 4.3. In the four-color urn model with replacement matrix R given by (5),
assume that all the eigenvalues of R are distinct. Then the following weak/strong laws
hold for Cnv3:

(i) If β < 1/2, then Cnv3/
√

n⇒ N(0, β2

1−2β πP ν2).

(ii) If β = 1/2, then Cnv3/
√

n logn⇒ N(0, β2πP ν2).
(iii) If β > 1/2, then Cnv3/Πn(β) is an L2-bounded martingale and Cnv3/nβ con-

verges almost surely to a non-degenerate random variable.

Finally, we consider the case when the replacement matrix R is not diagonalizable. As
in the three-color urn model with a non-diagonalizable replacement matrix, the evolution
of the linear combination Cnt3 depends on the eigenvector of R corresponding to the
eigenvalue β. When β < 1/2, the effect of the contribution of the linear combination of
this eigenvector is negligible. However, for β ≥ 1/2, this provides the main contribution
and the almost sure limit random variable depends on whether β equals s or sλ. To
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denote the limit random variable in a unified way, we define the random variable

W =

{

U, when β = s,
V, when β = sλ,

(20)

where U and V are the random variables defined in Proposition 4.2. Suppose β ≥ 1/2. If
β = s, then t2 = v1 and, by Proposition 4.2(iv), Cnt2/(n+1)β = Cnv1/(n+1)s →U = W
almost surely, as well as in L2. If β = sλ, then t2 = v2. Also s < 1 implies λ > 1/2. Hence
by Proposition 4.2(vii), Cnt2/(n+1)β = Cnv2/(n+1)sλ → V = W almost surely, as well
as in L2. So, for non-diagonalizable R and β ≥ 1/2, we conclude Cnt2/(n + 1)β → W
almost surely, as well as in L2.

Proposition 4.4. Consider the four-color urn model with replacement matrix R given
by (5), where R is not diagonalizable. Then, we have:

(i) If β < 1/2, then Cnt3/
√

n⇒ N(0, β2

1−2β πP ν2).

(ii) If β ≥ 1/2, then Cnt3/nβ logn converges to W almost surely, as well as in L2,
where W is as defined in (20).

Remark 4.2. As in two- and three-color urn models, we have correct scalings for all
linear combinations except when λ or β becomes zero. If λ = 0, Proposition 4.2(v) gives

Cnv2/ns/2 P→ 0. However, considering the three-color urn model (Wn,Bn,Gn + Yn), we
get, from Remark 3.2, Cnv2 = C0v2.

In the case of the diagonalizable replacement matrix, if β = 0, we have a similar situ-
ation for the linear combination Cnv3 in Proposition 4.3(i). However, as in Remark 4.1,
v3 being an eigenvector of R corresponding to β = 0, we have Rv3 = 0 and Cnv3 = C0v3.

The situation becomes more interesting when β = 0 and the replacement matrix is
not diagonalizable. Thus, we necessarily have β = s or β = λs, but β being zero and
s being positive, only the second alternative is possible and further β = λ = 0. In this

case, Proposition 4.4(i) gives Cnt3/
√

n
P→ 0. The correct rate is given in the following

proposition.

Proposition 4.5. Consider the four-color urn model with the replacement matrix R
given by (5), which is not diagonalizable. Further assume the repeated eigenvalue of R to
be zero. Then

Cnt3/ns/2 ⇒N(0,πQξ2U/s),

where U is the limit random variable corresponding to (Wn + Bn)/ns obtained in Propo-
sition 4.2(iv).

Proof. Let χn be the row vector as in the proof of Theorem 3.1(vii). Using RT = TJ
and the fact β = 0, we get Rt3 = t2 + βt3 = t2. Hence using t2 = (ξ′,0′)′, the evolution
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equation for Cnt3 is given by

Cn+1t3 = Cnt3 + χn+1ξ.

The rest of the proof is similar to that of Theorem 4.2(i) and is omitted. �
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