A FOSSIL MAMMAL FROM MARINE EOCENE STRATA (JAINTIA GROUP) OF THE MIKIR HILLS, ASSAM, NORTHEASTERN INDIA

K. WHISO1, B.N. TIWARF, S. BAJPI1, LISA NOELLE COOPER2,3 and J.G.M. THEWISSEN4

1DEPARTMENT OF GEOLOGY, NAGALAND UNIVERSITY, KOHIMA 797002, NAGALAND, INDIA
2WADIA INSTITUTE OF HIMALAYAN GEOLOGY, DEHRA DUN 248 001, INDIA
3DEPARTMENT OF EARTH SCIENCES, INDIAN INSTITUTE OF TECHNOLOGY, ROORKEE 247 667, INDIA
4DEPARTMENT OF ANATOMY, NEOUCOM, ROOTSTOWN, OHIO, U.S.A. 44272-0095
5SCHOOL OF BIOMEDICAL SCIENCES, KENT STATE UNIVERSITY, KENT, OHIO, U.S.A. 44242

ABSTRACT

We report the occurrence of a mammalian lumbar vertebra and several associated fish teeth from Dillai Parbat, in the southeastern part of the Mikir Hills of Assam, in northeastern India. The specimens were recovered from a shallow marine limestone unit of upper middle Eocene age (40-37 Ma). The vertebra is tentatively described as that of an archaeocete cetacean. This is the first report of Eocene vertebrates from the northeastern part of India, and it significantly expands the geographical distribution of Eocene marine mammals of India. Further fieldwork is required to assess the potential of this new locality.

Keywords: Mikir Hills, Eocene, vertebrates, mammals, Assam, Dillai Parbat

INTRODUCTION

During the course of doctoral investigations undertaken recently by one of us (Whiso, 2007) in the Dillai Parbat area of Assam, a vertebrate-bearing limestone was discovered in this geologically poorly explored region of NE India (Fig. 1). This horizon is part of the Jaintia Group in the Mikir Hills region of Assam (Fig. 2) and has been assigned an upper middle Eocene age (Chatterji and Pant, 1971; Lokho et al., 2004). This locality extends the Eocene vertebrate record by approximately 2000 kilometers as the nearest aquatic mammal horizon is in the Subathu Formation of the northwestern Himalayan region (Bajpai and Thewissen, 1998).

The recovered fossil vertebrates comprise a mammalian vertebral centrum and a few isolated fish teeth. The material comes from the Dillai Parbat limestone quarry of the Cement Corporation of India Ltd., in Karbi Anglong District, Assam (Fig. 1). The area lies between 25°49'45" and 26°01'00" N and 93°34'40" to 93°35'50" E and is part of the Survey of India Toposheet nos. 83F/12 and 83G/9. The Dillai Parbat hill is located 44 km NE of Diphu, the district headquarters and 28 km west of Dimapur town in Nagaland. The quarry is situated on the southern slopes of the Dillai Parbat hill with a maximum elevation of 429 m.

The specimens described here are housed in the Wadia Institute of Himalayan Geology, Dehradun, India under the acronyms WIMF/A and WIF/A.

PREVIOUS WORK

Following Medlicott's (1869) initial study of the Paleogene shelf deposits of the Shillong Plateau, Evans (1932) designated the shelf facies of the Paleocene-Eocene beds as Jaintia Group (see Series) and further subdivided it into a lower Sylhet Limestone Stage and an upper Kopili Stage. Subsequently, Wilson and Metre (1953) worked out foraminiferal biostratigraphy of the Upper Cretaceous - Eocene sequence of Assam, followed by Nagappa (1959). Later, Samanta (1971) proposed a foraminiferal zonation of the Early Tertiary sediments on the basis of his study of outcropping and borehole samples in and around Garampani, He assigned a middle to upper Middle Eocene to the Garampani Formation and a lower to lower Middle Eocene to the Mikir Formation (equivalents of Sylhet Formation). Other notable palaeontological contributions include those by Biswas (1962), Srivastava (1968), Bhandari (1981, 1992), Neale and Singh (1985), Bhatia and Dave (1996), Singh et al. (1986), Jauhari (1994, 1997, 1998), and Whiso et al. (2003).

Whiso (2007) recovered foraminifers, crabs, and corals from the sandy limestone that also yielded the vertebrates described here (Figure 3). Foraminifers identified by Whiso (2007) include Discocyclina javana, a late Middle Eocene form; Nummulites sp., Assilina sp., and also smaller benthic forams such as Cibicides lobatus, Cibicides sp., Lagena sp., Nonion sp., Pararotalia cf. intermis, Pararotalia sp., Quinqueloculina sp. and Triloculina sp.

SYSTEMATIC PALAEONTOLOGY

Phylum Chordata
Class Chondrichthyes
Subclass Elasmobranchii
Order Selachii
Indet.
(Pl. 1, figs. 1 and J)

Material: WIMF/A 601, fragmentary tooth

Description: The specimen is an incomplete tooth and represents the principal cusp of a shark tooth. It is similar to the teeth of Galeorhinus described by Kumar and Loyal (1987) from the Subathu Group of northwestern Himalaya.

Order Batoidea
Suborder Myliobatoidea
Family Dasyatidae
Genus Dasyatis
Dasyatis sp.
(Pl. 1, figs E-H).

Material: WIMF/A 602, isolated female tooth

Description: A well preserved, robust tooth, possibly from a female. In occlusal view it is convex with elliptical outline and ornamented with coarse pits. The root is divided
Andrewsiphius), the vertebral dimensions of the Dillai Parbat specimen are most similar to those of the lumbar vertebrae of the middle Eocene cetacean *Remingtonocetus* sp. from Kutch, Gujarat (IITR-SB 2653, 2906), both in width and height measurements. However, this specimen has a slightly smaller length in comparison to those of *Remingtonocetus*. Given that the specimen was found in marine strata, and is associated with a marine fauna, and that it does not resemble the vertebrae of other marine mammals (sireniens and anthracobundis), it is most likely that it represents a cetacean. However, this suggestion requires further testing.

CONCLUDING REMARKS

In India, extensive collections of fossil whales have been described from Kutch (Sahni and Mishra, 1975; Bajpai and Thewissen, 1998, 2001), and a few specimens are known from the western Himalayas. The latter include cetacean teeth from Kalakot, J&K (Kumar and Sahni, 1985), and from the Type Subathu Formation near Shimla (Bajpai and Thewissen, 1998; Bajpai and Gingerich, 1998). If the vertebral centrum described here indeed represents a cetacean, it expands the geographical range of Eocene cetaceans considerably (approximately 2000 km) since the nearest aquatic mammal horizon is in the Subathu Formation of NW Himalaya (Bajpai and Thewissen, 1998). Evidently, the Eocene shallow seas and adjacent coastal and terrestrial habitats on the northwestern part of the Indian subcontinent supported the evolving Cetacea (Thewissen et al., 2007). The record of a possible cetacean vertebra from a broadly contemporaneous northeasterly locality indicates the extension of similar
Different views of the recovered fossils from the locality: A-anterior, B-posterior, C-dorsal and E-ventral views of the WIF/A 1095, centrum of the incomplete lumbar vertebra; E-H views of the WIMF/A 602, isolated female tooth of Dasyatis sp.; I-J lateral views of WIMF/A 601, fragmentary tooth of Selachii Indet.
habitats where the early stages of cetacean evolution occurred.

ACKNOWLEDGEMENTS

K.W acknowledges Drs. R. Venkatachalapathy and R. P. Kachhara for their support while working for his Ph D thesis. S.B. acknowledges support from the Department of Science and Technology, Government of India (Ramanna Fellowship).

REFERENCES


Manuscript Accepted March 2009