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SUMMARY 

Classical displacement method of the finite 
· element analysis of eigenvalue problems requires 
, the use of consistent and conforming elements. 
However, simpler approaches: based on relaxing 

· the condition of Cf mistency of the element des-
criptioIlS,' sllch a~ lumped inertia force method 

· and others are also found to yield satisfactory 
· results. In this paper we make a comparative study 
: of the consistent and simplified approaches with 
:reference to four representative problems. In the 
; simplified approach studied in this paper, the Con­
: tribution of straining modes in the derivation of 
· the mass and geometric stiff ness matrices is negl­
ected alld this simplifies their derivation substanti­
(ll/y. The results indicate that this simplification 
illtroduces only small errors in the eigenvalues. 

NOTATION I 

E Young's modulus 
1 moment of inertia 

10 moment of inertia of a tapered beam or 
column at the root section 

k frequency parameter of the beam defined 
mw2L4 

as k=-EJ;-
I. length of the beam element 
11 length of the beam or column 
m mass per unit length of the beam 
P axial load on the column 
Pcr critical load of the column 
pet), Pt, Pa see equation (12) 
TR taper ratio of the tapered beam or column, 

. . d 
defined as TR= 0- (see Figs. (I) and (2» 

A critical load parameter of the column defined 

as A= _PcrL2 
E10 

w circular frequency of the beam 

WI fundamental frequency of the beam 
Q frequency of the periodic axial force on the 

column 
QI' il, frequ~ncy bounds, of the axial periodic 

force on the column, between which the 
column is unstable. 

INTRODUCTION 

With the advent of high speed digital computers, 
matrix methods of structural analysis received consi­
derable attention In 1965, Archerl proposed a 
consistent formulation for these problems which has 
been very widely adopted for many interesting 
prohlems. An extensive exposition on the topic can 
be seen in Ref. (2) However some of the formula­
tions, which were 110t based on consistent element 
descriptions such as the lumped mass method, lum­
ped inertia force method3 are also found to yield 
accurate results., A similar formulation for stability 
problem can be seen in Ref. l4). The purpose of 
this paper is to systematically study the implications 
of the use of simplifying assumptions in the element 
representations .. In this paper, four representative 
problems have been studied by using the consistent 
as well as simplified approaches. Comparison of the 
results indicate that the use of simplified mass and 
geometric- Stiffness matrices also yield results to 
comparable degree of accuracy as the consistent 
formulation. 

CONSISTENT AND SIMPLIFIED APPROACHES 

The disolacement formulation of the free vibra­
tion problem. includes the element stiffness and 
mass matrices. In the consistent approach, the 
same kinematic descriptions of the elements are used 
to generate beth stiffness and mass matrices. Where­
as in the simplified approach, the mass JTlatrix is 
simplified by considering only the rigid body modes; 
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the stiffness matrix is not altered.. Similarly in the 
5tability problem, the consistent approach uses elas­
tic stiffness and geometric stiffness matrices derived 
from the same element displacelllent distributions 
whereas in the simplified approach a simpler 
geometric stIffness matrix based on the rigid body 
modes of the element is used and the elastic stif(­
ness matrix remains unaltered. For the sake of 
completeness we' present· here certain important 
details in the consistent and simplified formulations 
of vibrations and stability of beam,s. 

CONSISTENT APPROACH: 

A displacement distribution 'w~ over each beam 
element appropriate for studies of the behaviour of 
the beams can be taken as 

... (I) 

The four free constants ao, a{, a2 and a3 in Eq. 
(I) can be obtained in terms of the end conditions of 
the element namely the two lateral displacements 
Vu V2 and the two rotations Va. v •. 

The strain energy 'u' in the element is given by 
I 

I J d2
w . U=- EI ( __ )2 dx 

2 dx2 

... (2) 

o 

The 5tiffness coefficient klJ can be obtained from 

kIJ=-~ ... (3) 
aVJ aVI 

where i and j take values from I to 4. Similarly the 

elem'ents of the mass matrix mil and the elements of 
the geometric stiffness matrix glJ can be obtained 
froni the expressions' 

a2 T 
mlJ = ---­

aVJ aVI 
a' W and gil = ---­

aVJ (lVI (4) 

The assembled stiffness matrix lK], mass matrix 
[M] and geometric stiffness matrix [G] are obtained 

from 

[K] 
[M] 
[G) 

[ a J'T ~ k J [a] 
T 

[a] rmJ [a] 
- [a]T rg~ [aJ ... (7) 

where [a] is the displacement transformation matrix. 

The' order of the element stiffness, mass and.:= 
geometric stiffness n~atrices is 4 x 4 in this case .. '.~ ,. 
Using the above matrices in the appropriate govern-
ing equatiQns, one can compute the free vibration or 

the stability characteristics of beams. 

SIMPLIFIED APPROACH: 
, 

In this approach the mass and geometric stiffness 

matrices are simplified by neglecting x2 and x3 terms 
in Eq. (I) .. A linear displac-ement distribution over 
each element is as,umed as 

... (8) 

The free constants ao and a) in Eq. (8) can be 

obtained from the two la!eral displacements v) and 
V2• Following the procedure outlined in the previ-
ous section, the element mass matrix [m] and' 7:­
geometric stiffness matrix [g] can be obtained. .,"'. 

In this case the order of the element mass and 
geometric stiffness matrices is 2 x 2. For use in the 
simplified aproach a 2 x 2 element stiffness matrix in 

the directions VI and V2 can be obtained by reducing 
the consistent stiffness matrix, treating the displace-
ment V3 and v. as kinematic redundancies. 

RESULTS AND DISCUSSION 

Vibration of Tapered Beams 

Natural frequencies of a tapered cantilever 
beam of rectangular cross-section with linear depth 

.' 

where 'T' is the kinetic energy, giyen .by 

I 

: T-=J- w 2 J m w' dx 
5) taper (see Fig. 1.) have been obtained by solving ... ( 

, 2 
o 

and oW' is the work done, given by 

:W = P 
2 

I 

1 (~:r dx 
o 

.,. (6) 

1br' mr-----ffi 
Root 

cross­
section , 

TipT 
cross­
section 

Fig. 1 A Tapered Cantilever Beam 

.); 
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: the governmg equation. 

[K] {v}-w2 fM] {v}=O ... (9) 

,and using appropriate sitffness and mass rratriccs. 

Table (I) gives the frequency parameter of 
tapered cantilever beams for the first' and second 

'modes. From the table it can be seen that the 
difference between the frequency parameters obtained 

, by using simplified and consistent approaches is 
less than 0,15% for TR = 1.0 and less than 0.4'10 
when TR=O.4 for the first mode and about 2% for 
both taper ratios for the second mode. when the 
:order of the dynamical matrix is lOx 10. It may be 
noted here iliat ten elements in the simplified appro­
ach and five elements in the con.,istel'lt approach give 
the dynamical matrix of the same order lOx 10. 

Stability of Tapered Columns 

The critical loads of tapered cantiliver colums of 
r:ircular cross-section Fig. 2 are obtained by solving 
the governing equation 

[K] {v}-.\ [G] {v} =0 ... (10) 

Root .. ~-
FIg, 2 A Tapered Cantilever Column 

~nd using both the consisterit and simplified approa­
<rhes." Table (2) gives the critical load parametc.r 
of tapered cantilever columns for the first and 

t 

second modes. From the table it can be noted 
that the difference between the simplified and 
consistent element is abollt 0.2% for TR = 1 0 and 
less than 0.4% for TR=OA for the first mode and 
less than I 8% for TR= 1 ,0 and less than 2.3% for 
TR .... 0.4 for the second mode, \\-hen the order of 
dynamical matrix is 10 X 10. 

VIBRATIONS OF BEAM COLUMNS 

: The natural frequencies of a beam subjected to 
~n axial force P, depend on the value of P. In this 
case, effective stiffness '[K] err' of the beam is given 

~y: 

p 
[KJerr ccc • [K]-- [G] . 

Pcr 
... (II) 

Using the effective stiffness [K]err in Eq. (9), the 
frequency parameter of a beam column can be com­
puted. Table (3) shows the frequency parameter of a 
tapered cantiIiver beam column of rectangular 
cross-section with linear depth taper for various 

values of pP when the order of the dynamical 
cr 

matrix is 10 X 10. The difference in the frequency 
parameter by using both consistent and simplified . 
approaches is less than 0.25% for TR= 1.0, 

and Pp =0.75 and it is less than 0.7% for TR=OA, 
cr 

P 
and P- = 0.75. 

cr 

DYNAMIC STABILITY OF TAPERED COLUMNS 

when a column is subjected to periodic axial 
force, there will be two frequencies of the axial force 
between which the column will be unstable. A 
detailed study of this phenomenon using consistent 
elements can be seen in Ref. 5. For a periodic 
axial load 'P(O' on a column. the equation govern­
ing the motion of the column, in the matr;x form is 
taken to be 

[ 
1 0

2 
] [K] - (0: ± 2' ~) Pcr [G) 4 [M] {v} 

= 0 .. ' (12) 

where P (t),:z P. + PI Cos 0 t 

P. = « Pcr ; PI = ~ Pcr 

The solution of the above equation Yleh~s two 
values for the frequency of the applied oscil1:Jtory 
force between which the column is unstable. A tapered 
cantilever column of rectangular cross-section with 
linear depth taper has been analysed for variou~ taper 
ratios and the results are presented for one taper 
ratio. Table (4) gives the frequency bounds of P (t) 
on a tapered cantilever column obtained by both 
consistent and simplified approaches for TR=O.4 and 
«=0.8 for various values of the nondimensional 
parameter IL, given by IL = ~ I 2 (I-a.). The 
difference in the results is about 0.2%. 

The agreement between the simplified and the 
consistent approaches in the case of the dynamic 
stability problem is better than any other problem 
considered in this paper. An examination of thi, 
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brings out an interesting feature of the simplified 
approach. 

Let us define a parameter K(A) as the ratio of the 
eigenvalue parameter of the tapered beam (column) 
to the eigen value parameter of the umformbeam 

problems, has been made with reference to four 
representative problems. Comparison of the results 
shows that the difference in the n;sults by the 
consisten~ and the simplified approaches is small. So 
the simlified approach based on the neglect of the 
straining modes in the derivation of the mass and 
geometric stiffness matrices which simplifies their 
derivation substantially can be used in situations 
where the deriv!Hion of the consistent mass matrix 
is rather complicated. 
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TABLE 1 
Frequency parameteir (k) Of a tapered c2ntilever beam of rectangular cross-section 

TR == 1.0 TR = 0.4 
S\. Order of 
No. dynamical . Simplified Consistent % difference Simplified Consistent % difference 

matrix approach approach.· (I) - (2). x 100 approach approach (3)-(4) 
~ 100 -.;?~ (1) (2) (I) (3) (4) -(3~"'-

.... "' ... 

FIRST MODE 

1 4 12.2404 12.37~3 . -1.0939 15.1176 15.4891 -2.4574 

2 6 12.3109 12.3649 -0.4386 15.3260 15.4813 -1.0133 

3 '8 12.3340 12.3632 -0.2367 15.3944 15.4797 -0.5541 

4 io 12.3444 12.3627 -0.1482 15.4252 15.4791 -0.3494 

SEC·OND MODE " . .. 

J 4 544.9516 493.7939 93876 333.7231 316.8165 5.0660 

2 6 514.07'61 488.7132 4,9337 320.9782 307.2946 4.2631 

3 8 501.9333 . ..486.6509 3.0447 314.8637 3063757 7.6958 

4 10 496.1198 ,486.0043 20389· 3117571 306.0958 18159 

~C 
~ 

·,"n 

r\;\~:! 

~ 
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~, 
TABLE 2 

Critical load parameter (A) of a tapered cantilever column of circular cross-section 

Order of TR = 1.0 TR = 0.4 
SI. dynamical 

Simplified % difference Simplified % dii'ference No. matrix Consi-tent Consistent 
approach approach (1) - (2) 

x 100 approach approach (3) - (4~ 100 
( I ) (2) III (3) (4) (3) x 

. FIRST MODE 

4 2.4993 2.4687 1.2243 0.7775 0.7671 1.3376 

2 6 2.4815 2.4676 0.5601 0.7658 0.7599 0.7704 
~ .j 

3 8 2.4753 2.4675 0.3151 0.7618 0.7578 0.5251 '''' r 4 10 2.4725 2.4674 0.2063 0.7599 07571 0.3685 

,~ , . 
!SECOND MODE 

I I 4 248721 22.9462 7.7432 5.0492 3.8591 23.5701 

, 2 6 23.3699 22.3736 4.2632 4.42)W 4.2172 4.7605 

3 8 22.8558 222h21 2 597() 4.2394 4.1237 2.7292 "1 

4 10 22.6205 22.2299 1.7268 4 1552 4.0619 2.2454 

TABLE 3 
Frequency parameter (k) of a tapered cantilever beam column of rectangular 

cross-section - First mode 

TR = 1.0 TR = 0.4 

SI. p 
% 'difference S No. Per Simplified Consistent Simplified Consistent % difference 

approach approach (I) - (2) 
·x 100 approach approach (3) - (4) x 100 

(I) (2) (I) (3) (4) ,(3) 

~ 

I ~ -0.50 17.9019 17.9231 -0.1184 21.2937 21.3403 -0.2188 

2: -0.25 15.1647 15.1847 -0.1319 18.4588 18.5100 -0.2774 

3:, 0 12.3444 123627 -0.1482 15.4252 ·15.4791 -0.3494 

4 .25 9.4307 9.4466 -0.1686 12.1432 12.1967 -0.4406 

~ 0.50 6.4118 6.4240 -0.1903 8.5459 8.5932 -05535 

6 0.75 3.2737 32808 -0.2169 4.5410 4.5726 -0.6959 

7 ' 1.00 0 0 0 0 

The order of the dynamical matrix in both consistent and simplifled approaches is 10 x IO .-



188 JOURNAL OF THIl AERONAUTICAL SOCIETY OF INDIA [VOL. 22, No.3· 
--- ,--_ .... 

-'1' 

TABLE 4 

Frequency bounds of the applied oscillating load for the dynamic stability of a tapered 
cantilever column of rectangular cross-section 

TR = 04 & ex = 0.8 

FRI == EJ FR 2 = ~ 
Sl. WI 0(1 
No. !L 

Consistent % difference consistent % difference Simplified Simplified 
approach approach (1)-(21 

x 100 I approach approach ~ (4) xlOO 
(4) (3) (I ) (2) ( I ) 

I' 
0) 

J a 0.9770 0.9788 . -0.1242 . 0.9770 0.9788 -0.1842 

2 0.1 0.9293 0.9311 -0.1937 1.0219 1.0238 -01859 

3 0.2 0.8785 0.8803 -0.2049 1.0646 1.0665 -0.171'5 

4 0.3 0.8240 0.8257 -0.2063 1.1 052 1.1071 - 0.1719 

5 0.4 0.7650 0.7666 -0.2092 1.1440 1.1459 -0.1661 

6 0.5 0.7002 0.7018 -02285 1.1812 1.1830 -0.1524 

The order of the dynamical matrix in both consistent and simplified approaches is 10 x 10. 

TABLE 5 

Parameter 1: of a tapered cantilever beam of rectangular cross-section 

S1. Order of 
No. dynamical 

matrix 

FIRST MODE 

4 

2 6 

3 8 

4 10 

SECOND MODE 

1 4 

2 6 

3 8 

4 10 

Simplified 
approach 

(I) 

1.2350 

1.2449 

1.2481 

1.2495 

0.6124 

0.6244 

0.6273 

0.6284 

...... -_._ .......... - ,.-._.-._-_ .... --_ .... _ ... _----- - ----- .... ~ "-'- -~---:'" ........... --

TR = 0.4 

Consistent 
approach 

(2) 

1.2517 

1.2~20 

1.2521 

1.2521 

0.6416 

(\.6288 

0.6296 

0.6298 

% difference 
(I)-{2) xIOO 

II) 

~ 1.3522 

-(l.5703 

-0.3205 

-02081 

-4.7681 

-0.7047 

-0.3666 

- 0.2228 

" 

~ 

ell) 
~ 

~ 


