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SUMMARY

Classical displacement method of the finite
"element analysis of eigenvalue problems requires
"the use of consistent and conforming elements.
“However, simpler approaches, based on relaxing
. the condition of ccnsistency of the element des-
~criptions, such as lumped inertia force method
‘and others are also found to yield satisfactory
“results. In this paper we make a comparative study
. of the consistent and simplified approaches with
‘reference to four represeniative problems. In the
.simplified approach studied in this paper, the con-
tribution of straining modes in the derivation of
“the mass and geometric stiff ness matrices is negl-
ected and this simplifies their derivation substanti-
.ally.  The results indicate that this simplification
introduces only small errors in the eigenvalues.

NOTATION ;
E Young's modulus
I moment of inertia
Io moment of inertia of a tapered beam or
: column at the root section
frequency parameter of the beam defined
as k = MLt
EIl,
length of the beam element
length of the beam or column
mass per unit length of the beam
axial load on the colemn
critical load of the column
P(t), Py, Ps see equation (12)
TR taper ratio of the tapered beam or column,

deﬁned as fRz a_ (see Figs. (1) and (2))

D
critical load parameter of the column defined
PcrL2
“El,
circular frequency of the beam

as A=

fundamental frequency of the beam
frequency of the periodic axial force on the
column ’

Q,, Q, frequency bounds, of the axial periodic
force on the column, between which the
column is unstable.

wy

Q

~

INTRODUCTION

With the advent of high speed digital computers,
matrix methods of structural analysis received consi-
derable attention In 1965, Archer! proposed a
consistent formulation for these problems which has
been very widely adopted for many interesting
problems. An extensive exposition on the topic can
be seen in Ref. (2). However some of the formula-
tions, which were not based on consistent element
descriptions such as the lumped mass method, lum-
ped incrtia force method® are also found to yield
accurate results... A similar formulation for stability
problem can be seen in Ref. (4). The purpose of
this paper is to systematically study the implications
of the use of simplifying assumptions in the element
representations. * In this paper, four representative
problems have been studied by using the consistent
as well as simplified approaches. Comparison of the
results indicate that the use of simplified mass and
geometric-stiffness matrices also yield results to
comparablc degree of accuracy as the consistent
formulation.

CONSISTENT AND SIMPLIFIED APPROACHES

The disolacement formulation of the free vibra-
tion problem. includes the element stiffness and
mass matrices. In the consistent approach, the
same kinematic descriptions of the elements are used
to generate beth stiffness and mass matrices. Where-
as in the simplitied approach, the mass matrix is
simplified by considering only ihe rigid body modes;
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the siiﬁ'ness matrix is not altered. - Similarly in the

stability problem, the consistent approach uses elas-
tic stiffness and geometric stiffness matrices derived
from the same element displacement distributions
whereas in the simpliﬁe‘d approach a simpler
geometric stiffness matrix based on the rigid body
modes of the element is used and the elastic stiff-
ness matrix remains unaltered. For the sake of
completeness we present - here certain important
details in the consistent and simplified formulatlons
of v1brat10ns and stablllty of beams

CONSISTENT APPROACH :

A displacement distribution ‘w’, over each beam
element appropriate for studies of the behaviour of
the beams can be taken as

w(x)=ay+a,x+2a,x2+a,x® .. (D

The four free constants a,, a,, a, and a, in Eq.
(1) can be obtained in terms of the end conditions of
the element namely the two lateral dlsplacements
vy, v, and the two rotations vg, v,.

The strain energy ‘U’ in the element is given by
: i
1 dw
o

U= . (2)

The stiffness coefficient kiyj can be obtained from

— ot U . (3)
ki ovy a1

where i and j take values from I to 4. Similarly the
elements of the mass matrix myy and the elements of
the’ geometric stiffness matrix gy can be obtained
from the expressions’

my = - Ch d - W
W= v v gy = ovy V1 . 4)
where ‘T’ is the kinetic energy, given by"
: . !
| 'r.='-;- wﬂj m wt dx ~ )
o
and ‘W’ is the work_donc, given by
. (6)

W=

dw \e |
(dx) dx

/
7 |
2

o

The assembled stiffness matrix (K], mass matrix

(M] and geometric stiffness matrix [G] are obtained
from

"[K] = [a)" k] [a]
(M] = [a]" fm] [a]
- [(G) = [a) g3 (a] NG

where [a] is the displacement transformation matrix.

The order of the element stiffness, mass and
. . . . s ]
geometric stiffness matrices is4 x 4 in this case. ~*"

Using the above matrices in the appropriate govern-
ing equations, one can compute the free vibration or
the stability characteristics of beams.

SIMPLIFIED APPROACH :

In this approach the mass and geometric stiffness

matrices are simplified by neglecting x? and x® terms

in Eq. (1). * A linear displacement distribution over
each element. is assumed as

W (x)=a,+a; X . (®

The frec constants a, and a, in Eq. (8) can be
obtained from the two lateral displacements v, and
vy.  Following the procedure outlined in the previ-
ous section, the element mass matrix [m]
geometric stiffness matrix [g] can be obtained.
In this case the order of the element mass and
geometric stiffness matrices is 2x2. For use in the
simplified aproach a 2 x2 element stiffness matrix in
the directions v, and v, can be obtained by reducing
the consistent stiffness matrix, treating the displace-
ment v, and v, as kinematic redundancics.

RESULTS AND DISCUSSION

Vibration of Tapered Beams

Natural frequencies of a tépercd cantilever
beam of rectangular cross-section with linear depth
taper (see Fig. 1.) have been obtained by solving

A 2
¥ E -+ b n-‘
D e | d
4 E ' Tip T
Root
_ Cross ~
;:er&fgn g section
Fig. 1 A Tapered Cantilever Beam

and
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;the governing equation.
K] (v}—a? [M] {v}=0 - 19)
‘and using appropriate sitffness and mass matrices.

Table (1) gives the frequency parameter of
tapered cantilever beams for the first and second
'modes. From the table it can be seen that the
difference between the frequency parameters obtained
by using simplified and consistent approaches is
less than 0. 15% for TR=1.0 and less than 0.4%,
when TR=0.4 for the first mode and about 2%, for
both taper ratios for the second mode, when the
order of the dynamical matrix is 10x 10, It may be
noted here that ten elements in the simplified appro-
ach and five elementsin the consistent approach give
the dynamical matrix of the same order 10x 10.

Stability of Tapered Columns

* The critical loads of tapered cantiliver colums of
circular cross-section Fig. 2 are obtained by solving
the governing equation

(K] {v}—2 [G] {v} =0

@i\a@

Root

. (10)

&

Tlp

“Con

Fig, 2 A Tapered Cantilever Column

and using both the consistent and simplified approa-
ches..” Table (2) gives the critical load parametcr
of tapered cantilever columns for the first and
second modes. From the table it can be noted
that the difference between the simplified and
consistent element is about 0.2%, for TR=10 and
less than 0.49% for TR=10.4 for the first mode and

~ less than 1 8% for TR=1.0 and less than 2.3%, for
TR=04for the second mode, when the order of
dynamucal matrix is 10 x10,

VIBRATIONS OF BEAM COLUMNS

~ The natural frequencies of a beam subjected to
an axial force P, depend on the value of P. in this
casc, effective stiffness ‘[K] ers’ of the beam is given

[K]enr[K]—% [G] )
cr

Using the effective stiffness {KJerr in Eq. (9), the
frequency parameter of a beam column can be com-
puted. Table (3) shows the frequency parameter of a
tapered cantiliver beam column of rectangular

cross-section with linear depth taper for various

values of - when the order of the dynamical

P
Per _
matrix is 10X10. The difference in the frequency
parameter by using both consistent and simplified -
approaches is less than 0.25% for TR=1.0,

B =0.75 and it is less than 0.7, for TR =0.4,
Cl’

and [;:—075

and

DYNAMIC STABILITY OF TAPERED COLUMNS

when a column is subjected to periodic axial
force, there will be two frequencies of the axial force
between which the column will be unstable. A
detailed study of this phenomenon using consistent
elements can be seen in Ref. 5. For a periodic
axial load ‘P(t)’ on a column. the equation govern-
ing the motion of the column, in the matrix form is
taken to be

[wi-extoraie -2 ] o
=0

where P (t).= Py + Py Cos Q t
Pa=<1Pcr§Pl =B Per

- (12)

The solution of the above equation yields two
values for the frequency of the applied oscillatory
force between which the column is unstable. A tapered
cantilever column of rectangular cross-section with
linear depth taper has been analysed for various taper
ratios and the results are presented for one taper
ratio. Table (4) gives the frequency bounds of P (t)

~on a tapered cantilever column obtained by both

consistent and simplified approachcs for TR=0.4 and
«=0.8 for various values of the nondimensional
parameter ., given by p=8/2 (l—«). The
difference in the results is about 0.2%,.

The agreement between the simpiified and the
consistent approaches in the case of the dynamic
stability problem is better than any other problem
considered in this paper. An examination of thi:
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brings out an mterestmg feature of the simplified
approach.

Let. us define a parameter K(X) as the ratio of the
eigenvalue parameter of the tapered beam (column)
to the eigen value parameter of the uniform beam

_(column), each obtained by using. same number
of elements. Table (5) shows the comparison of
this parameter obtained both;by the consistent
and  simplified  approaches Apparently  this
parametcr is closer to the consistent formulation
than the results presénted in Table 1. This high
accuracy is due to the definition of the parameter
- which introduces compensating " errors. This feature
~may be used with advantage in the analysis of

has been made with reference to four
representative problems. Comparison of the results
shows that the difference in the results by the
consistent and the simplified approaches is small. So
the simlified approach based on the neglect of the
straining modes in the derivation of the mass and
geometric stifiness matrices which simplifies their
derivation substantiaily can be used in situations
where the derivation of the consistent mass matrix
is rather complicated.

problefns,
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TABLE l
Frcquency paramete)r (k) of a tapered centilever beam of rectangular cross-section
. TR = 1.0 ‘ TR =
SI.  Order of — e -
No. dynamical .Simplified Consistent 9%, difference | Simplified Consistent % difference
' matrix approach approach: (1) — (2). x 100 approach approach  (3)—(4) 100
’ 1) @ - M- : 3) G 3) ,
FIRST MODE
1 4 12.2404 12.3743 . —1.0939 15.1176 15.4891 —2.4574
2 6 12.3109 12.3649 —0.4386 15.3260 15.4813 —1.0133
3 8 12.3340 12.3632 - —0.2367 15.3944 15.4797 —0.5541
4 10 12.3444 123627  —0.1482 15.4252 15.4791 —0.3494
SECOND MODE o
1 4 - 544.9516 493.7939 9 3876 333.7231 316.8165 5.0660
2 6 514.0761 488.7132 4,9337 320.9782 307.2946 - 4.2631
3 -8 501.9333 . .486.6509 3.0447 3148637 306.3757 2.6958
4 10 496.1198 .486.0043 20389 311.7571 306.0958 18159
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Critical load parameter (1) of a tapered cantilever column of circular cross-section

TABLE 2

Order of TR = 1.0 TR = 0.4
Sl dynamical _. . . . L . .
No. y::;trl& Simplified  Consi-tent % difference Simplified  Consistent % diiference
. approach approach _ (1) —(2) ool approach approach _(3)— (4! ..
(1 (2) (1 3) (4) 3)
' FIRST MODE '
; | 4 2.4993 2.4687 1.2243 0.7775 0.7671 1.3376
2 6 2.4815 2.4676 0.5601 0.7658 0.7599 0.7704
L3 8 2.4753 2.4675 0.3151 0.7618 0.7578 0.5251 -
& 4 10 2.4725 2.4674 0.2063 0.7599 07571 0.3685
'SECOND MODE
vl 4 24 8721 22.9462 7.7432 5.0492 3.8591 23.5701
2 6 -23.3699 22.3736 4.2632 4.42%80 4.2172 _ 4.7605
3 8 22,8558 22 2621 25976 4.2394 4.1237 2.7292 : 4
4 10 22.6205 22.2299 l.7>268 4.1552 4.06019 2.2454
TABLE 3
Frequency parameter (k) of a tapered cantilever beam column of rectangular
" cross-section — First mode
3 TR = 1.0 TR = 0.4
. SI' P . . . 0/ A . . . o H
o No. Per Simplified  Consistent % difference Simplified Consistent % difference
Y ! ’: approach approach (M —(2) | 00| approach approach G =@, 00
(1 V3] () (4) . (3)
! —0.50- 17.9019 17.9231 " —0.1184 21.2937 21.3403 —0.2188
2; —-0.25 15.1647 15.1847 —-0.1319 18.4588 18.5100 -—0.2774
3 0 12,3444 123627 —0.1 482 15.4252 -15.4791 —0.3494
4l 25 9.4307 9.4466 —0.1686 12.1432 12.1967 —0.4406
b 0.50 6.4118 6.4240 —0.1903 8.5459 8.5932 —05535
6 0.75 i 3.2737 3 2808 —~0.2169 4.5410 4.5726 ~0.6959
7 1.00 0 0 — 0 0 -

The order of the dynamical matrix in both consistent and simplified approaches is 10 x 10
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: TABLE4 . )/
Frequency bounds of the applied oscillating load for the dynamic stability of a tapered
cantilever column of rectangular cross-section
TR = 04 & « = 0.8

N
w, wy

@

Simplified  Consistent "o diiference Simplified  consistent % difference

approach approach _(1) — (2) 00| approach  approach _(3) — (4) 4o

Q)] (2) (1 S 4) (3)

0 0.9770 09788 - —0.1842 10.9770 09788  —0.1842
0.1 0.9293 09311  —0.1937 1.0219 10238  —01859
0.2 0.8785  0.8803 —0.2049 1.0646 1.0665  —0.1785 ( @
03 0.8240 0.8257 —0.2063 1.1052 L1071 -01719 B
0.4 0.7650 07666 —0.2092 1.1440 1.1459  —0.1661
0.5 0.7002 0.7018 —02285 1.1812 11830 —0.1524

The order of the dynamical matrix in both consistent and simplified approaches is 10 x 10.

TABLE § : : ~

Parameter k of a tapered cantilever beam of rectangular cross-section

, TR = 0.4
Sl. Order of , _
No. dynamical Simplified Consistent % difference
matrix approach * approach =112 400 .
(1 (2) (0 (r)
FIRST MODE | 7
o 4 1.2350 12517 —1.3522
2 6 1.2449 1.2520 —0.5703
3 ‘8 1.2481 1.2521 —0.3205
4 10 1.2495 1.2521 —0 2081
SECOND MODE
1 4 0.6124 0.6416 —4.7681
2 6 0.6244 0.6288 . —0.7047
3 8 0.6273 0.6296 —0.3666
4 10 0.6284 0.6298 - 0.2228




