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Transverse Vibrations of Trusses’

Synopsis

Lumped mass methods have been-
extensively used to obtain natural frequen-
cies and mode shapes of beams in trans-
verse vibration, Lumped inertia methods
have also been used in studying vibration -
characteristics of beams and girder floors.
In this paper characteristics of transverse
vibrations of pin jointed trusses are
obtained by the use of a rational method
of lumping inertia forces. The effective
inertia force at each joint is determined by
considering the distribution of inertia force
in all the members meeting at the joint.
Natural frequencies of transverse vibration
obtained by this. method are compared
with those obtained by the method of
lumped masses and the discrepancies.are
found to ‘bé' considerable particularly at
higher frequencies. A method of condens-
ing matrices to obtain natural frequen-
cies is also.included. -

Introduction

In many cases a continuous structure
is idealized into a structure with lJumped
masses at discrete points. The method
developed by Myklested! for analysis of
transverse vibrations of beams follows this
procedure. Although such methods are
widely used because of their simplicity,
there does not seem to be sufficient justifi-

by A.V. KRISHNA MURTHY}
and C. V. JOGA RAO}

cation for such lumping of masses. Recog-
nizing the necessity for a more rational
approach Bleich® introduced dynamic
reactions considering inertia forces in the
analysis of vibrations of beam and girder
floors. Leckie and Lindberg® in a recent
paper pointed out the errors in the lumped
mass approach.

The dynamic equations of equilibrium
in the form of differential equations
governing vibration problems involve
clastic and inertia forces, Hence it would
be more rational to suitably lump these
forces for idealizing a continuous system
into a discrete system,

However, there is one inherent difficul-
ty in dealing with the inertia forces. These
cannot be explicity-- obtained until the
entire problem is solved, although an
iterative procedure can be developed to
get over this difficulty. By using an
approach similar to the L matrix approach
developed by Argyris¢ in connection with
the static analysis of wing pannels, a’
direct solution of the problem is possible.
This procedure has been used in the
analysis of vibration characteristics of the
plane pin-jointed trusses.

A pin-jointed truss has many natural
frequencies, some of which pertain prima-
rily to the overall vibration of the truss
and the others primarily to those of the
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individual members. The frequencies of
the individual members are, in general,
large compared to the overall frequenciés
of the truss. ‘

In practice the individual members
have negligible flexibility in’' bending com-
" pared to the truss as a whole. In this
paper the individual membeérs are assumed
to be rigid in bending ; asja consequence
a linear inertia loading isi present along
each member. This inertia loading is
replaced by two equivalent inertia forces
at the ends of the member. The total
inertia forces at each jointis obtained by
summing the contribution at that joint :of
all the members meeting there. The

inertia forces thus obtained are incorpora- .

ted into the dynamic equation of equilib-
rium to obtain the natural frequencies of
the truss. These are compared with those
obtained by lumping the masses, at the
Joints in the conventional way. ’

~“Method of obtaining equivalent iner-
tia forces '

Considering a. typical member AB of
the truss, inclined at an angle o to the
y axis as shown in Fig. 1, the total inertia
force of the element, I 4 I is” obtained
as an integral, over the léngth ‘b of the
element, involving the mass  per unit
length of the member m, and the accelera-

_tion j in the x direction at any distance
y from A, as Co '
bo
m .
€Os oc
o

TIa + 1z = i dy (D)

- The acceleration % is given in -terms of
}C‘A' and E S the accelerations at - A and B

respectively as

E=i, + -

%
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Taking montents about B and A, one
obtains 1o and Iy , the equivalent inertia
forces at A and B respectively, as

bo

I ¢ m -

df_m ;

b= ’ cos oc T (bo—y)dy...(2)
Lo

bo
1 m
7])_0—‘ COSs oc
(o]

In vdy (3

When m is.constant, Eqs. 2 and 3 can be
rewritten in terms of the total mass Mas
of the member AB and the end accelera-
tion as -

I, = M, [£+ 223 (20)
R S

o = My [+ 2

A ...(3a)
g (

Method of analysis

Examination of Eqs. 2a and 3a reveals

-that the equivalent inertia force at a joint

A depends not only on.the acceleration at

" that point but also on the accelerations at

its neighbouring points, This fact is
completely missed in conventional lumped
mass methods.  Herc it is convenient to
introduce the concept of inertia cocfficients
defined as-follows: The inertia coefficient
myy is'the equivalent inertia force in the
direction i <uc to 0nit acceleration in the
direction j. The contribution of the
member (ij) to’ the inertia coefficient my
is denoted 'by mg?). (Itis obvious that
in the superscript (ij), 1 and j cannot be
equal). " Using this notation Eqs. 2a and
3a can be written as

(Am) ..

(AB) ..
= 1 m h
o Aa KA + A

()

_and

.(3)

AR)
Iy = m! )x" + m

(an)
X
BB A

BA

- where the inertia coefficients are given by,

m®) _ ptan) _ Mas 3
AA BB 3

mi® e _ Mas

AB *UBA 6

...(6)

» +.Using Eqs. 4:and 5, the inertia force at

any joint i can be written as
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I =(3; miN e+ s m 5 ...

Let
{in

Imy;

J
Then Eq. 7 can be written as

I} = my 3 + Zmy %

J

which can be put in the matrix form

{1} = [my] {z} - -+ (8)
It may be emphasized here that my=myj
and exists only when i and j are neigh-

= my; m'('U)

bouring joints and my = s mgi” sum-

: J . .
mied over alf the members (ij) meeting at i.

Assuming sinusoidal vibration of natural -

frequency w, Eq. 8 may be written in
terms of xj, the x displacement at the
joint j, as

1L} = — w? [my] {x} -.(9)

The dynamical equation ofequilibriums?
in terms of the stiffness matrix Kjy and the
inertia forces I is ’ :

(K] {a} + {L} =
Substituting for I from Eq. 9, pre-multi-
plying by the flexibility matrix [Fiyj] and
introducing I  for unit matrix, one
obtains

H—w? (Fy) (my)] {x)} =0 ..(10)
from which the natural frequencies and
mode shapes can be computed.

Condensation of matrices

-In many types of trusses when trans.
" verse displacements of adjacent joints are
. nearly equal, the size of the matrix in
equation (10)
much loss of accuracy®.

Consider as an example, the case of a
truss in which

(1)
Then elements equal to the number of
approximate equalities can be omitted

from the {x;} matrix and the new matrix
designated as {x‘;} can be related to the

Xk = Xj; Xm = Xg; ... etc.

original matrix  {x;} by means of ‘the
transformation matrix [b] as

{x)} = [b] {x;} (12

can be reduced without -
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The flexibility matrix corresponding to
the starred system

[Fulis
(F},] = [b] [Fyy] [b7] ...(13)

Considering the transformation matrix
j P
[B] which transforms {x_|} into {x;} as

{x} = [B] {* . (14)

lxj

one gets the [my] mdtrix in the starred
system designated by [mf’J ] as
1
* —

[, ] = (B'] [my] [B] (15)

The governing equations of dynamical
equilibrium in the starred system corres-
ponding equation (10) in original ‘system
15

= (55 G5} =0 ..(16)

Illustrative numerical examples

The approach developed in this paper
is applied to two simple examples. The
results obtained are compared with those
obtained by the lumped mass approach,

NANNNNN

NN

[

-

Py —

F16. 2. — A Piv JoINTED TrUSS witi ONE Bay.

Example 1

Consider a single bay truss as shown in
Fig. 1. The length, area of cross-section,
Young’s modulus of it member are
designated by /;, A; and E; respectively.
The length { has been indicated in F ig. 2.
Considering a unit load applied in the
vertical direction at joint 1, one obtains
Fy, in terms of Ny, 's, - Ny being the force
in the member i due to unit load in the
direction j, as
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“Fy=3% Nh b = .....",_;_.,.(’1+2._/_z—)
§ A| El “AE”

Similarly considering a unit load applled
in the vertical direction at joint'2,

I Ny Nyh oLy
Fp=7 Ali_éT AE‘(1+2"/2)
and _
s Ni2 &l . !
Foy=S Nz = ! 9.9
“T i AR, AE (2+2y7)
leading to

142,73

(Ful - 1+2y377
Sl = eE
| AE \ito 7 ovoyi

Consrdermg the approach of lumpmg of
inertias,

(ij)__

mu=3n= 2 s 2
 ml .

M=, g =My

My, = \\ {21 — 2l_n-l_

SRR T :]- lﬂ“ = 3
Cm [ 2492 R

lmyl = —5— e

L2 2]

For non-trivial values of x; in hq 10, the
characteristic determinant is cquated to
zero, from which the frequency, parameter
kr is to be obtained, Thus

] — -]
b 14-,- 2,/2 9+104/2

L=0

'.Wthh ylclds k-r = 0 343 1. 74)

joints. Let M(”)be the lumped mass at

iof the membcr (i) and . M“ be total
lumped massati. .

then ) » .
My = s =2V
- 2 1 2 .
S e
© Mpy=3M_ 7 '=ml
e . j g
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K [‘13+124,/2 5+10,/'z‘}.'
.

‘For non-trivial values of x; in Eq. 10,

using [My;] in . place of Lm”], results in
kr =0 305 i r)7-l

Now the procedure of condensmv the’

“matri¢és will' be demonstrated in lumped
“inertia approach. Considering the lumped

inertia  approach; treating x,=x, and

" considering only the joint 1,

x (23] { }

corresponding to Eq 12.
becomes -

13 now

Eq.

ra'»d
l-vb-‘

l+2,,/z 1422
][l+2\/z 2+'z¢w]

,{, o

[F“l

[

2l

{1 25—{-2‘/2 N
Lq 14 now reads

{230 }x.

" Eq. 15 ylelds

llH[

o 3+\/7
= 3 mf-

l_mul -

]{__1‘,}

Non-zeto \aluc of \, , from- equation (l‘))
results in l\'r = 0-338. -

By the ‘use of the values of natural
frequencies obtained'above in Eq. 10 the
amplitude ratios at'the joints 1 and 2 have’
been obtained. Ali’the results arc sum-

: . marlsed S1f, Table L.
The,same problem is" now ' solved by :
lumpmg the masses of the members at the '

1

[l T =W [}

R : . 3J
i s t

R L BN
Fic. 3. — A PiN JOINTED TRUSS WITH TWO BAYS.

IMINNNNIN

The " rlumerlcal results obtained by

’ followmg a similar procedure as in exam-

ple 1 are tabulated in Table II
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TABLE I—VALUES OF FREQUENCY PARAMETERS AND AMPLITUDE RATIOS FOR THE

TRUSS SHOWN IN FIG. 2.

Lumped Inertia Method

Lumped Mass Method

Lumped inertia method

I\f{odc'of by condensation of
vibration Frequency Amplitude Frequency Amplitude Ma;’nccs Freqll:cncy
Parameter k. Ratios Parameter k. Ratios arameter Xp
1 0-342 M =1.106 0-305 X2 =1.103 0-338
EN xn
2 1.745 I —_1.463 1.974 % o 1.573 _
Xy X1

TABLE II—VALUES OF FREQUENCY PARAMETERS AND AMPLITUDE RATIOS FOR THE

TRUSS SHOWN IN FIG. 3.

Lumped Inertia Method

Lumped Mass Method

Lumped inertia method

Mode of by condensation of
vibration Frequency Amplitude Frequency Amplitude Ma;r ices Fr eql;cncy
Parameter k. Ratios Parameter k Ratios arameter k.
} 0-392 = 1.161 0-385 X o= 1.157 0399
Xy X1
i = 2.651 1= 1.875
Xy A1
2 1.397 K= 04764 0-991 A2 0.851 1.381
X1 X1
o= 1.793 S =—1.706
Xq Xy
3 2:636 Yo = — 0901 2-130 22 = ~1.299
Ay Xy
Ha o _0.183 = 0.158
xy Rt
Conclusions existence of cross inertias is not brought

In long trusses of flexibilities of indivi-

“dual elements in bending are negligible

compared to the flexibility of the truss as
a whole, Hence for simplicity, in this
analysis the flexibilities of individual ele-
ments in bending have been neglected,

Besides the members are assumed pin--

jointed without play and the spanwise
displacements and inertias are ignored.

Once these assumptions are made, the
analysis presented in the lumped inertia
method is exact.

In the lumped mass method half the
mass of each member is lumped at its ends.
The inertia force at a joint developed by
these lumped masses is different from the
actual inertia force at that joint and the

out, These introduce errors which are
considerable at higher frequencies,

The procedure outlined in this paper
can be directly used to obtain the natural
frequencies of bridges without much error.
The presence of redundant members does
not present any difficulties. The method
can also be adapted to take into account
the response of individual members.
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APPENDIX—Notation

The following letter symbols have been adopted for use in this paper :

A; = area of cross
member ;

b .= a matrix appearing in equatiop
’

bo = projected length of the member ;

B = a matrix appearing in equation
(14) ;

E; = Young’s modulus of ith imember;

Fiy = displacement at the joint i due

to unit load at the joint j';
L

Fyy = displacement at the joint i due

to unit load at the joint j in the

starred system ;
I = unit matrix ;
I; = inertia force at i ;

Kjj = stiffness matrix ;

ki == frequency parameter given by
w2,
AE
{ = length of each bay ;
/i = length of ith member ; .
L = length of the truss;

m = mass. per unit length of the
member ; :

mgj)= inertia at the joint i due to unit
acceleration at the joint j due to
member (ij) written as super-
script (in superscript i s j) ;

my = inertia at the joint i due to unit
acceleration at the joint j ;

m;‘] = inertia at the joint i due to unit
~acceleration at the joint)j in the
starred system ;

M,y = mass of the member (ij);

section - of ith

(alpha)

M(iij)= mass at i of the member ij in the
lumped mass method ;
Mj = lumped mass at i ;
Nj; = forces in the member i due to
unit load in the direction j ;
x;y = Cartesian coordinates ; '
¥ o= a(:'celcral_"ion in the x direction ;
x = displacement at the joint i along
the x axis ; o

%1 = acceleration in the x- direction
at the joint i ;

X: = displacement at the joint i along

the x axis in the starred system ;

a = angle between the axis of a
member and the y axis ; and

(Omega) w = natural frequency,
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