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Abstract. An infinite number of conservation laws is identified for a stochastic model of
deposition and evaporation of trimers on a linear chain. These laws can be encoded into a
single nonlocal invariant, the irreducible string, which uniquely lables an exponentially large
number of kinetically disconnected sectors of phase space. This enables the number and sizes
of sectors to be determined. The effects of conservation laws on some thermodynamic properties
are studied.
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Conservation laws are known to play a very important role in determining the
behaviour of systems which evolve by stochastic dynamics. In this paper, we identify
and study an infinite number of conservation laws for a recently introduced model
of deposition and evaporation of trimers on a lattice [1,2]. These laws have a number
of interesting and useful consequences. They provide a labelling scheme to uniquely
identify each of an exponentially large number of dynamically disconnected sectors
of phase space; they clarify why steady states differ from the Gibbs state for a simple
lattice gas, even though the transition rates satisfy the detailed balance condition for
the lattice gas; and they shed light on the time-dependence of correlation functions.

The model is defined as follows. At each site i of a chain of L sites, there is a
variable n; which takes two possible values, say a if the site is occupied, and b if it
is empty. The time evolution is Markovian: In a small time dt any three adjacent
empty sites become occupied with a probability edt (trimer deposition). Any three
adjacent occupied sites become unoccupied with a probability &'dt (trimer
evaporation). If three consecutive sites are not all empty, or all full, no deposition or
evaporation takes place on those three sites. Note that the model allows for free
reconstitution of trimers. If &' = 0 (irreversible deposition only), the process reduces
to the well-studied problem of random sequential adsorption [3,4]. The
higher-dimensional generalizations of this model are also of interest [5], but we
restrict ourselves to the one-dimensional case in this paper. For simplicity, we consider
open boundary conditions throughout.

It is natural to think of the line as made of three sublattices, 4, B and C. If M,
M, and M, are the numbers of occupied sites on each sublattice, it is clear that
(M, — Mj) and (M — M) are conserved under the stochastic dynamics [1,2]. These
conservation laws imply that the state-space breaks up into many disconnected
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sectors; evidently, the number of sectors increases at least as fast as L2 for large L.
As a matter of fact, however, the number increases much faster—exponentially with
L [1,2]. The additional conservation laws responsible for this further break up into

smaller sectors in this model are not immediately obvious, and form the subject of

this paper.

A configuration of the chain is specified by giving an L-bit string composed of
letters a and b. We define a reduction rule for a string by looking for the occurrence
of any triplet aaa or bbb. If any such triplet occurs, it is replaced by the null string
¢, reducing the length of the string by 3 bits. This reduction procedure is applied
repeatedly, until we are left with a string that cannot be further reduced. We call
such a string irreducible. The irreducible string corresponding to the string S is denoted
by I(S). For example, I (aabaab) = aabaab, I (abbbba) = aba and I(abbbaa) = ¢, the
null string. The key observation that allows us to construct an infinite number of
conservation laws corresponding to trimer dynamics is the following: If § is the string
specifying a configuration of the chain, and §’ is another string obtained by a time
evolution of S, then I(S)=1I (8'). This is because the elementary Markovian step of
deposition or evaporation does not change I. Also, if two strings S and S’ correspond
to the same irreducible string, then it can be shown [6] that S can be obtained from
§" in a finite number of steps using the rules of trimer dynamics, i.e. aaa — bbb and
bbb — aaa. Thus, treated as a dynamical variable, the irreducible string is a constant
~ of motion and provides a unique label for each invariant subspace of the stochastic
dynamical evolution operator. ‘

The number N, of distinct sectors is thus the number of distinct irreducible strings
I obtainable from all possible L-bit strings. First consider strings S containing no
triplets aaa or bbb, for which I (8) is also of length L. These configurations are totally
jammed, and cannot evolve at all. As shown earlier [1,2], their number is 2F L» Where
F, are the Fibonacci numbers defined byFi=1,F,=2 Fiy=Fp, +F,fork>1.

Thus F, increases as u%, where u is the golden ratio (\/3 + 1)/2 ~ 1-618. Since all
possible irreducible strings I obtainable from strings of length L are either of length
L or obtainable from strings of length (L— 3), the total number of sectors N,
corresponding'to length L satisfies the recursion relation N L=N_;+2F,. This has
the solution

[L/3] ’
NL= ZozFL_3m (1)

ms=

where [x] is the largest integer less than x. Thus N L also grows as yu” for large L,
and the ratio N /F; tends to 2(1 — p~%)"1~2:618. As a consequence, the number
of unjammed sectors (N L — Fp) (for which only numerical results were available earlier
[1,2]) grows as u* as well.

Next we characterize the sizes of sectors. Let D(I, L) be the size of sector (I, L), ie.
the number of L-site configurations in a sector labelled by the irreducible string I.
It is convenient to introduce the generating function

al, ")=§z xED(I, L) | @

where [ is the length of the irreducible string I. First consider the sector @, which is
comprised of all configurations which are reducible to the null string ¢. (The all-
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sites-empty configuration clearly belongs to this sector.) It is useful to define a formal
series G(®) which is a sum over all distinct strings (of arbitrary length) which are
reducible to ¢. Thus

G(p)=o + aaa + bbb + aaaaaa + abbbaa + aaabbb + - .. 3)

A string S is said to be indecomposable if I(S) = ¢, and one cannot find strings ¢, t, # ¢
such that s=¢,-t, and I (t;)=1I(t;) = ¢. For example, the string aabbba is indecom-
posable while aaabbb is decomposable. Then any string § which is reducible to ¢ has
a unique decomposition of the form S = Lity'ty -1, where ty,t,,---t, are indecom-

- posable substrings, and the product of strings is understood as the standard

concatenation. operation. If G,,(¢) is the sum over all non-null indecomposable
substrings reducible to ¢, equation (3) can be rewritten as

__ ¢ | |

where the right hand side of (4) is defined by its binomial expansion. If G, (Gp) consists
of a sum over all non-null indecomposable strings which reduce to ¢ and start with
the letter a(b), then we have G.(d)=G, + G, and

G=a—t 4! a | (5a)
1"—Gb I_Gb

1 1 | ,

Gy=b——b——p, 5b

" 1-G, 1-G, (50)

Equations (4) and (5) determine G(¢). The generating function g(¢, x) for sector sizes
is obtained from the formal string sum G(¢) by substituting ¢ -1, a—x, b—x in
the latter and treating the result as an ordinary polynomial. Under these substitutions,
both G, and G, reduce to the same function h(x), which, in view of (5), satisfies

h(1— h)? = x3, (6)
Further, G,, reduces to Zh(x), $0 eq. (4) becomes

1

9(4553‘):'1‘?27(;)-

(D
Of the three solutions of the cubic equation (6), the branch on which h— 0 as x—0
is the physical branch. In view of (2) and (7), the rate of growth of D(¢, L) with L is
governed by the singularities of h(x) closest to the origin in the complex x3-plane.
This occurs when two roots of the cubic equation (6) coincide, i.e. when h = 1/3,

-~ corresponding to x> =(4/27). Thus for large L, the size of null sector grows as

L732(27/4)43 —ap exponentially small fraction of the total number of configurations,
2, ' ‘

Now consider non-null sectors, labelled by a given irreducible string I = oy oty 005 -+ a1y,
where [ is the length of I, and a; are letters taking values a and b. Analogously to
(4) and (5) we have

A T
1= H) 1= Hp) 1= Hay) ™ %@

G()= (8)
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where H(a) =G, and H(b)= G,. As a result, we find

. X ! 1 :
_ 9
o(5.x) [1 —h(x)] - 2h(x) | 9

Note that the only dependence.of the generating function on the irreducible string I
is through [, the length of I. So long as [ is finite, D(L,I) increases as (27/4)? as
L—s o0. If, however, I/L tends to a finite limit A as L— o, then D(L,I) increases as
[x(4) 1" where x(0) = (27/4)"3 and k(1) = 1. The growth constant x(4) can be determined
explicitly for arbitrary }, and is found to be ,

k() =30 — A AR+ AT | (10)

For a random string of length L, the corresponding irreducible string has an average
length Ao L where Ag=1— 3u"2/2. o

In random sequential adsorption (which is the &' =0 case of our model) it is known
that the final state is not described by an equilibrium ensemble of a simple local
Hamiltonian, and it is worthwhile to investigate whether this is true also of the
dynamical steady state when both deposition and evaporation are allowed. In
particular, consider the sector @, and let W(S,) and W(S,) be the steady state weights
of configurations S; and Sy, where S, is obtained from S, by the deposition of a
single trimer. Detailed balance then implies W(S,)/W(S,)=¢/¢' = z3 where z is the
single a-particle fugacity. This condition is the same as would hold for a simple lattice
gas with no constraint other than single occupancy of sites. The question is then
whether thermodynamic properties of our model are the same as the lattice gas. The
partition function associated with sector @ is

Z, o= Y 7" ‘ | (11)

where the prime indicates that the sum is over all strings of length L which can be
reduced to the null string ¢, and N ,(S) is the number of @’s in S. The transform
ELxLZ L.ol2) can be found on making the substitutions a—xz, b—x in (4) and (5).
Then Z is found on inverting the transform, and the mean density n, of a sites is
obtained by differentiating with respect to z. In the low-density limit, the result [6]
is n, ~ 2~ 13z, The significant point is that this differs from the answer which would
result from the Gibbs state characterized just by fugacity z (as for the lattice gas) for
which n, & z in the low density limit. Of course, there is no contradiction; we have
demonstrated only that the constraints implied by the conservation laws for trimer
dynamics restrict the ensemble to such a small portion of the full phase space that
averages over this ensemnble differ from those in the canonical ensemble.

‘It is clear that the construction of the irreducible string for a given configuration
is a non-local operation, and three sites well-separated from each other may or may

not form a reducible triplet depending on the substrings in between.- However, itis

possible to reexpress the constant of motion given by the irreducible string in a form
which appears more local. To this end, we define two 2 x 2 complex matrices A(0, x)
and A(1,x) depending on a real parameter x by '

A(n,x)=(: ""), n=0,1 | | (12)

x w*

where fi=1—n, and o is a complex cube root of unity. It is easily checked that
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A*(n,x)=1, for n=0,1, for all x. Now, for any configuration S = {n;} on the linear
J

-chain, we associate with site i a 2 x 2 complex matrix U,;(x) which is specified in

terms of {n;} by the equation
Uix) = 1 A(n;, x) ‘ ‘ (13)
i=1

where the product is ordered so that larger values of j are to the left. Clearly, we can
determine the configuration {n;} uniquely if we are given all the matrices U,. A
stochastic evolution of {n;} corresponds to a stochastic evolution of the {U,}. While
the definition of {U,;} in terms of {n;} is non-local, the stochastic evolution rules for
updating U, are local: If U;(x) and U, 5(x) are equal, then U, (x) and U, ,(x) are
changed together in a specified way with some given rate, otherwise not. In addition,
U, (x) remains unchanged by the dynamics. If we define U,_ ,(x) as the identity matrix,
the dynamics is tantamount to the stochastic evolution of a ‘string’ fixed at both
ends, the ‘displacement’ of the string being the matrix variable U;.
If we expand U (x) in a power series in x

UL(x)= ZuL,mxm: (14)

then the conservation of U, (x) implies that the coefficients Uy » which are functions
of the configuration {n;}, are constants of motion. This gives us an infinite number
of conservation laws. The first member of this family of conserved quantmes is Uy,

0V
which is of the form < ) where V, is a complex number given by

2

L
Vi=ort Y nol, ; (15)

i=1

It is easy to see that the conservation of real and imaginary parts of V, correspoﬂds
to the conservation of M, — My and My — M_.

To identify a sector completely, we have to specify the function U, (x) for all X, Or
equivalently an infinite number of coefficients u, . Let the value of U,(x) in two
configurations C; and C, be u,(x) and u,(x). Let x* be any transcendental number.
Then u, (x*) = u,(x*) implies that u, (x) = u,(x) for all x (otherwise x* would be the
root of a polynomial equation). Thus, the full family of invariants U, (x) contains no
more information than the single invariant U (x*). Indeed, we have seen that a simple
integer invariant—the binary representation of which is the irreducible string—
already gives the maximal decomposition of phase space into disjoint sectors. This
can be understood in terms of a theorem of von Neumann [7, 8] which states that
in quantum mechanics, any number of conservation laws can be encoded into a single
conservation law which carries the same information. In our case here, the master
equation for the evolution of probabilities is the analogue of the Schrédinger equation
in quantum mechanics, and conserved quantities are operators which commute with
the evolution operator. The single invariant, the irreducible string, here provides a
compact representation which, moreover, is quite useful in a practical, computational
sense. It is quite possible that similar invariants may also be constructed in other
problems with an infinite number of conservation laws.
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The existence of these conservation laws implies a slow decay of time-dependent
correlation functions in this model. Let the irreducible string be I = oy, Then
a general configuration in this sector is of the form $1018505 8505 &), ,, where

¢/’'s are substrings reducible to the null string ¢. If we treat the & strings as background,

then the time evolution corresponds to a diffusive motion of a;’s on the line. These
‘a-particles’ cannot cross each other, and in this sense act like hard-core particles.
For diffusion of hard core particles on a line, it is well known that with a finite
density of particles, density fluctuations decay as t~/2 while the root-mean-square
displacement of any given particle varies as t'/* for large times ¢ due to the caging
effects of other particles [9]. We have verified in Monte Carlo simulations that the
same behavior is obtained for the diffusion of «;s in our model in several sectors,
for t between 10 and 10,000. We also studied the time dependence of the autocorrela-
tion function of density fluctuations in the steady state, and found interesting
variations from one sector to another, from power laws with different powers, to
stretched exponentials. Details of this work will appear elsewhere [6].

We thank P Thomas for discussions, M Azam for bringing Ref. [8] to our notice,
and the referee for his useful comments.
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