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ABSTRACT

We study the model of deposition-evaporation of trimers on a line recently

introduced by Barma, Grynberg and Stinchcombe. The stochastic matrix of the

model can be written in the form of the Hamiltonian of a quantum spin-1

2
chain

with three-spin couplings given by H =
∑

i [ (1−σ−
i σ−

i+1
σ−

i+2
) σ+

i σ+

i+1
σ+

i+2
+h.c ].

We study by exact numerical diagonalization of H the variation of the gap in the

eigenvalue spectrum with the system size for rings of size up to 30. For the sector

corresponding to the initial condition in which all sites are empty, we find that

the gap vanishes as L−z where the gap exponent z is approximately 2.55 ± 0.15.

This model is equivalent to an interfacial roughening model where the dynamical

variables at each site are matrices. From our estimate for the gap exponent we

conclude that the model belongs to a new universality class, distinct from that

studied by Kardar, Parisi and Zhang.
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Many physical processes such as heterogeneous catalysis, chemical reactions on

polymer chains, adsorption on solid surfaces, etc. involve evaporation and deposi-

tion of reactants on a substrate. Recently Barma et al. have introduced a simple

model which shows that the excluded volume effect together with dissociation and

re-combination of the reactants on the surface can give rise to very interesting

dynamical behaviour. In their model they have studied a random deposition-

evaporation process of k identical atoms (called k-mers, k = 1, 2, 3...) on a surface

[1,2]. It has been shown that in one-dimension when k ≥ 3 the phase space breaks

up into an exponentially large number of dynamically disconnected sectors and

the model has infinite number of conserved quantities. It is found that in this

case the auto-correlation function in the steady state decays with time t as t−1/4,

t−1/2, t−0.59 or as e−
√

t, depending on the initial condition. The behaviour of the

auto-correlation function for different initial conditions is understood in terms of

the random walk of the substrings which constitutes what is called an irreducible

string [4]. However for the steady state corresponding to the empty configuration

as the initial condition, this analysis does not apply. In this case, for trimer model,

Monte Carlo simulations show power law decay of autocorrelation function with an

approximate value for the exponent 0.59 [5]. A theoretical understanding of this

exponent is still lacking. Thus our main motivation is to understand the dynamics

of trimer model in this sector. We have done a study of the trimer model on a

one dimensional lattice, by exact diagonalisation of the stochastic matrix in this

sector.

In this letter we restrict ourselves to the study of trimers (k=3) on a line

(d=1). We consider a ring of L sites. At each site i is a dynamical variable ni

which takes values 0 or 1, depending on whether the site is occupied or not. In

time a configuration {ni} evolves stochastically by Markovian dynamics as follows:

Any three adjacent empty sites can become occupied with a rate ǫ and any three

adjacent occupied site can become empty with a rate ǫ′.

If P (C, t) is the probability that the ring has configuration C at time t, then
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P (C, t) satisfies the master equation

∂

∂t
P (C, t) =

∑

C′

WCC′P (C ′, t) (1)

Where the transition rate matrix Ŵ for the case ǫ = ǫ′ can be written as

Ŵ = ǫ

L
∑

i=1

[

(1 − σ−
i σ−

i+1
σ−

i+2
) σ+

i σ+

i+1
σ+

i+2
+ h.c.

]

(2)

where σ−
i and σ+

i are the Pauli annihilation and creation operators at site i.

Since Ŵ is a stochastic matrix where the transition rates satisfy detailed bal-

ance, all its eigenvalues are real and non- positive. The infinite number of con-

servation laws of this Hamiltonian can be encoded into a single conservation law

of the irreducible string [3]. For any configuration the irreducible string is defined

as follows: From the L-bit string of 0’s and 1’s representing the configuration, we

recursively delete any consecutive occurrence of three 0’s or 1’s until no further

deletions are possible. The irreducible string is conserved under dynamics and can

be used to label uniquely each of the dynamically disconnected sectors. There is a

large degeneracy for the eigenvalue 0, reflecting the large number of conservation

laws in the model. An example of an eigenvector with zero eigenvalue is any a

configuration which has no 3 adjacent 0’s or 1’s. Such a state cannot evolve in

time. The number of such configurations has been shown to vary as µL for large

L, where µ is the golden mean (
√

5 + 1)/2 [3].

We can exactly diagonalise Ŵ in some almost totally jammed sectors. For

example, if the sector corresponds to an irreducible string of length L − 3, then

it is easy to see that the corresponding stochastic matrix in general has size of

O(L2). Under dynamics the position of the reducible block on the ring changes

and its motion can be described as a random walk. In this case it can be shown

that the mean square displacement increases linearly with time. This corresponds

to a dynamical exponent of z = 2. Sectors with irreducible string length L − 6
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correspond to diffusion of 2 interacting random walkers. In this case the size of

the stochastic matrix will be of O(L3). When the two walkers are next to each

other, they stay there longer, which corresponds to an attractive interaction. The

dynamical exponent will be 2 in this case also.

The most interesting sector corresponds to the case when the length of the irre-

ducible string (l) is very small compared to L. In this case Monte Carlo simulations

[5] have shown that the attractive interaction between these “random walkers” gives

rise to a sub-diffusive behavior, with the dynamical exponent z > 2. In this paper,

we estimate this exponent by numerically diagonalising the stochastic matrix for

small systems and assuming finite size scaling.

For numerical diagonalisation it is desirable to reduce the size of the matrix

as much as possible by making use of the known symmetries and conservation

laws of the model. For periodic boundary conditions, and for the special case of

deposition and evaporation rates equal (ǫ = ǫ′), in addition to the conservation law

of the irreducible string, one can make use of the three symmetries of the system

namely translation, reflection and flip, to reduce the size of the matrix by about a

factor of 2L. Let T̂ , P̂ and F̂ be the operators corresponding to these symmetries.

They are defined by

T̂ |n1, n2, .., ni, .., nL〉 = |n2, n3, .., ni+1, .., nL, n1〉

P̂ |n1, n2, .., ni, .., nL〉 = |nL, nL−1, .., ni, .., n1〉

F̂ |n1, n2, .., ni, .., nL〉 = |n̄1, n̄2, .., n̄i, .., n̄L〉 ; where n̄i = 1 − ni

(3)

Here |n1, n2, .., ni, .., nL〉 is a vector in the Hilbert space representing the configu-

ration {ni}. These operators satisfy the following algebra

[T̂ , F̂ ] = [P̂ , F̂ ] = 0

T̂L = P̂ 2 = F̂ 2 = 1

T̂ P̂ = P̂ T̂−1

(4)

Note that T̂ and P̂ do not commute. The three operators which simultaneously
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commute with Ŵ and with each other are F̂ , P̂ and
(

T̂ + T̂−1

)

. Let their cor-

responding eigenvalues be f , p and 2 cos(k) respectively, where f = ±1, p = ±1

and k = 2nπ/L; n = 0, 1, ..., L − 1. The simultaneous eigenvectors of these three

operators are of the form

|k, f, p, +〉 = (1 + fF̂ )(1 + pP̂ )

L
∑

r=1

T r cos(kr) |C〉

|k, f, p,−〉 = (1 + fF̂ )(1 + pP̂ )

L
∑

r=1

T r sin(kr) |C〉
(5)

where |C〉 is any of the vectors |{ni}〉.

We have used the states (5) as the basis for the stochastic matrix. For the

null sector, the matrix splits into 2L blocks, corresponding to combinations of the

2 eigenvalues of F̂ and the L eigenvalues of T̂ . Of these, due to a Kramers type

degeneracy in the eigenvalues for the momentum values k and 2π − k, we can fix

p to always be equal to unity, and sweep over only half of the allowed momentum

values. For lattice lengths which are not multiples of three, there is an additional

degeneracy in the eigenvalues for f = 1 and f = −1, since these states and their

flipped counterparts are not connected by the dynamics. Since the size of the null

sector ∼ (27/4)L/3L−3/2 [3], the size of each block ∼ (27/4)L/3L−5/2. For any

lattice length, each block of the matrix is real and sparse, since all rows or columns

have at most L non-zero entries.

The difference between the largest and the second largest eigenvalue of the

complete matrix is proportional to the inverse relaxation time. The largest eigen-

value is zero and it lies in the block k = 0, f = 1. To find the second largest

eigenvalue of the full matrix, we have numerically computed the largest eigenvalue

in all the other blocks, and the second-largest eigenvalue in the k = 0, f = 1 block.

Simple iteration of the eigenvector after suitably shifting all the eigenvalues, con-

verged sufficiently fast for these blocks. This method preserves the sparseness of the

blocks, which is necessary to keep the memory requirement of the program as low
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as possible. For the k = 0, f = 1 block, we computed the second largest eigenvalue,

by ensuring orthogonality of the iterated vector to the eigenvector corresponding

to the zero eigenvalue.

We have computed these eigenvalues for lattice sizes ranging from L = 3 to

L = 30. When L is a multiple of 3, the irreducible string in the null sector has

length zero and in this case we have diagonalized the stochastic matrix for both

the f = 1 and f = −1 case. For the case f = −1 the smallest eigenvalue occurs

for k = 2π(1 − 1/L)/3, and for the case f = 1 it occurs for k = 2π/3. When

L = 3n + 1 and L = 3n + 2, where n is an integer, the irreducible string in the

sector where the initial state is all empty has length 1 and 2 respectively. In this

case, as explained earlier, the eigenvalues for f = 1 and f = −1 are degenerate.

We have estimated the gap exponent z for each of these 4 sets of data, by assuming

the scaling relation λ ∼ L−z. We define the effective exponent

zL =
log[λL−3/λL]

log[L/(L − 3)]
. (6)

The sizes of the matrices, eigenvalues and estimate of the dynamical exponent zL

are shown in tables below. The zL values are also plotted as a function of 1/L in

figure 1.

Length of
the lattice

3
6
9

12
15
18
21
24
27
30

f = −1
Matrix Size λmin zL

1 −6.00000
1 −2.00000 1.58492
2 −0.87113 2.04977

10 −0.43876 2.38400
35 −0.26065 2.33375

170 −0.16932 2.36607
815 −0.11744 2.37373

4176 −0.08545 2.37929
21872 −0.06455 2.38333

118175 −0.05020 2.38672
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Length of
the lattice

6
9

12
15
18
21
24
27
30

f = 1
Matrix Size λmin zL

1 −2.00000
2 −1.25553 1.14828

10 −0.67412 2.16180
35 −0.44217 1.88375

173 −0.29577 2.21307
811 −0.20803 2.28276

4186 −0.15213 2.34360
21874 −0.11485 2.38637

118175 −0.08903 2.41725

Length of
the lattice

4
7

10
13
16
19
22
25

Matrix Size λmin zL

1 −1.00000
4 −0.23008 2.62557

17 −0.09277 2.54655
84 −0.04754 2.54625

428 −0.02802 2.54829
2305 −0.01806 2.55571

12744 −0.01240 2.56472
72311 −0.00892 2.57433

Length of
the lattice

5
8

11
14
17
20
23
26

Matrix Size λmin zL

1 −1.00000
4 −0.28476 2.67255

21 −0.11943 2.72855
103 −0.06215 2.70857
553 −0.03678 2.70122

3014 −0.02372 2.69857
16985 −0.01627 2.69933
97419 −0.01168 2.70193

It is clear from an inspection of these tables that while the convergence in
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each sector is reasonably good, there is a large difference between them if we

compare them between different sectors. To see if this can be due to the presence

of correction to the asymptotic scaling form, we have tried to incorporate various

forms for the correction to the scaling. But none of these fit the data well, and at

the same time decrease the discrepancy in z between different sectors. This can be

seen from the fact that the effective values of zL do not show a significant tendency

to converge to a single value as L increases, for the largest sizes reached in our

study.

One of the possible explanations for this is that different sectors have different

gap exponents. Though this is quite intriguing, it is somewhat unlikely. The

possible reason behind this could be the existence of an infinite number of conserved

quantities in the model. It is hoped that further studies will clarify this point.

However, from our data it can be concluded that the gap exponent for all these

sectors fall with in the range z = 2.55± 0.15. To get a more precise estimate for z

one needs further study either of larger size lattices, or by Monte Carlo simulations,

or analytical methods.

In figure 2 we have shown a plot of λ versus k (dispersion curve) for three differ-

ent lattice sizes. This is related to the spectrum of the excitations of the quantum

Hamiltonian Ŵ . It is seen that the spectrum for different sizes is qualitatively sim-

ilar, but shows a complicated, yet un-understood structure as a function of k. We

have also studied the same model for the case of unequal deposition-evaporation

rates (in this case there is no flip symmetry). The range of estimated value of z is

the same as that for equal deposition-evaporation rates.

The stochastic evolution of the trimer model can be mapped to the stochastic

dynamics of a string, both ends fixed to the same point, by defining a matrix

variable Ui at each site [3]. This matrix Ui has information about the length of

the irreducible string corresponding to the substring from site 1 of the lattice upto

site i. Under the dynamics the length of this irreducible string changes, and is

related to the change in the matrix variables Ui. Thus this model corresponds to a
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generalisation of the KPZ model where the scalar height variables are replaced by

matrix variables. It is well known that z = 1.5 for the KPZ model [6]. Our results

show that this model falls under a new universality class. It is also different from

the model studied recently by Doherty et al. which is also a generalisation of the

KPZ equation to n component variables. In their model, the dynamical exponent

z = 3/2 in one dimension, independent of n, though in higher dimensions it depends

on n [7].
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FIGURE CAPTIONS

1. A plot of the effective exponent zL versus 1/L, where L is the length of the

lattice.

2. Dispersion curve of the quantum Hamiltonian corresponding to the trimer model

[Equation (2)].
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