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Summary

This paper presents torsional vibration analysis of multi-cell tubes. The
main difference between the single and multi-cell tube analysis lies in the
determination of the cross-sectional constants. Derivation of cross-sectional
constants, involved in the governing equations, is illustrated by considering a
Sfour-cell tube. The improvement, in the estimation of the natural
frequency by the present proposal, is brought out by comparing the theore-
tical value with the experimental observation in a specific case.

lntroduction , ‘o

Aeronautical engineers have been interested in natural vibrations of airplanes
ever since they flew. With the advent of higher speeds and low aspect ratio wings,
the problem of aircraft vibrations has assumed increased importance. Conventional
aircraft wings are tubular in construction; normally they have more than one cell.
Shell theories are too complicated to use whereas beam theories are inadequate owing
to substantial influence of secondary effects such as transverse shear, shear lag and
longitudinal inertia.

Over the years considerable work has been done to adapt the beam theory
suitably for the analysis of tubes by incorporating transverse shear and shear lag.
Most of the previous workers dealt with rectangular cross-section only and the
influence of shear lag was not adequately considered. In a recent paper, Krishna
Murty and Joga Rao® proposed a generalised theory for vibrations of cylindrical
tubes with arbitrary cross-section; simpler governing equations to various orders of
approximation are also presented in the same reference. Application of this theory
to torsional oscillations of some doubly symmetric tubes can be secn in Ref. 2.

Often aircraft wings are of multi-cell construction. Notwithstanding the intense
research activity on the dynamic behaviour of single cell tubes, natural vibrations of
multi-cell tubes do not seem to have received adequate consideration. [In this paper,
we adapt the single cell tube theory proposed in Ref. |, to natural vibrations of
multi-cell tubes. The main difference in this adaptation lies in the determination of
cross-sectional constants. In order to bring out the improvement effected by the
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present prOposal in the esumatlon of natural frequencres a cantllever four-cell tube
) .lS fabrxcated The fundamental frequency as estimated by the present theory is’
- compared with the experlmentally observed frequency and the agreement is found to
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P -variation of warping displacement along z direction
w ' natural frequency rad./sec.

3

' 2. Governing Equations

The main assumption in this paper is that the tube is maintained by a closely
spaced system of rigid and massless diaphragms, which are rigid in their own planes,
but offer no resistance to out of plane movements. Besides this, the tube is
considered to be cylindrical with thin walis and the Poisson’s ratio effect is ignored.

In this paper, we consider doubly symmetric multi-cell tubes and so there is
no coupling between flexural and torsional oscillations. The well-known equations
for torsional oscillations of uniform shafts can be adapted to multi-cell tubes as*

dz0
dz?

. - 2 - N .
The expression for keB contains JB , the Bredt-Batho torsion constant for multi-cell

2
kop 0 =‘O _ : ()

tube. Derivation of JB for a four-cell tube is presented in the appendix.

The use of equation. (1) implies neglect of axial constraint stresses. The
influence of axial constraint stress on the natural frequency becomes important when
the tube is short® and can be considered by adapting the non-dimensional first order.
approximation equation (discussed in detail in Ref. 2) as**

d2 0 d¢ 2
S ST P4 Kk =0
66 iz —bes - + Rgh

L.

( = dU - L
S{’~‘-+ (Ssod —~ bgg ¢ +ksBooe=

In the derivation of these equations the expression for warp is assumed to be

w(z,s) = — W (s)¢(2)
where w; has to be evaluated from the equation
dw,
ds®
The deviation of W, involves an effective use of continuity of warping displacement

and the condition of zero net axial force. The expression for W, in the case of four-
cell tube is deduced in the next section. The cross-sectional constants involved in

equations (2) are defined by

Spp = J p® t ds
C

(4)

"AH lhe symbols in lhxs paper, except those in the uDDCﬂdIX are in non- dnmen%nonal torm 1o get
non-dimensional quantities all the gquantities, whose dlmensxon is length, are divided by the

length of the tube.
**These equations can also be seen in section 1.12 of Ref.
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Bos ! w tds
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b= Lr-t;ds | : ©
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where Ic denotes integration over all the tube walls in the cross-section. The
boundary condition statemenjt in this mathematical model can be, at each end

either .9 =0 or S;_n,m;t — bged =
th e B LS |
either é¢=0 or dz 0 ‘ (6)

3. Cross-Sectional Constantis

The first step in the detiermination of ‘cross-sectional constants is the derivation
of the warp function w,. Since the cross-section of the cantilever four-cell tube
under consideration (see Fig..1) is doubly symmetric it is sufficient to consider only
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F:g. 1; A Cantilever Four——CeH Tube

one quarter of the tube (rcnxons O'BC and O"AB in an 2) tor the denvatxon cf w,.
The variation of p in the reuom O’'BC und O"AB can be seen in Figs. (3) and (4),

It 1s obvious from Fig. 3 thal the expression for dp/ds in the region O'BC can be
written as | ‘

dp Los
e = = (a — b) 3 (s — a) (7

4




JOURNAL' OF THE- AERONAUTICAL' SOCIETY -OF INDIA  [Vol. 21, Ne 2
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Fig. 2 A Cross—Section of Four—Cell Tube

where & is Dirac-delta function defined as
3s —a)=0 whens # a
= when s = a

=1

b4

a
b

o8B ¢ A

Fig. 3 Variation of p with s in the region O’'BC

Using equation (8) in equation (4) and using the conditions that warp is zero at
0’ and C (see Fig. 2), the expression for W, in this region can be deduced as

W, = Doi- when 0<< s << b

when b<C s << a +b

where Dy is the value of W, at corner B. which is given by

e - ab (a— b)
Do =(m)atB = —-5

9P s (see Fig. 3)

Similarly, in the region O’"AB, the expression for

— (2a—b) 8 (s’ — b)

dp
ds
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Frorﬁ(fgqizai{ions (11).and ,(4)§ and in conjunction with the conditions of zero-warp at
O".and B (~ee Fig. 2) one gets the expression for W, in this region-as

’ '

S st =
[ Wl p——3 D] —B—' “:'he]l a f> S' g b
. !

W —p,  whenb<s'<a+b (12)

b
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Fig. 4 Variation of p with s’ in the region 0"AB

where

D, = _(2a—b)Dyb
b ¥ D,
and |

D, = (2a—Db)(a 4 b)a4 ab(a—b)
2 (2a — b) (a + b) — a(a —b) C(13) -«

The peripheral distribution ozf w, can be scen in Fig 5.

!
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Having determined W,, cross-sectional constants may be determined by substituting

W, in equations (5) as

- 2 2 : (D _-as
B = 5t D,@@+b) + b, {8+D2 — == l‘}}
. « D
bee = 4t ‘ D ﬁj_}l + z D2 4 ab ]
o ab T — /]
© bD

bes = Sgg = 4t [Do(a——b) + D, (2a-%‘2)]

2

» Sge = 4 abt (2b 4 5a) (14)
~ and the polar moment of inertia- becomes .
Tp = 3 t [32a% 4 24ab? 4 60a%b + 10b%] : (15)

4. Cantilever Four-cell Tube |
The boundary conditions, in the case of the cantilever tube shown n Fig. I are

atz=0 0 =¢ = 0

and

d ¢

< = 1 A ———— —— E- = 0
atz See dz beg ¢ dz . (16)

The solution of equations (2) in conjunction with above boundary coaditions is

2 2 L
presented below.. Let —A, and A, be the roots of the quadratic equation

2 2 : 2 2 )
ek +k —)E+k (k —w)=0 an
where _
g2 o - 080
* 7 K2 Bag
1 o &
A? ( Seg bge — bage Sa6 ) (18)

k2 Bgo Ses

2 * . . ~ . -
Case 1. A, > 0 ; the characteristic equation from which the frequency spectrum can

be computed is -
R1/\1(1\1+R102)——R1/\2(-—/\2+Rguz)

2 A . . .
+ cos A; cosh /\2-[ R, /\1(—50— uz)— Ro 2 (A1 + Ry u‘-’)]

r4

—+ sin /\1 sinh Ag [ R] /\2 (/\1 -+ Rl UZ) —_— Rl /\1 (——/\2 + Rg U?) ]

*

(19)

Note that v? is defined as

. bes ' : .
T TS, (20
See
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‘The mode shape subject to the condition of unit free end rotation is

R.
6 =R, [ RR sinh A,z + cosh /\22]
1
W= — W Rg [ — Rl sin A,-iZ —— RzR; cos Mz + Rz sinh A2Z + RgRg cosh AQZJ
. i
} ‘ (21)
- where’ E
.y ;
Ry = —2_-%. |
Al 02 ‘
2 2 !
A+ k, i
R, = 2 —~ %
/\a V2
R. = — R, A, co‘;h[)\ +-R; A, cosh A,
3 R, (A, sin A, + A, sin A,)
R4 = R 1 :
—2 Ry sinA; — cos A R, sinh A, + cosh
R‘ | 1 + 3 2 ’ A2 (22)
Case 2. A% < 0 ; The characteristic equation yielding frequency spectrum is
H] /\'] (A] + H] 02) + Hl 7\2 (}.2 + H2 \)2) o ‘
— COS A, COS A, [ H, Ao (A + H, v%) + H} A, (ﬁl + uz)]
. .
— Sin Ay sin A, { Hy A, (A 4 Hy08) + Hyp A (A + HZ v)} =20 : (23)
and the mode shape qubjccwd to the condition unit tib rotation is
0 = H, [ 2 |— €0S Az 4+ Hg sin )\zz‘g—}— cos Azz]
w = — W, H, [ — H, sin A,z + HyHq cos Az +H; sin A,z—H.H, cos A,z ] (24)
where -
2 o
H, = A, v?
,
— A, + k2 .
Moo= 5% |
0 - H, A, cos A, — — H, A, cos A,
® o H (A, 5in A, — A, sin A,)
H, = - :

- =23 5in Ay = €08 Ay - Hy sin A + cos A,
: | T (25)
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5. Results and Discussion
In order to bring out the nmprovement in the estimation of the natural fre-
quency by the present proposal, a typlcal cantilever four-cell tube with L = 21.875",
= 2.0625" and 2b = 1.3125" (see Fig. 1) is fabricated. The thickness of the tube
wallé'is 0.015625". Young’s modulus of elasticity is 107 psi and E/G = 2.65. First
two natural frequencies of the above tube were calculated theoretically. The funda-
mental was also determined experimentally. Table 1 shows the comparison.

Table 1-—Comparison of frequencies

Frequency in cycles per second

Mode
Elementary theory Present work Experiment
equation (1) _ equation(2)
First 388 405 415

Second 1164 1230 X —_

It can be seen from the above table that, in the case of the fundamental the
present theory reduces the discrepancy bctween theory and experiment, from 4.6% to
2.59%. Although, we are unable to determine second frequency experimentally due
to limitations of the experimental equipment, it is apparent from Table 1 that the
present theory estimates second frequency more accurately than the elementary theory.

It may be mentioned here that in order to improve the accuracy further one
can adapt higher.order approximations presented in Ref. 1. Nevertheless, in view
of the extra work involved and in view of the fact that the present proposal yields
results to a satisfactory degree of accuracy (see also Ref. 2), it may not be worthwhile
attempting higher order approximations.

In the tube under consideration the aspect ratio is about 5.25. As reported in
Ref. 2 the influence of warping rigidity on the frequency increases with the reduction
of the aspect ratjio. In the modern wing structures whose aspect ratio is smaller
than 5.25, the influence of warping rigidity is more than that noticed in the present
example. Assuch this theory is expected to assume importance in the natural
vibration analysis of modern aircraft wings.

6. Conclusions

In this paper we have extended the theory for the determination of natural
vibrations of singie cell tubes proposed in Ref. 1 to the case of muiti-cell tubes. The
difference is primarily in the determination of cross-sectional constants. Comparison
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of theoretical result with'eiperimentally: observed frequency indicates that the present
proposal yields results to ' a satisfactory degree of accuracy. This theory can easily
be extended to the cases of flexural and coupled oscillations of multi-cell tubes. \
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e APPENDIX A
Bredt-Bathta Tors:on Constant

From the general theory of wing stressing® it will be possnblc to deduce the
Bredt-Batho torsion constant for a multi-cell tube. However for the sake of com-

~ Pleteness we intend presenting here the derivation of the Bredt-Batho torsion constant
" for a four-cell. tube. Fig. 6 shows the cross-section of a multi-cell tube subjected to
a uniform torque loading T. The expression for the shear strain ‘may be written as _

continuity of w in each cell demands

dﬁ ds
MmG o = 7 (A2)

where Ay is the area of the M cell. Assuming the circulating shear flow to be

constant in each cell, equation (A2) may be written as
do
2Am GH—Z = - aqM-1 AM-I,M +qM AM‘“‘ qM+1 AM»M+1
M =12 3...N
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The total tbrque carried by ﬁuﬁ’tube is the sum of the torques carried by each cell.
Hence 4

N
) ]
T= D 2 | | o (a9)
M

: ] : .
equations (A3) and (AS5) are sufficient for the determination of shear flows and the
torsion constant. . }

In the case of a four-cel:
(see Fig. 7)

O]@]

Fig. ‘7> Shear flov!ys in Doubly—Symmetric Four—Cell Tube

[ tube subjected to torque, the shear flows are given by

~do A

G = 2AG o -
dZ Af — Afz —~ A] A12
o — 2ag 90 M+ Al

dz, A — A2 '._;Al TASE! (A6)

Using equation (A6) in'equatidns (A5) and rewriting, one obtains the expression for
Bredt-Batho torsion constant for a four-cell tube as

T 8A%(2A;, + Ay)
BECO T araa
dz oo (A7)
whére
A = 2uab
A, - 2a + 4b
t
2b :

A]-) =

(A8)
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