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Torsional Vibrations of Multi~Cell Tubes 
by 

A. V. KRISHNA MURTY* AND R. NATARAJA** 

Summary. 

This paper presents torsional vihraTion analYJis of multi-eel/tubes. The 
main difference between the single and mU/li-cell tube all(lJysis lies ill tire 
determination of the cross-sectional constants. Derivation of cross-sectional 
constants, involved in the governing equations. is illustrated by considering a 
four-cell tube. The improvement, in the estimation of the natural 
frequency by the present proposal, is brought out by comparing the theore­
tical value with the experimental observation in a .~pec~fic case. 

1. Introduction 

Aeronautical engineers have been inletested in natural vihrations of ::Iirpl::lncs 

ever since they flew. With the advent of higher speeds and low aspect ratio wings, 
the problem of aircraft vibrations has assumed increased importance. Conventional 

aircraft wings are tubular in construction; normally they have more than one cell. 
Shell theories are too complicated to use. where:ls beam theories are inadequate owing 
to substantial influence of secondary etfects such as transverse shear, she:lr lag and 

longitudinal inertia. 

Over the years considerable work has been done to ad.lpt the beam theory 
suitably for the analysis of tubes by incorporating tnlflsverse shear and ~hear lag. 

Most of the previous workers dealt with rectangular cross-section only and the 
influence of shear lag was not adequately considered. In a recent paper, Krishna 
Murty and Joga Rao(l) proposed a generalised theory for vibrations of cylindrical 
tubes with arbitrary cross-section; simpler governing equ:Hions to various orders of 
approximation are ,,1'0 presented in the same reference. Application of this theory 
to torsional oscillations of some doubly symmetric tubes can be seen in Ref. 2. 

Often aircraft wings are of multi-cell construction. Notwithstanding the intense 
research activity on the dynamic behaviour of single cell tubes, natur<ll vibrations of 
multi-cell tubes do not seem to have received adequate consideration. [n this paper, 
we adapt the single cell tube theory proposed in Ref. I, to ncHural vibrations of 
multi-cell tubes. The main difference in this adaptation lies in the determination of 
cross-sectional constants. In order to bring out the improvement effected by the 
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pr~e'Jt~~oposal, in the' esti~ation of natural frequencies, a, cantilever four-cell tube 
,is/ap,i'icated. The fundamental frequency as estimated by the present theory is­

':co~pared with the experimeritally observed frequency and the agreement is found to + 
.) '::j)C; good. ' 
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length of t~e tube 
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perpendicular distance of the tangent at any point on the periphery 
. I 

of the tube from the origin 
shear flow iri Mtb cell . 

radial distan1ce of any point on the tube walls from the origin 
cross-section;al constants defined by equations (5) 
peripheral c<?ordinate 
thickness of ,the tube walls 
torque appli~d 
warping disRlacernent 

I 

variation of warping displacement along s direction 
axial coordiqate 

I 

defined by equations (A8) 

Dirac-delta ~unction 
rotational di!iplacement 
defined by equation (18) 
roots of equ~tion (17) 

defined by equation (18) 

defined by equa~ion (20) 
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variation of warping displacement along z direction 

natural frequency rad./sec, 

2. Governi'ng· Equations 

The main assumption in this paper is that the tube ·.s maintained by a closely 
spaced system of rigid and massless diaphragms. which are rigid in their own planes, 
but offer no resistanc~ to out of plane movements. Besides this~ the tube is 

considered to be cylindrical with thin walls and the Poisson's TatiQ effect is ignored. 

In this paper,we consider doubly symmetric multi-cell tubes and so there is 

no coupling between flexural and torsional oscmations. The well-known equations 

for torsional oscillations of uniform shafts can be adapted to multi-cell tubes as* 

d
2
0 + k~ 0 = 0 

dz2 9n (I) 
2 

The expression for k98 contains I n , the Bredt-Batho torsion constant for multi-cell 

tube. Derivation of J
B 

for a four-ceH tube is presented in the appendix. 

The use of eq·uation (I) implies neglect of axial constraint stresses. The 
influence of axial constraint stress on t~e natural frequency becomes important when 
the tube is short(2) and can be considered by adapting the non-dimensional first order. 
approximation equation (discussed in detail in Ref. 2) as** 

+ 
and 

2 

kslplJ=O 

)+ k B99 (1 = 0 
s 

]n the derivation of these equat~ons the expression for warp is assumed to be 

w (z. s) = - WI (s) 4> (z) 

where 01 has to be evaluated from the equation 

d"-_·w 1 

d .. s-
dp 
ds 

(2) 

(3) 

(4 ) 

The deviation of Wl involves an effective use of continuity of warpmg disp)i\cement 
and the condition of zero net axial force. The expression for WI in the case of four­
cell tube is deduced in the next section. The cros')-sectional constants involved in 

equations (2) are defined by 

See = JcP2tds 

"'All the symbols in this paper, except those in the appendix. are in non-dimensional form; to get 
non-dimensipnal quantities all the quamities, whose dimension is length. are divided by the 
length of the tube. ' 

.... These equations can also be seen in section 1,12 of Ref. 

, .~ 

c,. 
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-. r ~/ t 1 ds JC 1 , 
. I 

- lc( -t:'-J 1 ds 

==S89 = f p. dWl t ds JC ds 

Tp' - J r!! t ~. s 
c ' 

where J c denotes integratio;n over all the tube walls in the cross-section. 

boundary condition ~tatemenlt iIi this mathematical model can be, at each end 
; de 

either 8 = 0 or S881-- - b8er/> = 0 
; dz 

either r/> = 0 or _~L =0 
dz 

3. Cross-Sectional Constants 
! 
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(5) 

The 

(6) 

The first step in the determination of'cross':'sectional constants is the derivation 
of the warp function WI' Si:nce the cross-section' of the cantilever four-cell tube 
under consideration (see Fig.; 1) is doubly symmetric it is sufficient to consider only 

. . 
Fig. t A Cantilever Four-Cell Tube 

! 

one lJuarter of the tube (regi<ms O'BC and Q"AB in Fig. 2) for the derivation cf Wl' 

The variation of p in the regions 0' BC and 0" AB can be seen in Figs. (3) and (4), 

It is obvious from Fig. 3 thai the expression for dp/d~ in the region O'BC can be 
written as 

dp 
._----- -

I 

(a - ~) ~ (s - a) 
(7) Js 
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Fig.2 A Cross-Section of Four-CeJl Tube' 

where 8 is Dirac-delta function defined as 

8(s' - a) -:- 0 
=1 

when s =1= a 
when s = a 

0---- ; , 

b 

O~·""""'B----+C-. -~;6 
Fig. 3 Variation of p with s in the region D'BC 
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Jr 
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A 

(8) 

Using equation (8) in equation (4) and using the conditions that warp is zero at 
0' and C (see Fig. 2), the expression for w] in this region can be ded4ced as 

_. S 
W 1 = D-­

o h when 0< s ~ b 

a+b-s -- 0 -.------ when b< s < a +b 
o C\ 

where Do is the value of WI at corner B. which is given by 

ab (a - b) 
(a + b) 

Similarly, in the region 0" AB, the expression for dp is (see Fig. 3) 
ds 

~= (2a - b) S (5' - b) 
d s 

(9) 

(10) 

(I I ) 
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From<;~qu(uions (ll)~nd (4) and in conjunction witl) the conditions of zero. warp at 

O·and B(:.ee Fig. 2) one ge(s the expression lor WI In this region :as 
·'-'-0· 

where 

and 

I 
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Fig. 4 Vafiation of p with 5' in the region 0" AB 

Dl = (2a -.; ib) D2 b ----b"-t--D2 
I 

D2 = (2a - b!) (~ + b) a + a b «(I -- b) 
--(2-a- fb) (a + b)-=a(a -=""-b)-

The periphera1 distribution o;r WI can be seen in Fig 5. 

Fig. 5 

I 

! 
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I 

Oistribution of WI in Four--Cell Tube 
i ' 

(12) 

(13) 
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Having determined WI. cross-sectiona1 constants may be determined by substituting 
WI in equations (5) as 

B •• = ~ t [0: (a 0) + 0: {a + 0. - (D~: .y3}] 

.[ !.! a + b bee = 4t D --'-
o a b 

+ D2 (ri~ __ -t~)] 
1 2, 

'bD . 
2 

b98 = S88 = 4t [Do (a - b) + Dl (2a - ~ ) ] 
S89 = 4 abt (2b + 5a) 

and the polar moment of inertia becomes 

Ip = t t (32a3 + 2 ~ab2 + 60a2 b + lOb3
] 

4. Cantilever Four-cell Tube 

(14) 

( 15) 

The boundary conditiom, in the case of the cantilever tube shown in Fig. I are 

at z = 0 
and 

at z = 1 
dO d,p 

S86 ---- - b99 rp = . - .. , = 0 
d z dz (16) 

The solution of equations (2) in conjunction with above boundary conditions IS 

2 2 
presented below ... Let --A1 and "2 be the roots of the quadratic equation 

u 2 
) = 0 (17) 

where 

(18) 

Case 1. A: > 0 ; the characteristic equation from which the frequency spectrum can 

be com puted is ' 

R1 "1 ( "1 + RJ u2 ) - Rl "2 ( - "2 + R2 u
2 ) 

+ cos At cosh A2 [ R~ ,,{ ~2 - u;) - R2 "2 (AI + RJ u2
) ] 

+ sin Al sinh "2 [ Rl A~ (AI + RI u2) - RJ '\1 (-A2 + R2 u
1

) ] (19) 

Note that 1]2 is defined as 

" \j- == 
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-The mode shape subject to t,e condition of unit free ~nd rotation is 

6 = R, [~~s sin AtZ - cor AIZ + Ra sinh .A2Z + cosh A2zJ 

w = - WI R, [ .- R, sin +z - R,R. cOs )"z + R,' sinh A •• + R"R, cosh A,z ] 

- (21) 
where 

2 2 
A +k 

Rl ____ 1_' ~, 

Al \)2 

2 2 

A +k 
2 9 

Ra =- - R2 A2 co~h 1;\2 +- RI Al cosh Al_ 
R2 (;\1 si n 1"1 + "2 si n "2) 

R _ , ____ l ___ . __ ~--

4 k2 Rs sin A1 ~. cos A1 + Rs sinh A2 + cosh ~ 
R J i : (22) 

t ': 

Case 2. ,.\~ < 0 ; The ch~racteristic equation, ,Yielding frequency spectrum' is 
I ,- , 

H] ,\,] (,\,) + H1 \)2) + HI ~210'!I + H2 \)2) 

- ,cos '\'1 cos '\'2 [ H2 '\2 ('\'li + HI \)2) + Hf '\'1 (~~ + \)2)] 
! . 

- sin A1 sin A2 I HI A2 (AI 1- HI \)2) + HI Al!(A2 + tI2 \)2) ] = 0 (23) 
I • 

and the mode shape subject~dto lhe condition unit tip rotatiOl~ is 

[ 
H H - Ii] 

o = H4 - ~~ sin A1z 1- cos AtZ + HlI sin A2Z :+- cos '\2Z 

W = - w, H, [ - H, sin ~'Z + H,H, cos Atz +H; sin A,z-H,H, cos.\,z ] (24) 

where 

2 

H2 = 

A + k'2 
2 fJ 

A2 \)2 

}~I_Al cos Al - g! A2 cos A2 
H;-(A2 sin"X2 i -A~sTn";) 

I 
t 1 

H 2 H 'j , \ t \ I H ' , ---', sm "1 T cos I 1 ~- sIn 1\) + co's' H 1 I' - :l ' ~ . ".) (25) 
! 

",- . 
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5. Results and Discussion 

In order to bring out the improvement ITI the estimation of the natural fre­
quency by rhe present proposal, a typi~al cantilever four~cell tube with L = 21.875", 

a = 2.0625" .and 2b = L3125" (see Fig. 1) is fabricated. The thicknes~ of the tube 

walls is 0.015625". Young's modulus of elasticity is 107 psi and EfG = 2.65. .First 
two 'natural frequencies of the above tube were calculated theoretically. The funda­

mental was also determined experimentally. Tahle 1 shows the comparison. 

Mode 

First 
, '" 

Second 

Table I-Comparison of frequencies 

Frequency in cycles per second 

Elementary theory 
equation (I) 

3R8 

1164 

Present work 
equation(2) 

405 

1230 

Experiment 

415 

It can he seen from the above table that, in the case of the fundamental the 
present theory reduces the di..;crepancy between theory and experiment. from 4.6% to 
2.5%. Allhough. wt: are ullCible to determine second frequency experimentally due 
to limitations of the experimental equipment, it is apparent from Table 1 that the 
present theory estimRtes second frequency more accurately than the elementary theory. 

It may be mentioned here that in order to improve ·the accuracy further one 
can adapt higher order approximations presented in Ref. 1. Nevertheless, in view 
of the extra work involved and in view of the fact that the present proposal yields 
results to a satisfactory degree of accuracy (see also Ref. 2), it may not be worthwhile 
attempting higher order approximations. 

In the tube under con~ideratioll the aspect ratio i~ about 5.25. As reported in 
Ref. 2 the influence of warping rigidity on the frequency increases with the reduction 
of the aspt!cl rat,iv. In the modern wing structures whose aspect ratio is smaller 
than 5.25, the influence of warping rigidity is more than that noticed in the present 
example. As such this theory is expected to assume importance In the nat ura1 
vibration analysis of modern aircraft wings. 

6. Conclusions 

111 this paper we have extended the theory for the determination of natural 
vibrations of single cell tubes proposed in Ref. 1 to the case of multi-cell tubes. The 
differenc:e is primarily in the determination of cross-sectional constants. Comparison 
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of theoretical result with eXperimentally observed frequency indicates that the presmt 
proposal yields results to: a satisfactory degree of accuracy. This theory can easily 
be extended to the cases of flexural and coupled oscillations of multi-cell tubes. 

! ~ ~, , 
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Bre"dr-Batho Toision CODstant 
.' , 

From the generaJ-theory of wing stressing(S} it wm be possible to deduce the 
Bredt-Batho t~rsion constant for a multi-cell tube. However for the sake of com .. 
pleteness Y"e .intend presenting here the derivation o~ the Bredt-Batbo torsion constant 
for a: four~rell tube. Fig. 6 shows the cross-section of a multi-cell'tube subjected to 
a uniform to~que loading T. The expression for tbesbear strain 'may be written as ~ 

I 

CW 

OS 

Fig. 6 A Multi-Cell Tube 

q dO 
-- -- - p .. _-

Gt . dz 

continuity of w in each cell demands 

de 
2AM G--' 

dz § ds 
q­

t 

N 

(AI) 

(A2) 

where AM is the area of the Mth cell. Assuming the circulating shear flow to be 
constant in each cell, equation (A2) may be written as 

,~. 2AM G~ == Il A <WI dz - qM-l M-l,M +qM IlM - qM+l UM,M+I 

where 

• 

4 

.1:\1.]. M r~ JdtS 
3 

~j\1 § ds 
t 

M 
') 

:.'l]\1. 1\1 '1 J~S 

M = 1,2, 3 ... N (A3) 

( A4) 

.. ~.,- .~ 

"" ' : 
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!he total torque carried by l,hetube is the sum of the torques carried by each cell. 
Hence ' 

N 
. i 

T=L2AM~M 
M=1,2, .. ~ 

(AS) 

I , 

equations (A3) and (AS) are ~ufficient for the determination of shear flows and the 
torsion constant. 

In the case of a four-cell' tube subjected to torque, the shear flows are given by 
(see Fig. 7) 

- -- , 

6) @ ~ ~ I 2 - 2 
! , 
I 
I 

Fig. 7 Shear flows in Doubly-Symmetric Four-Cell Tube 

41 --- 2AG ~~ ---------;--- ~] ---: ---­
A~ - ~~2 --'- ~J A12 

(A6) 

Using equation (A6) inequatio':ns (AS) and rewriting, one obtains the expression for 
Bredt-Batho torsion constant f6r a four-cell tube as 

where 

T 

G dO 
dz 

A = 2ab 

2a + 4h 2.] =-, ------.-
t 

~]2 
2h 

(A7) 

(AS) 

I' 


