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Summary ' _

[ Based on the ease in satisfying the free edge boundary condition, open tubes are
classified into two types, A and B. Type B tubes have more complicated free-cdge
boundary condition than that of type A tubes. An alternate formulation is evolved for

type B tubes; this makes the free-edge boundary condition as simple as in type A tubes.

. oo ) . . . 2rs
A simply-supported open tube with the cross-section given by p = 5 sin “S ,
T

is analysed exactly as well as by using approximation equations; errors in using the first
, order approximation equations are discussed. A simply-supported open tube of
i I-section, representative of type B tubes, is analysed by using first and second approxi-

/ W mation equations.

ADDITIONAL NOTATION**

a, b — Typical cross-sectional dimensions of the tube
5, 4 2 21
Kg . @ Lip
) E Bga
| P = a'b
Q =: L/"d
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R = bt
<t — Error in natural frequency (Eq. 4.43)
“m — Error in mode shape (Eq. 4 44;
8 Gy — Deﬁxle@ by Eq. (4.81) '
/\f, Ag. /\‘g B Roots of the polynomial (sce Eqgs. (4.36) and 4.71) ).
2 I
‘LB T k? Bgl
!ig‘ — Defined by Eq. (4.17)
2 2
g s — Deﬁn.c;d by Eq. (4.65)
2 2 ‘
v3, v3 — Defined by Eq. (4.65)

4.0 Introduction

For open tubes of doubly-symmetric or doubly anti-symmetric cross-sections,
we have uncoupled flexural and torsional vibrations, but each mode, generally
involves warping motion also. Owing to the large warping associated with open
tubes, beam theories are inadequate.  Although the rotation is a function of one
variable only, warping displacement depends on two variables, and hence the analysis
looses simplicity.

Nevertheless the simplifying assumption of zero centre line shear strains results
in a convenient formulation for open tubes  Gere’s equations?®* are based on this
<ssumption and they may be good enough for many an application like long open
‘tubes.  But short open tubes like cut-outs ol aircraft wing structures require the
consideration of centre-line shear strains also.

The proposed theory consists in developing the equations governing the natural
vibrations of thin-walled cylindrical tubes of arbitrary cross-section, but with the
assumption of CSRMD. Kauntorovich form of Rayleigh-Ritz method is invoked to
vield equations of various orders of approximations.  An elegant splitting of warping
displacements  results 'in éonvenient incorporation of centre-line shear strains,
Formulation of various equations is presented in Part I.

As different from the analysis of closed tubes, the analysis of open tubes

mvolves the satisfaction of zero sheur strain condition at the free-edges. -Warping
displacement has to sutisfy frec-edge condition

AW do : v
e + p — = 0 .. (4.

*References are given in Pare |

—
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and the end conditions

— oW _ ,
w = 0 or = 0~ - (4.2)

However, if p = 0 at free-edges, Eq. (4.1) takes a simple form. The selection of the
admissible functions for the method of section 1.6* is also simple. Such tubes are
classified as type A (See Fig. 4.1). Nevertheless if p # 0 at free-edge, it is not easy

AN

Y vy : | {r Y

Fig. 4.1: Open tubes of type A.

X > X V; — X

to select admissible fuuctions satisfying the free-edse condition. Such tubes are
classified as type B (See Fig. 4.2). A modification in the equations, reduces the

X

GY B

Fig. 4 2 : Open tubes of type B.

Y

application of the method of solution of section 1.6 totype B tubes as casy and
straight forward as for type A tubes; these modifications are discussed in scc-
tion (4.4), ‘

This paper includes an exact solution of simply supported open tube of type A

<

. . L S . S .
with the cross-section given by p = sin ——. The same tube is analysed

2w

using first order approximation equations and the error in the natural frequency is
discussed. A simply supported tube of I—section. representative of type B tubes, is
analysed using first and second order approximation equations.

*Equations and sections referred to as (1.) can be seen in Part .-
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4.1 Governing equations for oﬁen tubes of type A—rigorous formulation

The governing equations in this case are the same- as those for closed tubes
(section 2.1)*; one of the boundary conditions- here is the zero shear condition at
free edges. The equations of equilibrium are

e .2, 1 d ow
(—j—z2 -+ kea—- — ,SGO dz aS P t ds
, (4.3)
o°w 02w | dp d¢
K oz T o +k YT Es dz
and the boundary conditions at each end are
do 1 ow
0 = — S, — =
either 0 or o + S 85 pt ds 0
(4.4)
either w = 0 orQI:O
0z
and
g;’ == 0 at free edges. .. (4.5)

4.2 Simply supported open tube with the boundary of the. cross section given
S . 2ns
by p = £ sin 3

— Exact solution

The boundary conditions in this case are

60)=06()=0 o (4.6)

W 0. gy = W (1, 5)

e (0. s) = s (4.7)
. ow (z, S)

F.gs. (4 7) and (4.8) suggpest expression for w in the form

o0 00
w o= z | 5 S Amn cos (mnz) cos—znii
m=1,2, 3, . n=1,2 3 ..
A i (4.9)
Substitution of Eq. (4.9), in the first equation of Eys. (4.3) yields
. 2 2mnm? y
0" kH ) = Y S Amp _n; <=~ 8in (muz) § p; sin 2nS'rrst,
n = n-] 4 SR :

______ o . . (410)

"Eqmuom or sections refcrrcd to as {2. ) appeared in Part II.

————

——




November 1968] GENERAL THEORY OF VIBRATIONS OF CYLINDRICAL TUBES 239

From geometry, we have

S . 2ms
P= 3z Mg . . (411

Using Eq. (4.11), Eq. (4.10) can be written as

0 (e o} S
2 z - mn = St ..
6" + k68 = — z ’ Amn sln "2—8‘—0-0—-—&!1 (m'rrz)
m=1,2,3,... n=1,23, ..

(4.12)
where &, is the Kronecker delta.
The solution of Eq (4.12) is

d,n mn = sin (mnz)

6 == A, sin kgz + A, cos kgz — z z Ama 25“(_ m? 2 + kz)
m=1,2,3, n=1,2,3 ¢

(4.13)
Satisfaction of the end conditions on 0 namely Eqs (4.6) ylclds
A=A, =0 N e (419)
Hence
[oo) 00
0 — _ z Z » A 8,n mnxSt sin (mnz)
mn 2
m=1,2,3,.. 0=1,23, . 2Se( —m*a® + ky )
(4.15)
Since .
2
—_— 3 =2 ——-
S““ﬁptds”%j;‘ds ('“‘3) . (4.16)
2 8n?
where By = 37 R =S/t @17
we have
0 o0
0= _.z Amn— 43 m“"a sin (mnz)
m=1,23... n=123... S (““‘3)( m? +“e)

Substituting Eq. (4.18) in the second equation of Egs. (4._3) and using the orthogonal
properties of Fourier series one finds

A (__ K2 m? =2 4n;2ﬂ2 4 k2 ) _ 4m?n =t 3y
' s

1+ p3)( = m e+ k)
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The natural frequencies are obtained. for nontrivial values of A’ms as

2 —2 ‘ 2t 8,
(_ KEm?n? 4nse, +"k2) . . 4r;1n't n -
SN () k)

mn=123 .. o ‘ L (4.20)

and the corresponding mode shapes are

5 2nmn s
W = Amn COS (M7Z) cos <~

: 4 8, mn w® s
0 = — Amn 5 sin (mnz) (42D
+ ky)

S(i v ) (e

Noticing that g3< Im most of the practical tubes, it can be readxly seen

- -

that the numerical results are going to be nearly same if p; is set equal to zero.
Numerical results of a analogous equation (Eq. (3.19))* are discussed in section (3.2).
Hence these will not be repeated here.

4.3 Open tubes of tvpe A—fifst order approximation equations
The governing equation$ in this case are the same as those for closed tubes
(section 2.?) ; however, the open edge condition -
dw,
ds N
has to be incorporated while evaluating W, from Eq. (2.33). It can be shown that
solution of the simply supported open tube with the cross-section given by

= 0

S . 2T7s
P = 50 sin- - ¢ by hrst order .mproxmntlon equatmn of open tubes of type A

is same as the n = | c.lsb of' exact soluuom (Eqs. (4.20) .md 4.21) ).

4.4 Governing equations for ();pen tubes of type B—rigorous formulation

As mentioned earlier, the governing equations of closed tubes or open tubes of

type A govern open tubes of type B also.  But there is some difficulty m using the
method of section 1.6, In the case of an open tube, the conditions to be satisfied

by w, are e o a -y
g:_v + pg—z« =0 elit open edges - . (4.22)
and ! : - |
either wA =0 or?—;y = 0 at eﬁds. .. (4.23)

————— e e e — e e L

* Equ:mons or sections referrcd to as (3. ) can be seen in Part 1.

e
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Since the above equations involve 8 also, it is not possible to select a function for w
to satisfy Eqs. (4 22) and (4.23) at the beginning itself, which is a pre-requnsxte for

using method of section 1.6.

However. i

it may be mentioned here, if one chooses to use the Rayleigh-Ritz
method, the formulation of open tubes of type A can also be used here.

The difficulty in selecting a suitable function for w'can be avoided by effecting
the transformation of the governing equations using the relationship

w = ——w—— + w, (z, 8) ...(4 23a)

...(4.24)

where W,y =§ p ds

becausc, in this case, 8 will be eliminated from Eq. (4.22). The constant of integra-
tion in Eq. (4.24) is obtained from the condition of zero net axial force at any cross

section due to the first term of Eq. (4.23a), that is
$ W tds = . ..(4.29)

The expression for w in Eq. (4.23a), but for w, (z, s) is same as that used in the well
known torsion-bending analysis of open tubes.

Substituting Eq. (4.23a) in the second of Eqs: (4.3), we have
- 0% _ dO _. 4o :
— el 2 — — _— —
z k 322 { W, d7 } + P! { Wy dz + Wl}

2 do dpdo |
+ kg { —Wig, TV } T ogsa =Y ...(4.26a)

and noting that dw,/ds = p we get the second of Eqgs. (4.27).
(4.23a) in the first of Egs. (4.3) and using the condition that

§ zZW, ds =0

Substituting Eq.

..(4.26b)

one obtains the first of egs. (4.27).

Thus the equations of equilibrium are

d%d de

(szoe T +k Boo —

= K dz-

2
0 ‘w,

. 0 °w,
20 "1 oW
k 02* + es®
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and the boundary conditions at each end are (these are obtained from Egs. (4.4) by
adopting the same procedure used in obtaining Eqs. (4.27) from Egs. (4.3) ).

' 3 2 do do
either 6 = 0 or k2Bgg 323 + ks Beegz = Js iz
d oWy _ 2 _
—-—kzd-—i— -E!‘Twltdg—ks §W1W1tds=0
| , Caw,

either 6’ = 0 or k?Bgp 0" — k> § o Witds =0 ...(4.28)
and

aa“: = 0 at open edges. ...(4.29)

Cross-sectional constants in Eqgs. (4.27) and (4.28) are defined by

Ih = ¢ ritds - ...(4.30)
] .
Js = —3— § t3 ds

Now if we choose a suitable expression for w, to satisfy Eq. (4.29), we are left with
four end conditions in all, namely Eqs. (4.28). Substituting this expression for w, in
first cquation of Eqs. (4.27) and solving for 6. the solution involves four additional
arbitrary constants and these can be determined using Eq. (4.28). Thus, we will be
having expressions for 0 and w) satisfying all the boundary conditions and the first
equation of Egs. (4.27). As sﬁggested in section 1.6, either the error in second of
Eqs. (4.27) can be minimised, or the orthogonality properties can be used to gene-

rate simultaneous equations; using these the eigen values and eigen vectors may be
computed.

4.5 Open tubes of type B-—ﬁlfst order approximation

The governing equation in this case is obtained by putting w;=0 in Egs. (4.27)
and using Eq. (4.20b) as «

d*0 2 d20 a2 2
k2 Bog o7 + kS,Boe T2 (Js an Tk 1,»0):0
| ...(4.3D)
and the boundary conditions at each end are '
Lo o 82 dp dé
either 0 = 0 or ]\2899 a—;, + ]'\SBGG (—E- — Js—d—z == ()

either 0" = 0 or 6" = 0 -..(4 32)
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Eqgs. (4.31).and (4.32) may be simplified to yleld |
o+ k:vzv"'—f*e (o +xp) =
the boundary conditions at each end arc
. ' 2 290
exther6=_Qor6 '+kw6 — p.e =0
B (4.32a)
either @ = Oor 6" =0

o - L (433)

, 2
where kg = m :

Tlhe equations used by Gere?® whlle dealing with torsional vibrations of open tubes

can be obtamed from Eqs (431) and (4.32) by puttmg k2

4.6 Simply supported open tube with the boundary of the cross section given by

p = ———zsn sin 2§S — (solutlons obtained by using ﬁrst order approxlmatlon :

equatlons developed for type B)

Although the tube under analvsux is an open tube of. type A the equations of
" type B are used in order 10 assess the error, in usmg these equatxons, the error is dis-

- cussed | in section (4.7).
The boundary conditions in this case are (Fig. 4.3)

0(0) = O(1) = 0

o"(o‘) — 0" (1) = 0

— 7, W

: ‘__—_—L"'

f

Fig. 4.3 . A Serp|y supported open tube with the boundry of the
27s
S

)
cross section given by

- sin
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the solution of Eq. (4.31) is 1 - v
0 = A, sin Mz + A; cos A,z + A; sinh A,z + A, cosh A,z

4.35)
where, —/\% and /\% are the roots of the quadratic équation »
‘ 2 ‘2 2,2 : _ ‘
£ +(kw—ge_>5_—yek9~_0 | | . (4.36)
Using the boundary conditions (4.34), it can be shown that for nontrivial solution
sin 7\-l = e ' A :
- | 4.37)
or A = m?m (m = 1,2,3, .. o)
and the mode shapes are given by.
| 6 = A, sin'(mnz): , o
- : | .o (4.38)
W= A, 'S-nl cos -wz—nswcos_ (mnz)

471. S

4.7 Error in using first order approximation equations of open tubes of type B

The first order approximation equations as formulated for open tubes of type B
have been widely used in literature for many kinds of open tubes 2% 30, The object
of this section is to estimate the error introduced , by using these well known equa-
tions already shown to be associated with type B for obtaining solutions for tubes of
type A. When this is done besides the error associated with the neglect of w,
(section 4.5) an additional error is introduced. This is due to the use of equation

| W o= — Wi |
(which is used in obtaining ﬁnst'ofdér approximation equation of type B), while a
more appropriate expression is - :
w = — W, é¢ ; ‘ _
$¢ need not necessarily be eq‘ual'lo d0/dz. &g is used in the equation ot tubes

of type A.

In the case of the example considered in sections (4.2), '(4..3) and (4.6) we found
that first order approximation equations for tubes of type A gave exact solutions for

the case n=1 (sections (4.2) and (4.3) ) while the first order approximation equations

derived for tubes of type B introduce an error when applied to tubes of type. A.
Longitudinal inertia is neglected in the following because its influence is small. The
errors are evaluated as follows. ‘ . '

Exact solution

Putting kz = 0and n = 1in Eq. (4.20) and ignoring ;;%_ (because gg < 1)

e e e e e e
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one has .
m?2 n2
—-— = — — El

u% + m? =?

and the assoociated mode shapes have (Egs. 4.21) .

Om _ 4m 1 M
. Wm  mS? 2 !
e (1%

First order approximétion ’eduations of tubes of type B. -

Putting £ = — A> = — m? = in Eq. (4.36) and letting k2 = 0, we. have

2 2 o |
’ . mEw ' :
* — —_ .
kf = s = 5 =B . .. (4.41)
‘U,a . N

and the mode shapes have the same distribution as inexact _s_ol_ﬁt'ion, but (Egs.
- (4.38) ). ' ' ‘

Om 4% _ o | | 442
\-N_/_r; . n]S2 =M, ’ ) ) ‘ . ( . )

Error
The error in natural frequency is

m!

<m"’j 7t + },.5) p.%

af = Eg‘—El,:

and the error in the ratio of maximum amplitudes is

(4.44)

|

Fig. (4.4) shows the variation of er and em with the length of the ‘tube. From this,
it can be seen that the first’ order approximation equations of tubes of type B, can
also be used for type A with small error prov:ded the tube is Iong partlcularly for

lower m()des. .

48 Cross sect:onal constants of an I- sectlon——ﬁrst order approxnmatlon “equations of

~open tubes of t\pe B _ 4
.1t can be seen from Fig. 4.5, that mnce the tube 15 doubly S)mmetnc W, IS

doubly antisymmetric. Since W, is anmymmetru, .1boul BE it follows that w, in BE
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PERCENTAGE
{40}— - o ' ERROR 'IN NATURAL
. | 6’
- _ FREQUENCY —<— X 100
- 1
120 — — —— — PERCENTAGE ERROR
| IN THE RATIO OF
x MAXIMUM AMPLITUDES
X - . \
x ' 90— _ : IN THE MODE SHAPE
& | | .
w - o o €
-\ o -—Ml X 100
w : ! '
o 80— o o
o _
= -
pa
W .
U —
o 60
)
a -
a0l
20—
1 1 |
o B A
S

Fig. 4.4 : Variation of percentage errors with length,

is zero. Therefore. it is sufficient if we conslder the region AB for obtammg W, since

in other regjons W, can be obtained by using above features. In obtaining w,, it is

essential to consider the sign of p; p is positive if the tanﬂentxal displacement v; due
0 a positive rotation 0 js in the posmve derCtIOH of s.




. Y
Fig. 4.5 : W, In | Section
p in the region AB is .b, W, in this region may be obtéi‘nc;d from Eq. (4.24)
W, =j p ds | 'l |
with tﬁe condition that W, at B is zero; as' _ v
| W, =+b(s'—a)inAB T X5

The distribution of W, on the section is as shown in Fig 4.5. Note that it satisfies

26 |——X

Fig. 4.6 : A simply supported tube of | section

-
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the condition of zero net axial force due to W, system. - Using Eq.
sectional constants may be computed as (Eq. 4.30).

2 .3
Js =. 2‘(23 -+ b)l3
3 !
2 : 3 2
I, = T t<2a3+b -f—2ba)_

[Vol. 20, No. 4
(4.45), the cross

(4.46)

4.9 Simply supported tube of I-section—first order approximation equations of type B

2 I (P41)2 Q
"0 = (B, 2kt RZ P
and '
"
w_o_ Gl _ 2 (2P+1)
2 El TN kZRZ (2P + 2P+ 1)
9 ’ |

where P = a/b, Q=L/a, R=b/t

The natural frequencies in thi$ case can be obtained by substituting

E=——/\%= - m‘l-‘-tZ'

in Eq. (4.36) and using Eqs. (4.47) and (4.48) as

2 .
m27r“ __+_ “0 m27r2

2
k9 = 2 o 2](2
%0 + m ch Lt
or ‘ :
5 k% ‘ - m’n? 4 u%
k(*) - P _— - .
m'=xz 2 - 2
| pa—{— m? k“
Neglecting longitudinal inertia one finds
kg = MIR
il

. (4.47)

...(4.48)

..(4.49)

.. (4.50)

and this is same as the expression given by Gere ?, Equations (4 49) aud |(4,5())

4

can be written in terms of K"nghich is appropriate for short open ‘tubes. K( is

defined as

4 pszél '
K= _Ff@L
0 EBgg Kg ug

L(451)
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Eq. (4.49) becomes

z 2 2 3 2

Ke' = b ¥ g m?® 7 + ug
b = ro = s 5 ...(4.52)

me py+m? 'n:zkz.

6 Li

Neglecting longitudinal inertia, we have ( kﬁi= 0 )

a ptz
K =14 |
. m*n? .. (4.53)

Neglecting St. Venant torsion, rne = 0 and hence

g =1 - | | .. (4.54)

" 4
Figs. (4.8), (4.9) and (4.10) show the variation of K(")‘ with the. plan aspect ratio.

~These reveal that the effect of St. Venant torsion is negligible for short open tubes,
and this influence is even smaller at higher frequencies. The influence of longitudinal
inertia is. small for long tube, but considerable when the tube is short. Thus a
scparate simplified analysis can be suggested for short and long tubes. The analysis
of long tubes must include St. Venant torsion but no longitudinal inertia. The
governing equation in this case, as obtained by Gere®, can be got by putting

2 .
kw = 0in Eq. (4.31 a)

v 2 L. 2 _
07— wg T —kgt) =0 (4.55)
The analysis of short tubes must include longitudinal inertia and no St. Venant
torsion. The governing equation in this case is obtained by putting Js = 0 in
kq. (4.31), as

w

0" 4 0" — wuy ki =0 (4.56)
From the numerical ‘results presented in Figs. (4.8), (4.9) and (4.10), it can be scen
that if the distance between two successive nodal points is less than ten times the
flunge width, the tube can be treated as short otherwise as long. Further discussion

is included in section {4.11).

V4.1_O Open tubes of type B—second order apprbximation eqhations.
The appropriate expression for w in the second order approximation is
o df _ o - |
W= T Mg AL | ' N C X))
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W,,0 has to be obtained frqm the relation (section (1.13))

Wog = — g[ w, ds ds . ... (4.58a)

.. dw : L .
Noticing dsl = p the constants of integration are evaluated from the zero shear

strain condition,

(_h:i.:g, =0 at free edges ... (4.58b)

Substituting Eq. (4.57) in the second of Egs. (4.3) one obtains

= o2 _d68  _ 22 [ _ db _ .
—Z=k2-az.: {—W,az——wz.o‘f’q}+ {*Wxa;—wz,oqo}“*‘

os?

ds dz o .. (4.59a)

Instead of satisfying Eq. (4.59a), we choose to satisfy

§ Zw,ds = 0
§ 2w, 9ds =0 . (4.59b)

Substituting Eq. (4 57) in the first of Eqs. (4.3), using Egs. (4.59b) and noticing

d,iL_ = p, we obtain the ecquations of equilibrium as
K2 Bog %;_(3 e SR (%;; k%v,g(‘{l;e)
SR R (= L BT

The boundary conditions at each end are (these are obtained from Egs. (4.4) by
adopting the same procedure used in getting Egs. (4.60) from Egs. (4.3) ).

— ) d* 2 de Soo(d2v, 2
tl 0 = :Roe | = . et 2 R 2 W
either 0 or k*B (dz3+kwdz).+kl'“(dz'-' , kw 10)
do ‘
— Js &= 0

: deé ' d=g = dty
[] - — .2 -2 C—— . —
cither o = 0 or k2Bgg e + k% Loy &= 0
2 d

+ k2Lgy Al = 0

. . s :
either ¥y = 0 or K3Lyo d dz (4.61)
. e " 0

dz*

e e

e s b ey P

s g en ot e e g o+
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The following notation is used in Eqs. (4.60) and (4.61)

By =— @t d

ge § Wl S

Cgg = § W, Wetds

- _2 A

Leg = § Wy, tds

]p = § rt ds

Js=1% § ds
dw,.g\2

L — UWe

66 §< s ) t ds

Wl = gp ds

W9 = — jjv‘vl ds ds

251

(4.62)

(4.63)

e (4.64)

The constant of integration in Eq. (4.63) is obtained _froni the condition of no net
axial force while the integration constants in Eq. (4.64) are obtained from the

.. dw,,
condition ~——29_ = 0 at free edges.

8

Introducing the notation

2 kf]p 2

ky = i vy = Bog/lge ;
2 JH 2 N

ty = 'k‘li'%;é; vy = Lgg/Bes ;
2 _ Loy .

‘1'5 - kzi;nn s

Eqs. (4.60) become
‘ . PNV L) 2/ o 2
o 4 k2 0m 4y (W kLW ) — g (87 + kgo )=0

tn

-2 . ’ » ’
0”,"}'.1(2”" + \,:‘): <‘1*6 —+—k3v ‘l"()) — {1% \I() == 0

w
and the boundary conditions at each end are (from Egs. (4.61) )

i \ " ,2.1 2 . f” ’2 » .2,—A

either A = 0Oorb —H\WH 4- v <‘] g+ l\w N ) o “49 - 0
2

either 6 = 0" or 6" 2. v_; ‘I‘H:_-;()

’

2 e
>ty

cither Wo=0 or #” +
Combining the two equations of Egs. (4.66), one finds
(D& + 3111)11 + “:l)"3 = ay) (0 or 19)=0

s

(4.65)

(4.66)

(4.67)

(4.68)
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where -
2.2, 2
o2 a2t s 4
T T
V2 —‘ V3
2 2 2 2 2 2 '
T L A R (2 o _Mats M 2 /
P w 2 2 w 2 2 2_2 0
, w2 o2 2 2
2 4 5 T4 2 2
A R Rl R
V2793 Y2773 .. (4.69) )
From Eq. (4.68) the form of expressions for 8 and ¥y are
6=A, sin iz + A, cos )\,z + Ay sinh A,z + A, cosh A,z + Y
A sinh Az 4 A, cosh Az |
Ve = Al sin /\lz+Aé cos /\Iz+A_; sinh /\22+A}1 cosh A,z-+ |
A; ‘sinh ,\az-{—Aé cosh Az (4.70)
e 32 2 2 ‘? : :
where — /\1, /\2 and /\} are the roots of the cubic equation
B 4 a, B2 4 a, £ + a, =0 .. (4.71)
In writing Eq. (4.70), it is assumed that /\%, /\% and Ag are - positive. As the

present interest is limited to assessing the influence of shear lag on the natural
frequencies associated with prjmarily rotational motion, additional frequencies arising

out of negative Ag and A% are excluded from the present discussion. Tt is obvious *-‘/

that all arbitrary constants involved in Eqgs. (4.70) are not 'indepcndent since, ti)ey
have to satisfy any one of Eqs. (4.66). Satisfaction of the second of Eqs. (4.66)

requires the following r'elation_‘ships between the constants. (
2 2 2 2
v (= A+ k) — u) Al
A= 72, 2 2
M(O=2A7+ K)o ,
2 2 2 2
(=N + kL)~ u) I
As = 2 .2 Al
27,2 2y 2
A B \12 ( 1\2 + kW > - :J.z l /*;
3 — .

n( 2o "i) 4 - (4T
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2/ .2 2
o (N + k) 2,1
A(2 +k )
B(R 4 i) -
A5 = - A6

A(A -}—kw)

Vg("s*’kz)_“z 1
A = Al
A”( )‘3 + kw

4.11 Cross sectional constants. of I-section—second order approximation equations
for open tube of type ‘B’ ' A
The expression for Wi has been discussed in section (4.8). Since the tube is
doubly symmetric warp will be antisymmetric about BE and x-axis. It is sufficient
if we consider-AB for evaluating W,,0 as the expression for Ww,, g in other regions can-
be obtained by using the above features. W,, g in AB can be obtained from

Wy, 0 = __”Wl ds ds

and using the conditions (Eq. (4.58b) )
dv—VZy 9

and
w,, ) ==-0at B
Wz,9=—-%(s”+a”—3asz)in AB (4.73)
W,, 0 in I-section is shown in Fig. (4.7). Using (4.73) in Eqs. (4.62) one obl;ins
| [ 8 pe, a’ L — _‘L8« 2 B
o = bt Lo = —yg bt . (4.74)

Lgg = 185b2at;

other cross-section'il constants are given in Eq. (4. 46)

4.12 A simply supported tuhe of I-section—second order approximation equations of
open tube of type ‘B’ ‘

The boundary conditions ln this case (Fig. 4. 6) are

00) = & (0) = W¥,(0) =0 L @y

’

(1) = 0" (1) =¥, (1) =0 - L (4.76)
The appropriate exbres»ions for 0 and ¥y are given in Egs. (4.70). Satisfying the

boundary condmons (4.73) and using Eqs. (4.72), one ﬁnds

Ay = Ay = A, = ;-—A; A;_-_._O S @)
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L ——.'}

Fig. 4.7 : Wg,o In I section

Satisfying Eqs. (4.76) and usirilg Eqgs. (4.77) one obtains
Ay sin Ay + Ay sinh A, 4- Ag sinh Ay = 0

— A Arsina, + X3 Ay sinh A, + A% Ag sinh A, = 0

| - 1. 1. .
— A A2 Sin A, + A, A4 sinh 4, - A, A6 sinh A; = 0 (4.78)
Using Eq. (4.72) one finds foi the nontrival values of constants in Egs. (4.78),
sin A, sinh A, sinh A, = 3 ...(4.79)
or
Ay =mm; m=123 .. ...(4 80)
Neglecting longitudinel inertih a simple expression fer natural frequency can be
obtained.  Substituting ¥ = — /\% = — m?® =% in Eq. (4.71), putting k?v = 0 and
using the notation i '
,\2
y2 .2
N TR
277
2
vy 2 _ ’s
T4 2T . (4.81)
273
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2 2
by = Wy
one obtains
2 K2 mt = 4 m? 2 {2
K = =1+ !
8 — mm? 2/ .2 ,_ 2N\
| | wo ( Gmt =+ ¢)
or
s k*2 P~2 r m? nt + m2 m2 C2
KE = e = 0 g 4
0 - m2 7-"-2 - mQth l y-— 2 2 2
| “0( mewt + L)

...(4.82)

Using Egs. (4.74), (4.65), (4.81), (4.47) and (4.48) and considering the case of a/b=1,
it can be shown.that

9 T T 2KZ RT

Cg — 85 | ...(4.83)
y2 . 210Q%

& h

the variations of kgd , given in Eq. (4.82), with plan aspect ratio is presented in
Figs. (4.8), (4.9) and (4.10). These show that the influence of shear lag is small in
long tubes ; as such Eq. (4.55) can be used. But the influence of shear lag in short
tubes is considerable. Hcnce in short tubes, Eqs. (4.66) have to be used ; neglect

of Js involves only small error.

4.13 Conclusions ,

In this part, problems of torsional vibrations of open tubes are discussed. The
governing equations of open tubes are same as those for closed tubes, but for minor
modifications. Unless the tube is such that p = O at open edges (open tubes of
type A) the method of solution of section 1.6, cannot be used. To facilitate the use
of this method of section 1.6 modified governing cquations are derived (for tubes of
type B). - The exact  solution of a simply-supported tube with the boundary of cross

. . S 2w S

section given by p = -~ sin g brings out a doubly infinite set of freque-
besides an infinite set of frequencies associated with primarily rotational

motion.. One infinite set of these additional frequencies involves small rotations

‘also while the others are pure warping modes.

The same example is worked out using first order approximation equatiohs of
open tubes of t)‘he B. and the results are compared with exact solutions. This
comparison shows that the first approximation equations of tubes of type B give
adequate accuracy even for tubes of type A. when the length of the tube is large.
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— — ——— TORSION BEHDING INCLUDED,
' FIRST ORDER APPROXIMATION.
' SHEAR LAG, TORSION BENDING AND
ST.V. TORSION INCLUDED , SECOND
ORDER APPROXIMATION.

. TORSION BENDING, ST.V. TORSION AND
LONGITUDINAL INERTIA INCLUDED ,
FIRST ORDER APPROXIMATION.

TORSION BENDING AND ST.V.
_ TORSION INCLUDED ’F|RST /
ORDER APPROX!MATION. ///

i

1 l [
.20 30 40 50 60 @
10 20 30

; PLAN ASPECT RATIO

Fig. 4.8 : Influence of plan aspect ratio on the frequéncy parameter for a simply
supported tube of 1 section with a/b-=1, fundamental.

A simply supported tube of I—section is analysed-by using first and second
approximation equations of tubes of type B.  The results of this case show that in
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—_——— — — — TORS!ION BENDING |INCLUDED,
FIRST ORDER APPROXIMATION.

—— SHEAR LAG, TORSION BENDING AND ST.V. TORSION
INCLUDED, SECOND ORDER APPROXIMATION.

——e—-— TORSION BENDING, ST.V. TORSION AND
LONGITUDINAL INERTIA INCLUDED,
FIRST ORDER APPROXIMATION.

— ve—-..— TORSION BENDIND AND 5T.V. TORSION INCLUDED,
FIRST ORDER APPROXIMATION.

1 l o 1 l 1 ! i J ! [
O 10 20 30 40 50 (510) Q
o Z0 ’ 30

Fi AN ASPZCT RAT!IO '

Fig. 4.9 : Influence of plan aspect ratio on the frequency parameter for a
simply supported tube of 1 section with a/b=1, second mode

long tubes, shear lag and longitudinal inertia are negligible while St. Venant torsion
plays an important role ; but in short tubes St. Venant torsion cffect is small while
shear fag and longitudinal inertia have considerable effect. Cepending on the
numerical results presciod, one can say, that if the distance between two successive -
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~— — - — ~ TORSION BENDING INCLUDED,
FIRST = ORDER APPROXIMATION.

: W |

SHEAR LAG, TORSION BENDING AND ST.V.
TORSION INCLUDED,SECOND ORDER APPROXIMATION,

—————-— TORSION BENDING, ST.V. TORSION AND
‘ LONGITUDINAL INERTIA INCLUDED,

FIRST ORDER APPROXIMATION.
=—=—:-—TORSION BENDING AND ST. V. TORSION
1.2 ' INCLUDED, FIRST ORDER APPROXIMATION.
1.0
o.8H—
K
‘e
0.6—
0.4
O.2+—
1 [ : Il l 1 I | J 1 l 1 l
o lOi 20 30" 40 SO 60 Q
! 1O 20 30
PLAN ASPECT RATIO
Fig. 4.10 : Influénce of plan aspect ratio on the frequency parameter for a

simply supported tube of | section with a/b-—1 third mode.

nodal points is less than ten times the flange width it may be classified as a short
tube ; otherwise it is to be treated as a long tube.

Acknowledgements

The authors are grateful to Professor A. Kameswam Rao, for many valuable

dmcuwons

e

T e

KA iol

EAIFIAY

£

LA = U

PR




