General Theory of Vibrations of
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- Summary |

FleAural vihration characteristics of unsrlﬁened a'oubly S‘) mmetric cylmdncal tubes
are_studied using the theory proposed by the authors in Fart_I. _An exact solution of a

YTy

o -

s? . 2ms . C
simply supported tube witl the cross-section given by x = 7 r Sin s presented.

Natural frequencies of a simply supported tube of rectangular cross-section are obtained
by usmg first and second ovrder approximation equations. Numer ical results indicate
that it is essential to consider, at least, second order approximation equatlons to study -

the flexural vibration characteristics of doubly symmetric tubes.
- ADDITIONAL NOTATION**

— Half the widih of the tube
— Half the depth of the tube

4 - w’p LYA
Kt ~ TEBxx
? _
k = w? L?/E
w
P = a/b
Q = L/a
oy, 31— Defined by Eq. (3.37)
8y — Kronecker delta
6l — Deﬁned by Eq. (3.63)

M — Defined by Eq. (3.63)

A%, /\g, )\%—— Rqots of the polynomial (Eq. 3.39 and Eq. 3.65)

tThis iorms part of a-Thesis eatitted *Vibration studies of some basic aircraft structural
components™ by A.V. Krishna Murty upproved for the awurd of the Degree of Doctor of Philosophy
in the Faculty of Engincering. Indian Institute of Science, Bangalore

~ *lLecturer and Professor of Aeronautical Engineering respectively, Department of “ Aeronautical -
Engineering, Indian Institute of Science, Bangalore, India.

**In addition to the notation used in Part L.
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2 Sxx

t k*Bxx

2 2 |

w]» vy — Defined by Eq. (3.61)

w8 Defined by Eq. (3.61) ~
uf " — Defined by Eq. (3.44)

2.2 2.2 -
I“»lez,_Pi.‘Fv‘l———chﬁncd by Eq. (3.61)

3.0 Introduction o
~ Flexural- mode of vibration of doubly symmetric tubes, although uncoupled
...with torsion mode, generally involves warping motion also. This is because of the
fact that the assumption of CSRMD allows complete freedom to warp.” This is the

is a function of two variables;” and so the analysis gets considerably complicated
when compared to beam theory.

~ Over the years, this is one of the basic problems of intense research activity.
Owing to the similarities in ‘the formulation of beam and tube theories, several
attempts were made to adopt or to modify the beam equations suitably. The neces-
sary modifications are the incorporation of transverse shear, longitudinal- inertia and
shear lag effects.  The differential equations arc improved by including the rotary
Cinertia®* and  transverse shear  eflects?, Investigations by subsequent workers®-1
confirmed that these led to more accurate determination of natural frequencies and
mode shapes of tubular structures. Nevertheless, shear lag effects are not included
into the differential equation in literature in an elegant way so far.

Modified beam theories cannot be as good for short tubes, since the shear lag
effects have substantial influcnce on the natural frequencies and mode shapes.
Budiansky and Kruszewski' used Rayleigh-Ritz method to study the natural frequen-
¢y characteristics of closed tubes. Mansficld®™ obtained a stress function solution for
the stiffness of a rectangular box-section, utilising which the natural frequencies can
be caleulated.  These investigations divulge the importance of shear lag effects .in
short tubes.  However, it is difficult to adopt them to tubes of complex cross-sections.

The present iheory involves the development of governing equations for the
natural vibrations of thin' cylindrical tubes of arbitrary cross-section, with the assump-
tion of CSRMD. Using‘the Kantorovich form of Rayleigh-Ritz method, these are
reduced to governing equations to various orders of approximation; an e!eganl
‘splitti’ng of warp results in the incorporation of shear lag effects into the governing
differential equations. This work is reported in Ref. 32.

~——— typical difference-between tube and. classical--beam theories. - Warping displacement- -

*References are given in Part I.
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In this report we utlhse the cquatrons deduced.in Part 132 to study the flexural
~ vibrational characteristics of two tubes.

. (1) A simply-supported tube with the cross section
&’# . i by . St Si 27w
_ ‘ - given by x = —— Sin ——.
(7) " A simply- supported rectangular tube.

ﬁrst has an exact solution and brings out the nature of frequency spectrum
»\hcre'xs the..second-_does not- have an- exact- solution, but shows that, at least,

second order approximation equations need to be used in order to get reasonable
estimates of natural frequencres '
( | 3 l Gmermng equahons - rworous formulatlon o
The govermng equatlons of equrhbrlum are given by Eqs (l.’3l)f“ :
V ) A . 2 ’ - e e — .
S dtzl _,+ k2 ,.‘,,____,,M.lma_.d, _@\de ¢ ds : RER)
P B dz o ._,Sxx dz os ds S ’
: : ezt g s dst dz . o, B4
~and the boundlry condltlons at cach end are ( Eqgs. (1.30) and (1. 35) )
chher u._Oor du. +‘ faw_dg t ds .__: .0
R | (3.3)
~either W o= 0 or @ =) :
- DZ L - '

o . oW '),W . 4 ’
and N B - oW 4
nd o <q-)g:::0 ((%) §=S | ‘ _ (3.4)

32 A simply supported tube with “the boundary of the cross scctlon given by
X == > sin 275 —~ exact solutmn |
: 42 - S
'Thc boundary condmons in llm case are

(Gf | | u(0) - ::u(I) o o .. (3.9)

aw(0.5) _ _,W 'g_.s), —~ 0 (3 6)
.oz _ 0z

oW 0 _ awzS) _ . - ' | (37
s s T , T

Examination of Eqgs. (3.6) and (3.7) suggests the expression for w in the form

. 0.
: ‘ ')nm
W == v _ An.n COs$ M=Z sin <

m=1,2,3 ... n=1.2,3, ..
. (3.8)

r's

* Equations referred to as (1.. . ) can be seen. in lhut I.
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Substituting Eq. (3.8) in Eq. (3.1)

e . o

d2u 2 | 2mnw?
_a_zz— -+ k u = E . 2 . Amn bsxx—’ sin mrz
m=1, 2,3, ... n=l,2, 3,
dx - 211 ' ' :
§ b o8 -—S— ds ' | | e (39)
The boundary of the cross section is given by
N . 2rs '
X = a2 sin - S o e (3.10)
Substituting. Eq. (3.10)> in (3.9), we have
00 0
2 . - -
d = Z z Amn S mnzSt —8n $in mmnz

2Sxx

m=1,2,3,... .n=1,2,13, ...

(3.11)
The value of Sxx is given by ( Eq. (1.19) )

: dx \2 S3t
Sxx = § (a—s' ) t dS —'—8*7:2— . ces (312)
Substituting Eq. (3.12) in Eq. (3.11) | |

© 0 ' 0

d2u 2 ) 4mnmnd .
‘di;“ + kuu == Amn _rnsﬁl:'ﬂ:-_ 81“ SIn mm2
m==1}, 2, 3, ... n=1,2, 3, .
(3.13) -
The solution of Eq. (3.13) is
‘ : o) o)
u = A, sin kuz + A, cos kuz + ‘
- - m=1,2,3, n=1,2,3, .. |
A 4mn'r 8,n R
mn- sin mnz .. (3.19)
2( 2 2+ kz) ™ | | ( . )
Satisfaction of the boundary conditions (3.5) yields A; = A-2'= 0 o ... (3.15)
Hence ' '
o) ok » . , '
. _ dmnm3 8,
u== S‘ z Amn 1 . -
_ . m 2 2 2 2\Sn mnz
vrl 2.3, n==1,2.3 S( 7t+]\u' '

(3 6)
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Fig, 3.1 : A simply supported Tube with the Boundary of the Cross Section
’ . S . 2ms ‘
given by x= - — sin

i~

. 2nw S
cos m = z sin g

o0 { ' 4m2nn:“ d.n
Amn 2 _ 2 2 2 } COS mnz
m=1,2,3, .. n=1, 2, 3, ...

3.17)

from which it follows :

o 4n® n® 2 4m? n =t 3,
Anmn ( —k*min? — —— ) - =
_ . St S 20 2 2 2
. S ( m~. =" 4 ku)

For the nontrivial solution of Amp’s, we have the characteristic equation as
S 4n® 2. 2\ 4m?2n = 3
—_— k— n]u 7_.2 — P 4 s

Gt k) - — =0
S v/ S::( —m* w2} k2 )

u
nom=1,2,3,...

and the corresponding mode shapes are given by

. 2n =S
w=Amnp COS M TZ SIN -—S~'—

4mn =% 8 .
2L sin mrz

S2 ( —m2 ﬁz,!,k2>

u=Ann

The case of n = | represents pure warping modes. Here natural frequencies are

given by '

| n—=2,34,.
N L
ki = k'm*=* + - S m= 1,23, T (3.21)
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and the mode shapes are

w=Amn cOs m=z sin nST:S
and - ' : n=23.. L
n =0 m=123,.. e (322
“whenn = -l, the characteristic equation is
_ . . s .
(—k?mz'ﬁ."’— 47? 4 k2 ) _ 4m? = =0 o (3.23)
S? s g L2
Sz( ——m27r-+ku )
m==1,23
~and the mode shapes are '
- A _ . 2=§ _
W = wg €COs mMTZ SiIn - S : . .. (324)
. -3 '
U= Ap, 4m = =~ sinmnz  m=1,23,.
' Sz(__mz PIINN ad ' ~ '
-and
Umex ‘ 4m w°
Wmax o Sz( —m =24 k2) _ eee (3.25)
u _
Egs. (3.23) and (3.25) are rewritten for convenience as
2 2
RN ol \p) i
(mex ) (- v ) —mm=0 0w
and -
Umax = o
Wmax 2 _ P2 : ' 4
| _ﬁ\S ( I + l\u ) __ e (3.27)
where o |
2 27,
ky =k /m =2
. . | , A
ko= K em | . (328)

w4 wfkest

Neglectiﬁé longitudinal inertia Eq. (3.26) reduces to a very simple form as
' *2 m?> x? ‘
k © =
u

g (3.29)

Numerical results

_ _ S _
The values of the frequency parameter ku2 associated with primarily transverse

motion and the mode shapes, obtained by including longitudin.al inertia (Eqs. 3.26

&
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and 3.27) and by neglecting logitudinal inertia (Egs. 3.29 and 3.27) are compared
below. In these calculations S = 1.

Table 3.1 shows that che influence of longitudinal inertia, in this case is extreme-
ly small. As mentioned earlier inclusion of longitudinal inertia gives two inflnite sets
of frequencies, one of which has primarily transverse motion and the -other involves
primarily warping motion. The second set involving primarily warping motion does
not appear if longitudinal inertia is neglected. As such primarily flexural modes only
are compared in Table 3.1. Table 3.2 shows both the sets of frequencies and ampli-
tude ratios obtained by using Eqs. (3 26) and (3.27) respectively, for the value S = 1.

Table 3.1 — Influence of longitudinal inertia

%9 Modal ratio. — umax/Wmax
Frequency parameter ku- " .+ longitudinal inertia

m .
longitudinal inertia
‘ Includéd _ Ignored - Included ..~ [Ignored
! 0.3980 0.3985 208744 - 209082
2 0.7254 0.7260 | 228812 - . 229337
3 0.8559 0.8564 29.0686 ©29.1646
4 0.9135: 09138 36.3190 36.4426
5 0.9428. . 09431 439384 44,1395
Table 3.2.— Natural frequencies and mode shapes (n = 1)
v First set Second set
m Primarily transverse motion : Primarily warping motion
* : ' S o * ‘ , A
ku2 . | —‘le‘/wm ku2 | Um/Wm
I 0.3980 C 208744 5256650 - 0.0239
2 0.7254 | 22.8812 288 4672 - - 0.0275
3 08559 ~  29.0686 _ 2444717 0.0171
4 0.9135 | 1363190 1229.0614 . 0:0137
5 0.9428 o 439385 221.9259 - 00113

s
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The influence of shear lag on the natural frequencies invelving primarily trans-
verse motion is shown in Fig. 3.2. These valucs are computed after ignoring

" longitudinal inertia since its effect is small. The frequency parameter used in this

graph is K:4 and is given by

k‘l2 yz |
*q u
K= S . (3.30)

ELEMENTARY THEORY
(FOR ALL MODES)

1.0

Ll

05 . 0 1.5 2.0 l

Fig. 3.2: Frequency parameter for a simply supported tube with the
' boundary of the Cross Section given by

< — S Ccin 2zs
42 S

Longitudinal Inertia Ignored
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Alternately

“4 [ WA,
Ky ‘( "EBxx )im "

and the value is unity in elementary theory.

3.3 First order approximation equations

The governing equations, in this case; are obtained by pﬁtting ta=1ts=1 in
Egs. (1.58 and 1.59). The equations of equilibrium are

dzu déx 2

Sxx dZ —.‘bxx ‘—dx + k Au =0 » ' (331)

k2 B T 2% "S"+(sxx - bxx¢x)+ ki Bxx ¢x = 0

The boundary conditions at each end are (Eqs 1.59)

either u = 0 or Sxx %— — bxx d>x =0
_ (3.32)
. dqsx | |
either ¢x = 0 .or i 0
" where, as defined in Eqgs. (1.19), (1.55) and (1.56)
{dx \2 ' |
Sxx = bxx = §<a?> t ds
Bxx = § x* t ds
Eqgs. (3.31) may be written.as _
d*n | 2 déx ‘
o+ kyu — il 0 ... (3.34)
and _ o
. d_isi‘_ + k éx -~ p. 95‘ + uz-(—i—tI = 0 ' ... (3.35)
t dz _ :
2 S\x o | |
whg:rc g;it B - ... (3.36)
Using the following notation
kﬁ = 7, K? where o, = l/u
(3.37)
k2 = 8, K* where 3, = Bu/A |
W i?1 t vr T XX

and simplifying Egs. (3.34) and (3.35) one gets

d+ d2 4 .4 _
[+ (ol (1= o oo o -

(3.38)

(3.33) S

PR =P
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This is the same equation used by Traill-Nash and Collar’; the solution of this
equation is discussed by them in great detail and hence will not be dlscussed here in
detail. '

The solution of the simply supported tube with the boundary of the cross

. . ' : 2= . o :

section given by x = 487:2 sin SS by first order approximation equations is

found to be the same as the exact solution for n = 1. The solution of a rectangular

simply supported tube by first order approximations is summarized in secl'ion (3.4)

in order to facilitate comparison with the solution by second order approx:matlon
equations.

3.4 Simply supported rectﬁngular tube — first order approximation .

Let — /\2 and ’\% be the roots of the quadratic equation (Eq. (3. 38) )
52+K4(a1+ral)z— k(- Kmp) =0 e B9)

The following results are obtained by using Egs. (3.34) and. (3. 35) along with the
boundary conditions of the simply supported tube (Eq. (1.34) ) namely, |

u(O)_=-u(l)—A | - ,
$'x(0) = ¢'x(1)= 0 | . (3.40)

Appropriate expressions for u and ¢x can be obtained using the procedure adopted

in section 2.3 : satisfying the boundary conditions (3.40) the following results can
~ be obtained ' ‘

(a) /\:22 > 0 ; the secular equation is

2 2 |
A ;2('\ 1 );_2> sin A; sinh A, = 0
(=2 +1) (A +xd)

Lo (3.4
or the natural frequencies are given by |
M=mm om=123.. o . (3.42)
~ the corresponding mode shapes are given by
m VTE 02
S Alsinmmz
32,2 2 ‘
— )«l + ]‘u |
and m=1,2, 3, .. .. (3.43)

W o= — X Bzcosmrrz

N

(+
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where 2 = bye/Sxx o o . (344)
(b) 4\% < 0; besides_thc above set o_f frequencies, we have another set inthis
case given by

z\gz—m2n2 rﬁ=1,2,3,‘..

and the mlode shapes are as given in Eqs. (3.43). Tt rﬁay be mentioned here that the
values of kf‘j in cases (a) and (b) are different. Besides those presented above, there
is a possihility of getting an extra frequency corresponding to either 4; = 0 or 4, =0

(Eq. 3.41) and is given by

w o By

» The natural frc_qucncies'associated with primarily transverse motion may be obtained

by substituting , )

2
1

E=— A = — m2w?
in Eq. (3.39) and ignoring longitudinal inertia, as
2 - 2
ku = m! vt“/( m? = + p )

which can be written as

2
ki@
*4 u 2 2
Kl :.: W == {Lt / (m2 7':2 + ‘J.l )\ ees (3.45)

Some numerical results of Eq. (3.45) are discussed in section (3.8)

3.5 Second order approximation equations

The governing equations in this case are. obtained by putting ta = ts = t in-

Eq. (1.84) . The equations of equilibrium are

dfu . dgx dys 2

Sxx d‘i—{_‘ bxx iz Lxx dz -+ kS Au= 0 | - -
- A d L
k2 (B.\'X ‘(Tigé' + lex ‘d"'ir) + -(Sx.‘( a‘;‘ - bxx ¢x - Lxx‘Fx)

o

+ ks2 (B b + Tox W) =

_ d%dy T d2y d N\
k2 (Lxx ik + Lxx - *‘;_‘") + (bxx d—;_ - Lxx¢x — Lxx th)

dz2

+ 1{52 (Tas ¢x + L vx) = 0 | | o (3.46)

2
.\.v;;ﬂﬁ's‘i‘.’ -

.
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‘ and the boundary conditions at each end are ( Egs. (1.85))

either u = Ooruxg—; — bxx ¢x — bLxxy¥x =0

either ¢ = 0 or Bye 99% . T, 0% ¢ 1
dz dz \ ‘ l _
either yx = 0 or l—,xxd\‘ + T 2‘1”‘ =0 I
‘ z :
' | Ly (3.47)

In obtaining above, the following relation has been used

W = — X ¢x — Wy, x Yx : _ ( (3.48)
where - - - ‘ } . :

Wﬂ’ X = —jj x ds ds (3.49)

“The two constants of integration in the above integral have to be evaluated using

ds
Various cross-sectional constants involved in Egs. (3.46) and (3. 47) are glven
below (Egs. (1.19). (1.55), (1.56), (1.82) and (183)) | .

Sxx ='bxx = § (3_:_)2 t ds

the condition of continuity .of

!
i

. _ ) dx dwz.:\
lbxx = Lxx = s ds t ds |
dw,,x ‘ -
2o § (‘“'55"”)“"“ / .. (3.50) -

36 Cross-sectional constants of a rectangular tube—second approxi'mation equations.

Since the tube under consideration is doubly symmetric as shown in Fig. (3.3)
and since we are consndermg v1hrduon in the plane of XOZ, warp is symmeltric
about FB (Fig. 3.3) and dnnsymmemc about OD. Therefore, it is sufficient to
consider the revlon OAB for evaluation of W,, x and the distribution of W,, x in other
reolons may be obtained considering the above features.

X in the region OAB is given by
X=35 0<s<b
=b b <s<a-+b ‘ e (3.51)

and the condition of zero net axial force.

TN

(%
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"~ Fig. 3.4: x = x () in @ Rectangu:ar Tube.

Fig. 3.5: Wyx in a Rectangular Tube,

[Vol. 20, No. 3
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{
W,. x is obtained from the relation givenin Eq. (3.49). From symmetry and
. . |
antisymmetry, we have

(qux) X-o0 - 0

dW,,x _
( ds )s=a+b =0

-— dwo,,' ) .
W,, x and d;\ have to be continuous at A.

Using Eqs. (3.51) in (3.49) and satisfying conditions (3.52). we obtain
3
Wyx = — % + (b2 + ab)sin 0 <s <b |

= b(‘“b) 4 ab (s—a) + b (atb "%)mb<sga+b

and-

2
(3. 53)

'..

The distributions of x and W,,x are shown in Figs. (3.4) and (3.5). |

Using Eqgs. (3.51) and (3.53) in Egs. (3.50), thc cross-sectional constams are .

evaluated as - ! :

— byx <= dbt » |
x = Lxx = Bxx == 4 b2 t ('1+b/3) . i

4bt

Lax = Uxx = —c= (52° + 15a%b + 25ab? + 2b7)

Lax = ib_(;— (84 5 + 420a*b ~L770dab~

+ 630 a*b® + 238 ab' 4 34 b%)

Y

Fig.3.6: A simply supported Rectangular Tube.

3.7 Simply supported recta..oular tube—second order approximation equatlons

The equations of equnllbnum are given by Eqs. (3.40) : while the boundary
conditions are Eqs. (3.47). = f
u(0) = () =0 | | , . (3.55)

$(0) = ¢ (1) =0 | . (3.56)

YO = ¥y =0 .. (3.57)
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i
e",
4
i
1

Egs. (3.46) may be written as
. 2 2
U — ¢ — k 34 =
| gl Yot “ u : .. (3.58)
d oo (12 _p2 hu 2\ 2.,
.4 by ( kw ~ T )¢x & F3>‘}x + P’ = 0'
, , (3.59)
u - Y 2 2.,
,¢X+<kw—l‘2)¢x rL{‘} +<k ~-1‘4) }+I‘2u =0
(3.60)
where
2 Bxx 2 SXX
= F == - = p?
I - T € N
- 2 R b\x 2 2 R_\Y
. ! = . N, = I'o. = =
( . ll] B‘(\ 3 2 ]\'"’bxx (3.61)
' 2 LXX 2 EXX
T e —— r == em— )
"2 Lxx 4 ~ k2Lxx
o ~Combining Egs. (3.58), (3 59) and (3.60), we have | | v
o / 2, 2/ 2, 12 2,22\ 1
| (D (D fkw>—A(D +k )D'Hrku) , f
| 2.2 [ S
% ku} {u or .¢x or yx } =0 ' N ... (3.62).
where _ ' ' I
D denotes d/dz :
2 2 1 2/ 22 2
, Wi T3 vy o (T 1Y)
and ) . .
t 2 2
!’-2 - u‘l
2/ 02, 2 272 2
2 (T3 wy (F7 + 1% :
i ) 2 .2 2/ 2 2 .. (3.63)
o 13-—- o F4 + v (Fz— I.-]
: 2 .2 .2 2 .2 12
(?i 2w PP lg- sy 1y s
co T T T T
ty T ¥

From Eq. (3. ()7) the expressions for u, ¢x and 'x are,

u = A, sin Az -+ A, cos Az + Ay sinh Az + A, cosh /\zz
4 A, sinh Az -+ Ay cosh Ayz

dx—=A A cosh Az

| sin 7z -

/\L Cos ,\:z~'-~Alz sinh A,z -

-+ A; sinby g7 - Aé cosh A,z

|

- A“Ssinh AyZ -

Yx== Arsin L,z Ag cos Az

Ag sink A,7 - A g cush A,z

A", cosh Ayz

(3.64)
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where _
—-/\-‘T‘, /\% and /\‘;f are roots of the cubic equation

224 Cy 52 4 Cf + C, = ) (3.65)
and . : . 1

C=k2+ a2 A2

2 2 2 2 2 »2 2
C, = ki (2ku+ kw) o /\t < ky + 1 l\u _ ... (3.66)
2 2 2 2 .2\, 2
C"_ktl{kw<kw_ At Q1>T CZ}

In writing Eqs (3.64), it is assumed that /\%, /\g and /\g ‘

are positive. However, situations may exist in which either of /\% and )\%

or both may be negative, but such cases are expected to represent primarily warping
motion. As the present interest lies in assessing the influence of shear lag on the
natural frequencies associated with primarily transverse motion, the case of negative

A2

3 and /\§ is excluded from the present discussion.

It is obvious that‘a]l the arbitrary constants in'Eqs. (3.64) are not independent
for they have to satisfy any two of Eqs. (3.58), (3.59) and (3.60). Substitution of
Eqs. (3.64) in Eqgs. (3.58) and (3.59) yields the following sets of relationships
respectively. _ : '

2 2 1 2, _
(=274 k) A + A A4y w1 Ay = 0

2,2 ! 2 4 L
(=2 k) Ay = MALT A AL =0

(234 K) Ay — My Ag = by v AG = O . (3.67)
(23 + KD Ag = 1AL = 2y uiag = 0
(42 ag — ah =2y ag = 0
(A3 + k) Ag -~ My Ag = Ay o] Ag = 0

and

S

-

Vi
< V\A

Bmadi)
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20 A (32002 e Al 27202 2N .,
D} A3 Ag + (A3 4k, = T7) Ag +uy (45+ Kk, —T7 ) Ag =0
2 2 042 _p2\ Al 2752 02 2N 4 L
Iy A3Ag + (34K, =T) Ag+ oy (23 +k,— T3 ) Ay = 0

(3.68)
Satisfaction of the boundary conditions at z = 0, namely u(0) ¢ (0 |
and ‘1")2 (0) = 0 yield
A+ AL+ Ag =0 '
1 1 1 -
A A1 +7\2 A3 + }\3 A5 =0 ' .. (3.69)
o MA] T AT+ A3AL =0 |
* It can be shown from Eqgs. (3.69) with the help of Eqgs. (3.67) and (3.68) that
» A - e — ’ — 1 — 1 — l —_— [ — [/ — ~ "o
A2 = A4~A6—Al —AB_—A5—A1 —A3'—A5—- 0
_ ' (3.70)
Satisfying the boundary conditions at z = 1, namely
u(l) =0, :‘¢)1( (1) = 0 and ‘F)l( = 0, and using Eqgs. (3.70)
one obtains
Ay sin Ay + A, sinh A, + Ay sinh A; = 0
— /\,A;‘sin A /\2A‘11 sinh A, + A;,Aé sinh‘ A =0
- MA3 sindy + A,AZ sinh A, + A5 Agsinh Ay = 0 |
A 3.71)
Using Eqs. (3.67), (3.68) and (3.71) it can be shown that for nontrivial solution -
. sin A, sinh A, sinh 2; = 0 (3.72)
or v
A=m=m m=1,23... 00 (3.73)

Since our interest at this stage is confined only to primarily transverse vibrations,

the corresponding mode shapes are

u=A;sinmmnz (3.74)

W= — X¢x — Wpx ¥'x = — X'A; + W,,x Aé’cosmnz'

where A‘—lz and Aj are obtained in terms of A, by solving the two first equationsin

Eqgs. (3.67) and (3.68).
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Neglecting longitudinal inertia a simple expression for natural frequency can be
obtained; substitutiug

2 2 2 ‘ ,
= e Al-_—" - m w~ - oo (3'75)

in Eq. (3.65); ignoring longitudinal inertia (k&, = 0), and simplifying

66 44

+x2

mi ¢ 4+ m? ﬁz?‘t Cl + C%

which can also be written as

K*4=k‘212— (mr+A)
-t mérs v_ 4

The values of Kt4’ obtained by using Eqs. (3.45) and (3.76) and presented in

Table 3.3, denote the results obtamed by using first and second order approximations
respecnvely

Table 3.3—Influence of shear lag on Kt.4

4 | |
| +m mag + G .. 3I6)

Second Third

P Q .app?(;g?;]:tﬁon 'Fundamental mode mode
3.6 2 © First 0819 0.531 0.335
Secon%l 0.730 ‘0.367 *0.115

6 First 0926 0759 . 0.583

Second 0.883 0.638 0.'424-

10 First 0966 0.876 0.759

Second 0.946 0.810 0.648

14 First 0.981 092 0.848

Second . 0969 0.885 0770

The results of the first approxnmatxon can be obtained from th= equations presented
in Ref. (7) also.  The results of Table (3.3) are presented in a graphical form in
Fig. 3.7. This reveals that the effect of shear lag is considerable partlculary at short
aspect ratios and this effect is more significant for higher modes. Although there
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Fig. 3.7 : Frequency Parameter for a simply supported Rectangular Tube, P = 3.6
' - Longitudinal Inertia Ignored.
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are no exact results to provide comparison for the results presented in Table 3.3, the
trends are in agreement with the results of Ref. (13) which considers a free-frec
tube in transverse vibration.

39 Conclusions

In this chapter problems of flexura] vibrations of doubly symmetric unstiffened
closed tubes have been considered. The exact solution of a simply supported tube

. . . St . 2xs
with the cross section given by x = ~mz sin

‘e

has been presented.  This

reveals that the frequency spectrum in this case includes a doubly infinite set of
frequencies besides the well known infinite set of frequencies involving primarily
transverse motion. One infinite set of this additional doubly infinite set involves
large warping motion associated with small transverse motion while the remaining
pertain to pure warping motions. '

The numerical results reveal that the influence of shear lag is considerable for
short aspect ratios and increases for higher modes. From this it can be inferred
that first order approximation equations are not adequate ; it is essential to consider
at least' second order approximation equations to get reasonably good results,
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