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Borel’s contributions to arithmetic
groups and their cohomology

Gopal Prasad1

Armand Borel made profound contributions to the study of arithmetic groups
and their cohomology. The general theory of reductive groups over arbitrary fields,
which he developed with Jacques Tits, played a fundamental role in this and several
other areas.

The purpose of this article is to give a glimpse of Borel’s work on arithmetic
groups. We will only consider reductive algebraic groups defined over Q, since
using the Levi decomposition one can easily reduce to the case where the group
is reductive, and given a reductive group over a number field, by restriction of
scalars we obtain a reductive group over Q. So let us assume that G is a connected
reductive algebraic group defined over Q. We realize G as a subgroup of GLn, for
some n, in terms of a fixed Q-embedding of G in GLn. Let GZ := G(Q)∩GLn(Z). A
subgroup Γ of G(Q) is said to be an arithmetic subgroup of G if it is commensurable
with GZ, i. e., if Γ ∩ GZ is of finite index in both Γ and GZ. It is easy to see that
the notion of arithmetic subgroups is independent of the specific embedding of
G in GLn. It was observed by Minkowski that the principal congruence subgroup
of GLn(Z) of level m, i. e., the subgroup of matrices congruent to the identity
matrix modulo an integer m, is torsion-free provided m � 3. Thus, any arithmetic
subgroup contains a torsion-free subgroup of finite index.

An arithmetic subgroup is obviously a discrete subgroup of G(R), and it is
usually a rather “large” subgroup ; in fact, as Borel showed in (70), if G is semi-
simple and does not contain a nontrivial connected normal Q-subgroup N such that
N(R) is compact, then Γ is dense in G in the Zariski-topology. These subgroups
arise in several different contexts, for example, in the special orthogonal, symplectic
or unitary group of a rational quadratic, alternating or hermitian form, or as the
fundamental group of locally symmetric spaces of finite volume. Their study is an
integral part of the general theory of automorphic forms, Shimura varieties, and
the Langlands program.

The origins of the theory of arithmetic groups can be traced back to the work
of Lagrange, and later Gauss, on the reduction theory of binary quadratic forms
(this work provided the reduction theory for the arithmetic subgroup GL2(Z) of
GL2(R)). Generalizing Lagrange’s approach, Hermite studied positive-definite, as
well as indefinite, quadratic forms in several variables. Minkowski then developed a
reduction theory for positive definite quadratic forms giving a fundamental domain,
for the action of GLn(Z) on the space of n× n-positive symmetric matrices, which
is a convex polyhedral cone. (For a nice account of all this, see [SO].) After this,
Siegel developed the reduction theory for the arithmetic subgroups Γ of the auto-
morphism group G of a semi-simple Q-algebra with involution. He showed that the
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“fundamental set” he constructed has the following three properties, and moreover
it is of finite volume with respect to any Haar measure on G(R) (which implies
that G(R)/Γ is of finite volume) if the central torus of G is anisotropic (over Q).

(i) For some maximal compact subgroup K of G(R), K ·Ω = Ω,
(ii) Ω · Γ = G(R) ;

and furthermore the following property, known as the Siegel property,

(iii) for any g ∈ G(Q), the set { γ ∈ Γ |Ωg ∩Ωγ �= ∅ } is finite.

A subset Ω of G(R) is said to be a fundamental set for Γ if it has the above three
properties. The goal of the reduction theory is to construct a “nice” fundamental
set for any arithmetic subgroup.

In the 1950’s, Weil gave a classification of classical semi-simple groups. He
showed that up to isogeny these groups are the automorphism groups of semi-
simple algebras with involutions. Thus Siegel’s reduction theory covered most of the
classical groups. Weil taught a course on Siegel’s reduction theory at the University
of Chicago (mimeographed notes of his course were prepared and distributed in
1958). In this course, he also proved the following compactness criterion for several
of the classical groups : G(R)/Γ is compact if and only if G is of Q-rank zero,
or, equivalently, either Γ, or the Lie algebra g(Q) of G , consists entirely of semi-
simple elements. (Based on the evidence provided by this result, and the classical
results on the orthogonal groups, it was later conjectured by Godement that this
compactness criterion holds for all semi-simple groups.) Subsequently Weil gave
some lectures on this topic at Paris.

Harish-Chandra attended these lectures in Paris and found the situation – where
results were known only for certain reductive groups, and where an explicit des-
cription of these groups was required for the study of their arithmetic subgroups
– to be quite unsatisfactory, so he determined to find a general theory. This tur-
ned out to be very fortuitous, both for the subject and for his own later work
on the general theory of automorphic forms where reduction theory of arithmetic
subgroups plays an absolutely crucial role. He was able to quickly prove important
results on arithmetic groups in a general set-up. The famous paper (58) of Borel
and Harish-Chandra was an outgrowth of these results.

In the Borel and Harish-Chandra paper, a nice fundamental set for any arithmetic
subgroup is constructed using the Minkowski-Siegel fundamental set for GLn(Z)
in GLn(R), and the Godement compactness criterion is proved in full generality
(an independent and more popular proof of this criterion was given by Mostow
and Tamagawa). I will now describe the fundamental set constructed by Borel and
Harish-Chandra, and a more usable variant given by Borel (for a different approach
to reduction theory due to Godement and Weil which leads to a similar fundamental
set, see [G]).

Standard Siegel sets in GLn(R) : Let K be the orthogonal group On(R), which
is known to be a maximal compact subgroup of GLn(R). Let A be the subgroup
of diagonal matrices with strictly positive entries, and N be the subgroup of upper
triangular unipotent matrices. For positive real numbers c and t, let

At = { a ∈ A | ai ,i � tai+1,i+1 },
and

Nc = { x ∈ N | |xi ,j | � c , 1 � i < j � n }.
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The subset St,c = KAtNc is called a standard Siegel set (in GLn(R)). It is known

that if t � 2/
√

3 and c � 1/2, then St,c is a fundamental set for GLn(Z) in
GLn(R) ; that it has the Siegel property was shown by Siegel.

The fundamental set constructed by Borel and Harish-Chandra is given in terms
of an embedding of the underlying reductive group in GLn. So now let G be a
connected reductive Q-subgroup of GLn. It is known that we can find an element
a ∈ GLn(R) such that aG(R)a−1 is self-adjoint. We fix such an a. Then given an
arithmetic subgroup Γ of G(Q), and a standard Siegel set S in GLn(R) which is a
fundamental set for GLn(Z), there exist finitely many elements xi ∈ GLn(Z) such
that Ω = G(R)∩⋃ a−1Sxi is a fundamental set for Γ in G(R). The main ingredient
in the proof of this assertion is the important “finiteness lemma” which appears
in §6 of Borel’s book [B]. This book gives an excellent exposition of the general
theory of arithmetic groups and it contains complete proofs of the main results.
In this book, Borel used the above fundamental set to construct an intrinsically
described fundamental set as follows. Let K be a maximal compact subgroup of
G(R). Let P be a minimal parabolic Q-subgroup of G and let U be the unipotent
radical of P . Let S be a maximal Q-split torus of G contained in P . The centralizer
M of S in G is actually contained in P and is a Levi-subgroup of P , i. e., it is a
connected reductive subgroup and P = M · U (a semi-direct product). Let ∆ be
the basis of the root system of G , with respect to S , determined by P . Given
a positive real number t and a relatively compact subset ω of P(R), the subset
S = St,ω = K · At · ω, where

At = { x ∈ A := S(R)◦ | α(x) � t for all α ∈ ∆ },
is called a Siegel set of G(R) (with respect to K , P and S). In §13 of [B], Borel
showed that there exists a Siegel set S (= St,ω, for some t and ω), and a finite
subset C of G(Q) such that Ω ⊂ S · C ; where Ω is the fundamental set for the
arithmetic subgroup Γ given above. Then G(R) = S ·C ·Γ. Making a clever use of
the Bruhat and Iwasawa decompositions, Harish-Chandra showed that any Siegel
set S has the Siegel property, see [B : §15]. Consequently, the set S · C also has
the Siegel property and so it is a fundamental set for Γ .

The existence of a fundamental set (recall that such a set has the Siegel property
by definition) implies (see §5 of (61)) that Γ has a finite presentation, and its finite
subgroups form finitely many conjugacy classes. It is not difficult to see that if G is
semi-simple, or, more generally, if G does not admit a nontrivial character defined
over Q, then the volume of any Siegel set S, with respect to a Haar measure on
G(R), is finite, and hence, G(R)/Γ carries a finite G(R)-invariant Borel measure,
i. e., Γ is a lattice in G(R).

Borel (and independently, Godement and Weil, see [G]) showed that
P(Q)\G(Q)/Γ is finite (or, equivalently, there are only finitely many Γ-conjugacy
classes of parabolic Q-subgroups of G), and for a finite subset C of G(Q),
P(Q) · C · Γ = G(Q) if and only if there is a Siegel set S, with respect to K ,
P , and S , such that G(R) = S · C · Γ. The finiteness of the set of Γ-conjugacy
classes of parabolic Q-subgroups is a very useful result.

In (60), Borel employed the ideas and results of his joint paper (58) with Harish-
Chandra to construct a fundamental set for the discrete subgroup G(k) of the
adele group G(A), where G is a connected reductive algebraic group defined over a
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number field k , and A is the k-algebra of adeles of k . As a consequence, he deduced
that G(k) is a lattice in G(A) if G does not admit a nontrivial character defined
over k . He also proved the finiteness of the “class number”, and the finiteness of
the subset of the Galois cohomology set H1(k , G) consisting of cohomology-classes
which are trivial at every place of k , using an adelic analogue of the “finiteness
lemma” mentioned above.

Existence of cocompact discrete subgroups. Borel used the Godement com-
pactness criterion to show that any connected semi-simple real Lie group G contains
a cocompact discrete subgroup (62). It would clearly suffice to prove the existence
of such a discrete subgroup assuming that G is an adjoint group. In this case Borel
proved, by showing that the Lie algebra g of G has a form defined over a totally
real extension of Q of degree > 1, all but one of whose conjugates are compact,
that there exists a connected semi-simple algebraic group G , which is defined and
anisotropic over Q, such that G(R)◦ is isomorphic to the direct product of G and
a compact group. Now, in view of the Godement compactness criterion, the pro-
jection into G of any arithmetic subgroup of G(Q) would be a discrete cocompact
subgroup of G.

In a latter joint work (109) of Borel with Harder, it is shown that given a number
field k and a finite set S of places of k , and an absolutely simple algebraic k-group
G , the natural map

H1(k , AutG) →
∏
v∈S

H1(kv , Aut G)

is surjective. This theorem provides, in particular, S-arithmetic cocompact sub-
groups in a finite product of simple real and p-adic groups of the same type.

Some finiteness results. In the joint work (139) of Borel with the present
author, a natural Haar measure on any semi-simple group over a local (i. e., locally
compact nondiscrete) field is given and it is shown that, up to natural equivalence,
there are only finitely many S-arithmetic subgroups whose covolume with respect
to this Haar measure is less than a given positive number c . Here the underlying
global field k , the semi-simple k-group, and the finite set S of places of k , are all
allowed to vary arbitrarily. This paper also provides new, more geometric proofs of
several other finiteness assertions, including the finiteness of class numbers. It uses
a formula for the covolume of principal S-arithmetic subgroups given in [P].

Compactifications of locally symmetric spaces and cohomology of arith-
metic groups. I will next describe Borel’s two important contributions to compac-
tifications of locally symmetric spaces V = X/Γ, where G is a connected reductive
group defined over Q, Γ is a torsion-free arithmetic subgroup of G(Q), and X is
the symmetric space K\G(R) of G(R), K being a maximal compact subgroup of
the latter. The first one (69) is a joint paper with Baily which was inspired, in part,
by an earlier work on compactifications by Satake [S]. In this, X is assumed to
be hermitian (i. e., it carries a G(R)-invariant complex structure). Baily and Borel
used Harish-Chandra’s realization of X as a bounded symmetric domain to give
a compactification V ∗ of X/Γ. On V ∗ they introduced a natural structure of an
irreducible normal analytic variety and provided an embedding of V ∗ into a com-
plex projective space, both by means of the Poincaré-Eisenstein series. The main
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results of (95) imply that there is, in fact, a unique structure of algebraic variety
on X/Γ compatible with the complex analytic structure on it. It turns out that, if
Γ is a congruence subgroup, the projective variety V ∗ is definable over an explicit
number field (Shimura) and it has much arithmetic significance.

Zucker conjectured that the L2-cohomolgoy of V (= X/Γ) (see below) is iso-
morphic to the middle intersection cohomology of V ∗. This conjecture was proved
by Borel (122) for groups G of Q-rank 1, and Borel and Casselman (131) for groups
of Q-rank 2. Looijenga, and Saper and Stern, proved it in general independently
and by entirely different arguments.

Borel’s second important contribution to compactification was his joint pa-
per (98) with Serre. To describe it, let us assume that G is a connected semi-simple
Q-group, Γ is a torsion-free arithmetic subgroup, and X is the symmetric space of
G(R). Using the reduction theory, Raghunathan [R] constructed a proper Morse
function on X/Γ, with finitely many critical values. Existence of such a Morse func-
tion implies that X/Γ is diffeomorphic to the interior of a compact manifold with
boundary, which in turn implies that the trivial Z[Γ]-module Z admits a finite free
resolution in which each term is of finite rank. This gives several finiteness results
on the Eilenberg-MacLane cohomology of Γ. To obtain more precise results about
the cohomology of Γ, we need to know the boundary of a nice compactification
of X/Γ. This information is not available for the compactification of X/Γ given
by Raghunathan’s Morse function. A different, and more canonical, construction
of a compactification of X/Γ was given by Borel and Serre in (98). They used
the “geodesic action” of the identity component of the center of the group of R-
points of a Levi subgroup of any parabolic Q-subgroup P of G on X to construct a
boundary face e(P) associated with P ; e(P) is diffeomorphic to a Euclidean space
and e(G) = X . The corner X (P) associated with P is, by definition, the disjoint
union of boundary faces e(Q), Q ⊃ P ; X̄ is the union of all the X (P)’s, so it is the
disjoint union of all the e(P)’s. Borel and Serre introduced a Hausdorff topology on
X̄ under which it becomes a manifold with corners (topologically a manifold with
boundary) whose interior is X . It is obvious from the construction of X̄ that G(Q)
operates on it ; the Siegel property of Siegel sets is used to show that Γ operates
properly on X̄ . The fact that there exists a Siegel set S, and a finite subset C of
G(Q), such that G(R) = S ·C ·Γ quickly implies that X̄/Γ is compact. Thus X̄/Γ
is a compact manifold with corners whose interior is X/Γ.

The boundary ∂X̄ of X̄ has the homotopy type of the Tits building of G(Q) ;
so, according to a theorem of Solomon and Tits, it has the homotopy type of
an (infinite) bouquet of spheres of dimension � − 1, where � = Q-rankG . Thus

the reduced homology H̃i (∂X̄ ) of ∂X̄ , with coefficients in Z, vanishes except in

dimension � − 1, and H̃�−1(∂X̄ ) =: I is the Steinberg module of G(Q). From
Poincaré-duality for manifolds with boundary we get an isomorphism H i

c(X̄ ) 

Hd−i(X̄ , ∂X̄ ), where d is the dimension of X . Hence, the cohomology group H i

c(X̄ )
is trivial unless i = d − � in which case it is I . The fact that X̄/Γ is compact
implies that H i(Γ, Z[Γ]) 
 H i

c(X̄ ), and we conclude that H i(Γ, Z[Γ]) vanishes for
all i except i = d − � and Hd−�(Γ, Z[Γ]) = I . Thus Γ is a generalized Poincaré-
duality group, in the sense of Bieri and Eckmann, with dualizing module I , and its
cohomological dimension is d − �.
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A nice and comprehensive treatment of various compactifications of symmetric
and locally symmetric spaces is given in a forthcoming book by Borel and Lizhen
Ji.

L2-cohomology. Let M be a Riemannian manifold. The Riemannian metric de-
fines a positive definite scalar product ( , )x on the exterior algebra of the cotangent
space at each point x of M , and hence a scalar product, which may possibly be
infinite, on Ωp(M), the space of real-valued smooth p-forms on M , given by

(ω, ω′) =
∫

M

(ωx , ω
′
x)x dv ,

where dv is the Riemannian volume-form on M . An exterior p-form ω is said to
be square-integrable if (ω, ω) is finite. Let Ω∗(2)(M) be the subcomplex of the de

Rham complex Ω∗(M) of M consisting of square-integrable forms ω such that
dω is also square-integrable. The p-th cohomology, denoted Hp

(2)(M , R), of this

subcomplex is called the p-th L2-cohomology group of M , with coefficients in R.
There is a boundary operator ∂ : Ωp(M) → Ωp−1(M) which is formally adjoint
to d . A square-integrable form ω is said to be harmonic if dω = 0 = ∂ω. Let
H∗

(2)(M , R) be the graded group of harmonic forms. Then there is a homomorphism

H∗
(2)(M , R) → H∗

(2)(M , R), which is injective if M is complete, and the cokernel is

known to be either trivial or infinite-dimensional. According to a result of Kodaira,
if a de Rham cohomology class is represented by a square-integrable form then it
is also represented by a L2-harmonic form.

Now let G be a connected semi-simple group defined over Q and let Γ ⊂ G(Q)
be an arithmetic subgroup. As before, let X be the symmetric space of G(R).
Borel and Casselman showed in (126) that the L2-cohomology of X/Γ is finite
dimensional if the absolute rank of G equals the rank of a maximal compact
subgroup of G(R).

Stable cohomology of arithmetic groups. I shall now describe Borel’s results
on “stable” cohomology of arithmetic groups (100). Let G and Γ be as above and
X be the symmetric space of G(R) Let IG be the space of smooth differential forms
on the symmetric space X which are invariant under G(R)◦. Such forms are known
to be harmonic and, as was shown by E. Cartan, IG is the cohomology, with real
coefficients, of the “compact dual” Xu of X . The inclusion of IΓG in the de Rham
complex of X/Γ induces a natural homomorphism j∗Γ : IΓG → H∗(X/Γ, R). As X is
contractible, H∗(X/Γ, R) is, in fact, the Eilenberg-MacLane cohomology H∗(Γ, R),
of Γ, with coefficients in R. The main result of (100) gives a range in which jpΓ
is an isomorphism. (For Q-isotropic groups, this range is roughly 1

4 (Q-rankG).)
If G(R)/Γ is compact, then by Hodge theory j∗Γ is injective, and Matsushima
showed that there exists a positive constant m(G(R)) such that jpΓ is surjective
for all p � m(G(R)). Garland observed that even when X/Γ is noncompact,
Matsushima’s argument can be used to show that jpΓ is surjective for a positive
integer p � m(G(R)), provided every cohomology class of X/Γ of dimension p is
represented by a square-integrable exterior p-form. Together with Hsiang, Garland
also gave a “square-integrabilty criterion” which gave a range up to which this
condition is satisfied. (The work of Garland and Hsiang was inspired by a paper of
Raghunathan on the first cohomology of an arithmetic subgroup of a connected
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semi-simple Q-group G of Q-rank 1, with coefficients in a rational G -module, in
which he showed that any cohomology class is represented by a square-integrable
1-form.)

Now to find a range in which jpΓ is an isomorphism, Borel worked with the
subcomplex C∗, of the de Rham complex Ω∗(X/Γ), consisting of forms which
together with their exterior derivative have “logarithmic growth” near the boundary
∂(X̄/Γ) of X/Γ. He showed that (i) the inclusion C → Ω∗(X/Γ) induces an
isomorphism in the cohomology, (ii) there is a positive constant c(G) such that
for all p � c(G), C p consists of square-integrable forms, and (iii) IΓG ⊂ C∗. From
this it follows that jpΓ is injective for p � c(G), and an isomorphism for p �
min (c(G), m(G(R))). By explicitly computing c(G) and m(G(R)), Borel showed
that jpΓ is an isomorphism for p < 1

4 (Q-rankG). Therefore, for p in this range,
Hp(Γ, R) coincides with the p-th cohomology group Hp(Xu , R) of the compact
dual Xu .

If we consider a sequence (Hn, fn) of classical simple algebraic Q-groups, where
fn : Hn → Hn+1 is the natural inclusion, for example, Hn = SLn, then lim←− IHn

is known. In a given dimension p, the sequence I p
Hn

is stationary, i. e., there is an

integer n(p) such that I p
Hm

= lim←− I p
Hn

for m � n(p). One can use this to compute, for

example, the cohomology of SL(o) =
⋃

n SLn(o) and Sp(o) =
⋃

n Sp2n(o), where o
is the ring of integers of a number field k .

Applications to K -theory of number fields. Quillen has shown that the groups
Ki(o) are finitely generated abelian groups, and the rank of Ki(o) is equal to the
dimension of the space of indecomposable elements (in the sense of Hopf algebras)
in H∗(SL(o), R) of degree i . Using his results on cohomology of SL(o), described
above, in (100) Borel was able to determine the rank of Ki(o). He was able to
similarly determine the ranks of Karoubi’s L-groups of o. Borel’s computation shows
that the rank si of Ki(o) is zero if i is even and it is r1 + r2 or r2, according as i is
congruent to 1 or 3 modulo 4, where, as usual, r1 is the number of real places of k
and r2 is the number of complex places. In an interesting work (108), Borel showed
further that for odd i , say i = 2m − 1, there is a natural map (called these days
the “Borel regulator map”) from Ki(o) into the space of indecomposable elements
of H∗(SL(o), R) of degree i (note that this vector space has a natural Q-structure
given by H∗(SL(o), Q)) whose image is a lattice of covolume a rational multiple of

Dk
1/2ζk(m)π−d(m+1), where ζk is the Dedekind ζ-function of k , d = [k : Q], and

Dk is the absolute value of the discriminant of k .

A vanishing theorem. Using Langlands’ classification of irreducible admissible
representations of real reductive groups, Borel and Wallach [BW], and indepen-
dently, Zuckerman [Z], proved the following important vanishing theorem. Let G
be a connected semi-simple algebraic group defined over R, g be the Lie algebra of
G(R) and K be a maximal compact subgroup. Let H be an infinite dimensional ir-
reducible unitary (g, K )-module and F be a finite dimensional (g, K )-module, then
Hp(g, K , H⊗F ) vanishes for all p < R-rank G . For a cocompact discrete subgroup
Γ of G(R), this vanishing theorem is known to imply that Hp(Γ, R) 
 Hp(g, K , R)
for p < R-rank G . As Hp(g, K , R) is isomorphic to the p-th cohomology of the
compact dual Xu of the symmetric space associated with G(R), we conclude that
jpΓ : IΓG → Hp(Γ, R) is an isomorphism for p < R-rank G . This strengthens a
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result of Matsushima mentioned above. Kumaresan [K], using an idea of Parthasa-
rathy, gave an elegant proof of a vanishing theorem which subsumes the vanishing
theorems of Borel, Wallach and Zuckerman.

Most of the results mentioned above have analogues for S-arithmetic groups,
and there are also results on cohomology of arithmetic and S-arithmetic groups
with nontrivial coefficients, but describing them would have made this article too
long.
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