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In this lecture I shall report on the recent results, and open questions, related to 
the congruence subgroup problem, computation of the covolume of S-arithmetic 
subgroups, bounds for the class-number of simply connected semi-simple groups 
and state the finiteness theorems of [3]. We shall also briefly mention the recent 
work on super-rigidity of cocompact discrete subgroups of Sp(w, 1) and the R-rank 
1 form of type F4, which implies arithmeticity of these discrete subgroups. 

Notation. Throughout this report k is a global field, that is either a number field 
(i.e. a finite extension of the field Q of rational numbers) or the function field of 
an algebraic curve over a finite field. Let V be the set of places of k, V^ (resp. 
Vf) be the set of archimedean (resp. nonarchimedean) places. For v e V, k» will 
denote the completion of k at v with the natural locally compact topology and 
I \v the normalized absolute value on fc». For v e Vf, ov will denote the ring of 
integers of kv, fw the residue field, pv the characteristic of f„ and qv its cardinality. 
In the sequel It» is assumed to carry the "normalized" Haar measure, see [26, 
0.1]. For any finite set S of places of k containing Koo, Os will denote the ring of 
S-integers of k, i.e. 

os = {x e k\ \x\v ^ 1 for all v <£ S}. 

A will denote the ring of adèles of k. For a finite set S of places of k, let A$ 
be the ring of S-adèles i.e. the restricted direct product of the /ĉ 's for v $ S. 

Let G be a connected semi-simple algebraic group defined over k. We fix an 
embedding of G in SL„ defined over k and view G as a /c-subgroup of SL„ in terms 
of this embedding. Let S be a fixed finite set of places of k containing V^. Let 
Gs = HvesG(kv) with the locally compact topology induced by the topologies on 
kV9v e S. We shall let L denote the group G(k) D SL„(os). Note that L depends 
on the embedding of G in SL„ fixed above. Embedded diagonally in G$, L is a 
discrete subgroup of finite covolume. A subgroup of G s is said to be S-arithmetic 
if it is commensurable with T. 
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1. The Congruence Subgroup Problem 

For any non-zero ideal a of os, we have the "reduction mod a" 

na : SLn(os) -> SL„(os/a). 

The kernel of 7za\r will be denoted by La, it is by definition the principal S-
congruence subgroup of T of level a. Since Os/a is finite, SL„(os/a) is finite and 
hence La is of finite index in L. An S-arithmetic subgroup is an S-congruence 
subgroup if it contains a principal S-congruence subgroup of r of some level. 
It is not difficult to see that this notion (of S-congruence subgroups) does not 
depend on the choice of the fc-embedding of G in SL„. 

Henceforth, G will be assumed to be absolutely almost simple and simply con­
nected. We shall assume further that Gs is noncompact or, equivalently, for some v 
in S, G is isotropic at v ([24]). 

The congruence subgroup problem in its simplest form asks whether any S-
arithmetic subgroup is an S-congruence subgroup. If the answer is in the affir­
mative, we say that G has the congruence subgroup property (for S-arithmetic 
subgroups). In general the answer to the above question is in the negative. For 
example, as has been known since 1880, the group SL2/Q does not have the 
congruence subgroup property for S = Vœ (but the group SLn/Q has the congru­
ence subgroup property for all n > 2 - this was proved by Bass-Lazard-Serre and 
Mennicke independently in 1963). If k is a totally imaginary number field, the 
group SLn//c fails to have the congruence subgroup property for any n (S = Vœ) ; 
see [2]. To give a precise measure of the failure, J-P. Serre introduced "the S-
congruence kernel" which is a profinite group defined as follows. On G(k) we 
introduce the following two translation invariant topologies : 

(1) The S-congruence topology: In this the S-congruence subgroups constitute a 
neighborhood base at the identity. It is obvious that this is the same topology 
as the one induced on G(k) from G(A$). By strong approximation ([23], [14], 
[21]), the completion of G(k) with respect to the S-congruence topology is 
G(AS). 

(2) The S-arithmetic topology: In this the S-arithmetic subgroups contained in 
G(k) constitute a neighborhood base at the identity. Completion of G(k) with 
respect to this topology will be denoted by Gs. 

As every S -congruence subgroup is S-arithmetic, the S-arithmetic topology on 
G(k) is finer than the S-congruence topology and therefore there is a continuous 
homomorphism Gs —> G(As). It is not difficult to show that this homomorphism 
is surjective and its kernel, denoted C(S,G), is a profinite group. C(S,G) is by 
definition the S-congruence kernel. It is clear that C(S,G) is trivial if, and only 
if, G has the congruence subgroup property (for S-arithmetic subgroups). In the 
more precise formulation due to Serre, the congruence subgroup problem is the 
problem of determining the S-congruence kernel C(S, G). 

We have the following topological extension 

(*) 1 -> C(S, G)^GS-+ G(AS) -> 1 
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of G(As) by C(S,G). The natural inclusion of G(k) in Gs provides a splitting of 
this extension over G(k)(<-> G(As)). It has been conjectured that, under a fairly 
general hypothesis, (*) is a central extension i.e., C(S,G) is central in Gs, see 
Section 4 below. We shall devote the next two sections to topological central 
extensions. 

2. Topological Fundamental Group 

A topological extension 

(+) 1 -> <t - • g - • 9 - • 1 , 

of a locally compact and second countable topological group 0 by #, with <f 
locally compact and second countable, is a universal topological central extension 
(u.t.c.e.) of 0 if it is a central extension i.e., ^ is a closed central subgroup of i, 
and given any topological central extension 

l - > C - * E - > â f - > l , 

with E locally compact and second countable, there is a unique continuous 
homomorphism cp : ê —• E making the following diagram commutative 

I i * II 
1 -+ C - > E - > » - > 1 . 

It is clear that if 0 admits a u.t.c.e., the latter is unique upto natural equivalence. 
In case (+) is a u.t.c.e. of ^ , # is by definition the topological fundamental group 
of ^ and it is denoted by %i(^). If 0 is a connected real semi-simple Lie group, 
then 7Ci(̂ ) coincides with the usual (algebraic topological) fundamental group 
of ^. It follows from certain results of Moore [20], that if ^ is perfect i.e. if 
it is its own commutator, and the cohomology group H^(^,R/Z), based on 
measurable cochains, is finite, then 9 admits a u.t.c.e. and ni(@) is isomorphic to 
the dual of H^(^,R/Z). It is also known that if 0 is totally disconnected, then 
the cohomology theory of ^ based on measurable cochains is identical with the 
theory based on continuous cochains [37]. 

If v is a nonarchimedean place where G is isotropic, then G(kv) is perfect 
(in fact any proper normal subgroup is central) and the cohomology group 
i72(G(/cu),R/Z), defined in terms of continuous cochains, is essentially known: 

Theorem 1. Let v be a nonarchimedean place of k such that G is isotropic at v 
(or, equivalently, G(kv) is noncompact), then H2(G(kv),R/Z) is isomorphic to a 
subgroup, of index at most two, of the dual j&(/cy) of the finite group p,(kv) of roots 
of unity in kv. Moreover, if at least one of the following three conditions holds, then 
it is isomorphic to ju(/cy). 

(i) G is quasi-split over an odd degree extension of Iq, ; 
(ii) liv is not an extension of Q2; 
(iii) It» contains a primitive fourth root of unity. 
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As a consequence, if G is isotropic at o, then G(fc„) admits a u.t.c.e. and 
%i(G(kl})) is isomorphic to the dual of H2(G(k0),R/Z). 

It is expected that for any nonarchimedean place v where G is isotropic, 
H2(G(kv),R/Z) is isomorphic to p,(kv). For the spin group of a quadratic form 
over k which is of Witt index at least 2 at v, this is proved in [27, 1.9] and the 
same proof would take care of some other classical groups. 

For the group SL2.the above theorem is due to Moore [19]. For other 
Chevalley groups (i.e. groups which split over k) he proved that H2(G(kv),R/Z) is 
isomorphic to a subgroup of #(fcy), and about ten years later Deodhar [7] showed 
that this holds also when G is quasi-split over kv (i.e. contains a Borei subgroup 
defined over kv). Soon after Moore proved his result, Matsumoto showed, by 
constructing a suitable topological central extension of G(kv), that if G is a 
Chevalley group, the above cohomology group is actually isomorphic to fi(kv), 
and an observation of Deligne implies that this is also the case if G is quasi-split 
over fcy, see [28, §5]. Bak and Rehmann [1] have proved the above theorem, as 
well as Theorem 3 stated below, for groups of inner type A of relative rank ^ 2 
using K-theoretic methods. 

In the generality stated above, the theorem is proved in [28] using the results 
of Moore, Matsumoto, Deodhar and Deligne and the Bruhat-Tits theory of 
reductive groups over nonarchimedean local fields. The complete proof of the 
above theorem is quite long and difficult and involves some case considerations. 
It is desirable to have a shorter and simpler proof. 

The known results on H2(G(kv),R/Z) in case G(kv) is compact (or, equiva­
lent^, G is anisotropic at v) are summarised below. 

Theorem 2. Let v be a nonarchimedean place such that G(kv) is compact (then, as 
is well known, there is a central division algebra Dv over k» such that G(kv) is 
isomorphic to the group SLi (Dv) of elements of reduced norm 1 in Dv, and) the 
cohomology group H2(G(kv), R/Z), based on continuous cochains, is a finite group 
of order a power of pVi where.pv is the characteristic of the residue field of fcy. It 
is cyclic if Dv is not the quaternion central division algebra over Q2 and is trivial 
if fc„ does not contain a primitive pv-th root of unity and Dv is not the quaternion 
central division algebra over Q3 . 

This theorem is proved in [30]. The precise computation of if2(SLi(Dy),R/Z) 
has not yet been .done» We conjecture that it is isomorphic to Z/2Z ® Z/2Z if 
Dv is the quaternion central division algebra over Q2, it is isomorphic to Z/3Z 
if Dv is the quaternion central division algebra over Q3, and is isomorphic to the 
Py-primary component of the dual /*(fcy) of the group of roots of unity in fcy in 
all other cases. 

Remark. Theorems 1 and 2 imply that, for any finite set S of places of fc, 
H2(G(AS),R/Z) is the direct product of the H2(G(kü),R/Z),v $ S. If moreover 
G(AS) is perfect, then it admits a u.t.c.e. and its topological fundamental group is 
the direct sum (with discrete topology) of the 7Ci(G(fcy)),u ^ S; see [27, Theorem 
2.4]. This implies that if C(S, G) is central in Gs, then it is actually finite [27, §2]. 



Semi-simple Groups and Arithmetic Subgroups 825 

3. The S-Metaplectic Kernel 

Let ffl be a subgroup of a locally compact second countable topological group 
^. Assume that ffl is perfect and ^ admits a u.t.c.e. Then there is a topological 
central extension 

l - * C - * E - > 0 - > l , 

with E locally compact and second countable, which splits over ^f and which is 
universal with respect to this property. The relative topological fundamental group 
%\ (9, ffl) is then by definition the group C. 

The S-metaplectic kernel is the group 

M(S, G) = Kn(H2(G(As),R/Z) ^ H2(G(k),R/Z)) ; 

where H2(G(k), R/Z) denotes the second cohomology of the abstract group G(fc) 
with coefficients R/Z. The topological central extensions of G(As) by R/Z, which 
split over the subgroup G(k), are classified by the S-metaplectic kernel. It is 
obvious that if G(k) is perfect, then M(S, G) is isomorphic to the Pontrjagin dual 
of the relative fundamental group %\(G(As)9G(k)). 

We now come back to the congruence subgroup problem. Assume that G(k) 
is perfect and C(S,G) is central in Gs (see Section 4 below). Then adapting 
an argument of [2, §15] and using Theorem 1, it can be proved that (*) is the 
universal extension in the category of topological central extensions of G(As) 
splitting over G(k), see [27, §2]. In particular, C(S9 G) is isomorphic to the relative 
fundamental group ni(G(As), G(k)) and so it is isomorphic to the Pontrjagin dual 
of the S-metaplectic kernel M(S9G). Thus to determine the S-congruence kernel, 
it is enough to compute M(S, G). Also, in the theory of automorphic forms (of 
fractional weights) it is of critical importance to know the topological central 
extensions of G(A) which split over G(fc); these are determined by M(0, G). Now 
we state the following theorem which "determines" M(S, G) for all fc-isotropic G. 

Theorem 3. Assume that G is isotropic over k. Let S be an arbitrary finite set of 
places ofk. Then M(S,G) is trivial if S contains either a nonarchimedean place, or 
a real place v such that the group G(kv) is not topologically simply connected. In 
general M(S9G) is isomorphic to a subgroup of the dual ju(fc) of the group of roots 
of unity in k. 

For Chevalley groups this theorem was proved by Moore [19] and for groups 
which are quasi-split over fc, it was proved by Deodhar [7]. For the group G = SL2, 
Moore in fact proved that M(S,G) is trivial if S contains a noncomplex place 
and it is isomorphic to p,(k) otherwise *. Soon after this, Matsumoto proved that 
for all Chevalley groups G, M(S, G) is isomorphic to p,(k) if S does not contain 
any noncomplex place. The same holds for any group which is quasi-split over 
fc as was observed by Deligne. If either S => VOD or fc is a totally imaginary 
number field, the precise computation of M(S, G) for the groups $Ln(n ^ 3) and 

1 This result is equivalent to his theorem on the "uniqueness of the reciprocity law of 
global class field theory" - see [4] for an elegant proof of the latter. 
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Sp2«(ft = 2) is already in [2], and following the ideas of this paper, Vaserstein 
[35] computed the metaplectic kernel for many other classical groups. In 1981, 
Bak, in a Comptes Rendus note, outlined a proof of this theorem for all groups 
of classical type of relative rank at least two which uses the results of [1]. 

For arbitrary simply connected fc-isotropic groups, the above theorem was 
proved by Prasad and Raghunathan in 1980 [27], and besides the results of 
Moore and Deodhar for split and quasi-split groups, the proof uses the results of 
[28] on topological central extensions of G(k0). Note that for a real place v, the 
condition that G(kD) is not topologically simply connected is equivalent to the 
condition imposed in [27, 3.4(h)]. 

It is likely that if G is fc-isotropic, S c Vœ, and for every v in S, G(k0) is 
topologically simply connected, then M(S9 G) is isomorphic to /t(fc). This has been 
verified for many of the classical groups and some groups of exceptional types. 

A variant of Moore's theorem on the "uniqueness of the reciprocity law", 
announced in [25], together with the results of [28, 30], can be used to compute 
M(S,G), modulo 2-torsion, for all fc-anisotropic G. For some results in this 
direction see [32]. 

4. Projective-Simplicity of G(k) and Centrality of C{S, G) 

It has been conjectured by Kneser, Platonov and Margulis that if G is isotropic at 
each nonarchimedean place, then G(k) is projectively-simple i.e. it does not contain 
any proper noncentral normal subgroup, and if it is anisotropic at some nonar­
chimedean place, then (as is well known, G is of type A and) any noncentral normal 
subgroup ofG(k) is the intersection ofG(k) with a normal subgroup of Y[ve#>G(kv), 
where £f is the (finite) set of nonarchimedean places of fc where G is anisotropic. 
This conjecture is known to hold for all fc-isotropic groups except possibly for 
certain outer forms of type E6 of fc-rank 1 which require division algebras of 
degree 3 for their construction. For anisotropic groups, the results are much less 
complete. In 1980, inspired by [22], Margulis [16] proved the above conjecture for 
groups of type Ai. This implies the projective-simplicity of the spin group of any 
quadratic form in 3 or 4 variables which is isotropic at all nonarchimedean places 
of fc. Projective-simplicity of the spin group of any quadratic form in at least 
five variables was proved already in 1956 by Kneser [9] by an ingenious method. 
Borovoi and Chernousov have recently proved the projective-simplicity of G(fc) 
whenever G is of absolute rank at least two and it splits over a quadratic exten­
sion of fc (this class includes all groups of type B, C, E7, Eg, F4 and G2); and now 
Sury and Tomanov have independently established this for G of type A3, which 
is isotropic at all nonarchimedean places - this implies the projective-simplicity 
of G(fc) for all groups G of type D (except the triality forms). But the anisotropic 
groups of (inner and outer type) A„ (n arbitrary) pose a serious challenge. 

It may be of interest to note here that it follows from the well known result 
of Margulis [15] on normal subgroups of lattices 2 in semi-simple groups, and 

2 A lattice in a locally compact unimodular group is a discrete subgroup of finite covolume 
(with respect to any Haar measure). 
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the strong approximation property, that any noncentral normal subgroup of G(k) 
is of finite index in G(k) (see, for example, [23]). Moreover, it is easy to show that 
if G is isotropic at all the nonarchimedean places of fc and has the congruence 
subgroup property for some S, then G(fc) is projectively-simple. 

Based on the results of [2, 33] on SL„ and Sp2„, and [18], where the centrality 
of the S-congruence kernel was proved for all Chevalley groups of rank ^ 2, it 
has been conjectured that for arbitrary (simply connected) G, C(S,G) is central 
in Gs //,^uGSfcy-rank(G) ^ 2 and G is isotropic at all nonarchimedean veS. Using 
some of the ideas of [2, 33], Vaserstein [35] showed that this conjecture holds 
for all classical groups of fc-rank at least two. Raghunathan has proved the 
above conjecture for all fc-isotropic groups [31]; his proof does not require any 
case-by-case analysis. 

For the spin group of an arbitrary (not necessarily isotropic) quadratic form 
in at least five variables the above conjecture on the centrality of C(S,G) was 
proved by Kneser [10]. Refining and using his ideas, Rapinchuk and Tomanov 
have recently proved the conjecture for all anisotropic groups of type B,.(r ^ 2), 
Cr(r ^ 2), D,.(r ^ 5), E7, Eg, F4, G2, and the groups of type 2A,.(r 5: 3) which split 
over a quadratic extension of fc. The question of centrality of the S-congruence 
kernel for anisotropic groups of type A is a very interesting open problem-its 
solution may require new insight into the structure and geometry of central 
division algebras over global fields. 

5. The Hasse Principle and Tamagawa Number 

If fc is a global function field, then the Galois cohomology Hì(k, G) is trivial (this 
was proved by Harder). On the other hand, if fc is a number field, it has been 
known for quite some time that the "Hasse principle" i.e., the assertion that the 
natural morphism 

Hi(k,G)-+ n ^ ( ^ G ) 

is injective, holds for all (simply connected) G of type other than Eg. The Hasse 
principle has now been verified for groups of type Eg by Chernousov [5]. 

If fc is number field, let D^ be the absolute value of the discriminant of fc/Q 
and if fc is a global function field, let qjc be the cardinality of its field of constants, 
g/c the genus of fc and Dj< = qlgk~2-

Let œ be an invariant exterior form on G, of maximal degree, defined over 
fc. Then for each place v, the form œ , and the normalized Haar measure on fcy, 
determine a Haar measure on G(fcy) which we denote by cov. 

Let P = (Pv)veVf be a fixed coherent collection of parahoric subgroups: 
for each v e Vf,Pv is a parahoric subgroup of G(lcv) such that the product 
TlveVnGfav) * TlveVfP» *s a n ° P e n subgroup of G(A). (Recall that a subgroup of 
G(/cy) is said to be an Iwahori subgroup if it is the normalizer of a maximal pro-py 

subgroup of G(kv) or, equivalently, it is the stabilizer of a chamber (i.e. a simplex 
of maximal dimension) in the Bruhat-Tits building of G(fcy). Any subgroup 
containing an Iwahori subgroup is called a parahoric subgroup.) It is known that, 
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as G is semi-simple, the product Ylœ'v(Pv) is absolutely convergent and so there 
is a Haar measure \i on G(A) which on the open subgroup HveVooG(kv) • J\veV Pv 

coincides with thè measure D^1 m YiveVaocov ' Ylvevf
œv\p0-1* is obvious from the 

product formula (i.e. ]Jv\x\v = 1 for xek* ) that the measure p is independent 
of the fc-form œ and it is called the Tamagawa measure. The Tamagawa number 
of G/fc, to be denoted Tfc(G), is the positive real number p,(G(A)/G(k)). It was 
conjectured by Weil that for all (simply connected absolutely almost simple) 
G,tk(G) = 1. This conjecture has recently been proved by Kottwitz, over number 
fields, without any case-by-case considerations (see [11], and also [26, 3.3]). Using 
Arthur's trace formula and the Hasse principle, he has in fact shown that if fc is 
a number field and ^ is the unique quasi-split inner fc-form of G, T&(G) = i\fâ)\ 
this result was conjectured by Langlands. Now since the Tamagawa number of 
any simply connected quasi-split group is 1 [12, 13], Weil's conjecture follows. 

Weil's conjecture remains unproven for groups defined over global function 
fields. It is still unknown, for example, if over such a fc, the Tamagawa number 
of every outer fc-form of type A is 1. 

6. Covolumes of ^-Arithmetic Subgroups, Bound for Class 
Numbers and the Finiteness Theorems 

We shall now describe a formula for the covolume of S-arithmetic subgroups 
with respect to a natural Haar measure on Gs. We begin by describing a natural 
Haar measure fiv on G(k^) for any place v of fc. For a nonarchimedean place v of 
fc, let p,v be the Tits measure on G(kv) i.e. the Haar measure with respect to which 
the volume of any Iwahori subgroup of G(kv) is 1. If v is archimedean, then k0 

is either R or C and p,v is the Haar measure on G(kv) such that, in the induced 
measure, any maximal compact subgroup of Rko/R(G)(C) has volume 1. Now on 
Gs = TlvesG(kv) we take the product measure ps := Ylves^v-

Let ^ be the unique quasi-split inner fc-form of G. For each nonarchimedean 
place v, we fix a parahoric subgroup âPv of @(kv) of maximal volume such that 
Hvev^ikv) ' UveVf^v is an open subgroup of &(A). 

As in Section 5, let P = (Pv)vevf be a.fixed coherent collection of parahoric 
subgroups. Let S be a finite set of places containing Vœ and let A = G(k) n Y[v^s

pv-
In its natural embedding in Gs, A is an S-arithmetic subgroup. Let Gv denote 
the smooth affine Oygroup scheme associated with the parahoric subgroup Pv by 
the Bruhat-Tits theory ([34, 3.4]). Let Gv := Gy®0ufy be the reduction mod pv of 
Gv. Let Tv be a maximal f„-torus of Gv containing a maximal fy-split torus and 
Mv be the maximal reductive fy-subgroup containing Tv. Note that Mv depends 
on the choice of Pv. Let %9 $1 and M» be similarly defined fu-groups associated 
with ^ and the parahoric subgroup 0>v. 

If ^/fc is not a triality form of type 6Ü4, let / be the smallest extension of 
fc over which ^ splits. If 0/fc is of type 6D4, let *f be a fixed extension of fc of 
degree 3 contained in the Galois extension of degree 6 over which ^ splits. Let 
Df be the absolute value of the discriminant of *f/Q if -fc is a number field and 
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Df = q]g*~2 if fc is a global function field, where qj is the cardinality of the finite 
field of constants in { and gt is the genus of {. 

The integer s(0): If ^ splits over fc, let s(^) = 0. If 0 is a fc-form of type 
2 A,., with r even, let s>(0) = \r(r + 3); if ^ is a fc-form of type 2A?. (r odd), 2Dr 

(r arbitrary) or 2E6, let s(0) = j(r - l)(r + 2),2r - 1 or 26 respectively. If 0 is a 
triality form of type 3D4 or 6D4, then let s(^) = 7. 

The following theorem provides a "computable" formula for the volume of 
S-arithmetic quotients of Gs. It is proved in [26] . 

Theorem 4. Let m\ ^ • • • ^ mr be the exponents of the Weyl group of the absolute 
root system of G. Then 

Hs{Gs/A) = Dl iäbaa(D,/D%*i)l«*> n 
\veVœ 

m/! 
J J ( 2 T O ' " < + 1 T * ( G ) W ; 

where 
(rv+6im Jfv)/2 

n^-=—n 
1 I J IT* (K\ 1 1 uefy #T.(f,) ü^S 

(dim M„+dim ^ „ ) / 2 
^ 

#M„(f„) 

Sf = S n Vf, and for v E Vf, rv(= dim Tv) is the rank of G over the maximal 
unramified extension of fcy. 

The results involved in the proof of this theorem provide the following lower 
bound for the class number of simply connected anisotropic groups (see [26, 
Theorem 4.3]). 

Theorem 5. Assume that G is anisotropic over k and moreover Gœ := I L E F « , ^ ^ ) 

is compact. Then the class number #(G00]^[i;eF Py\G(>4)/G(fc)) ofG/k with respect 
to P is at least 

Z) | d i m G m,/nK : k M^) w^rr* n 
KveVaz 

ntj ! 

1 1 (2TC)HI/+1 
7 = 1 

tk(GK(P) ; 

where 

dp)=n 
veVf 

<iì 
(dim M„+dim J£v)/2 

#My(fy) 

In [3, §7] this theorem is used to prove the following finiteness theorem. 

Theorem 6. Given a positive integer c, let ̂ c be the set of pairs (fc, G) consisting of 
a number field k and a connected, simply connected absolutely almost simple group 
G such that G is anisotropic over k, G^ := Y\veV G(kv) is compact, and the class 
number #(GaoY[veV PV\G(A)/G(k)) °fG/k with respect to some coherent collection 
of parahoric subgroups (Pv)vevf is less than c. Then (up to natural equivalence) ^c 

is finite. 
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The formula for the volume of S-arithmetic quotients given above and certain 
number theoretic estimates have been used in [3] to prove that in characteristic 
zero, there are only finitely many distinct S-arithmetic subgroups T of covolume 
5: c, where c is a given positive number. Also, there are only finitely many S-
arithmetic T with 0 ^ \x(r)\ < c, where x(T) is the Euler-Poincaré characteristic 
of T in the sense of C. T. C. Wall. For precise results, see [3]. 

7. Super-Rigidity and Arithmeticity of Lattices 

According to a celebrated theorem of Margulis (annonced at the ICM held in 
1974), irreducible lattices 3 in real semi-simple groups of R-rank > 1 are super-
rigid4. It follows rather easily from this that such lattices are arithmetic. On the 
other hand, it has been known for almost thirty years that the groups SO(n, 1) 
contain non-arithmetic lattices for n £ 5. In 1986, Gromov and Piatetski-Shapiro, 
employing a nice geometric construction, showed that for each n, SO(n, 1) contains 
plenty of non-arithmetic lattices ([8]). Mostow has constructed non-arithmetic 
lattices in SU(2,1) and SU(3,1); however, whether lattices in SU(n, 1) are all 
arithmetic if n is sufficiently large is still an open question. 

Corlette [6] has now established the super-rigidity of real representations of 
cocompact discrete subgroups in the remaining semi-simple groups of R-rank 1, 
namely the groups Sp(w, 1) and the R-rank 1 form of type F4, using his basic 
theorem on the existence of a harmonic map in any given homotopy class of 
maps from a compact riemannian manifold into a locally symmetric space; and 
just a few weeks ago I have learnt that Gromov and Schoen have proved that 
any representation of such a discrete cocompact subgroup over a p-adic field is 
bounded by developing an analogue of the theory of harmonic maps for maps 
from a riemannian manifold into a Bruhat-Tits building. Now, as in the case 
of groups of R-rank > 1, arithmeticity of cocompact discrete subgroups of the 
groups Sp(n, 1) and the R-rank 1 form of type F4 follows. 
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