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Majumdar-Ghosh-like spin models in low dimensions
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Abstract : The Majumdar-Ghosh model occupies a special position amongst the models of interacting spin systems. The model hashmotivated t
search for other low-dimensional spin systems with quantum paramagnetic ground states and a gap, the so-called spinexafiaiiorihgpectrum.

In this brief review, some generic features of MG-like spin models will be described in terms of theoretical results antergbgriobserved
phenomena.
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1. Introduction [4-6]. The SS model is defined on a square lattice and includes

The celebrated Majumdar-Ghosh (MG) model illustrates sorfe- Interactions (of strength) as well as alternate diagonal
characteristic features of low-dimensional antiferromagnetfXcange interactions (of strength in every second square.
(AFM) quantum spin systems. This has given rise to a flurry &or J;/ J, below a critical value ~ 0.7, the exact ground state
research activity, both theoretical and experimental, to ga(i:,qnsists of singlets along the diagonals. At the critical point,
insight on the unique properties of such systems. In this brig ground state changes from the gapped disordered state to
overview, a number of spin models will be discussed which a3@ antiferromagnetically ordered gapless state. The AFM
descendants of the MG model and which describe a variety@¥mpPound SrCBO,), is an experimental realization of the SS
novel phenomena in interacting spin systems. We assume Tdel [7]. In the frustrated| —J, andJ, —J, —J; models)J,, J,

magnitude of the spins to B& % unless mentioned otherwise 2ndJ; are the strengths of the n.n., diagonal and n.n.n. exchange
interactions respectively. TRe—J,-J,—J, —J. model incudes

2. Frustrated spin systems two more exchange interactions, knight's-move-distance-away

I ) nd further-neighbour diagonal of stren andJ

The MG chain is the first example of a frustrated quantum sp?n 9 9 guhs 5

. . respectively. In this case, the four columnar dimer (CD) states
model for which the ground state can be determined exactly. P y (CD)

The origin of frustration in the model lies in the presence & e the exact ground states for the ratio of interaction strengths
both nearest-neighbour.@.) as well as next-nearest-neighbour
(n.n.n.) spin-spin interactions. The spin-spin correlations in the
ground state are short-ranged but one can define a four-spin

1 11

Ji1dp 33 Jp Js=111 237" 1)
In a CD state, the spin pairs in the alternate columns of the
correlation f“”Ctio"(SX SENY $> which has off-diagonallong 24 square lattice are in singlet (alternatively termed as dimer or
range order (LRO) in the two ground states. These states, becaigénce bond (VB)) spin configurations. There is no rigorous
of a coherent structure, describe a quantum paramagnetic phgggof as yet that the CD states are the exact ground states
A general MG-type model in one dimension (1d) has beehough approximate theories tend to support the conjecture [6].
proposed which includes exchange couplingsrte- dearest One can, however, prove that any one of the CD states is the
neighbours with strengtls=2n, L, =2n-1, .....,J, =1[1,2]. exact ground state when the dimer bonds are of stredgthd?
The 2d models include the Shastry-Sutherland (SS) model [fe rest of the exchange interactions are of strengths as specified
theJ, -J,, J, —J, —J; and thel, —J, —J, —J, —J. models ineq.(1).
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Two well-known examples of spin-disordered but quanumell as multi-spin interactions. The MG Hamiltonian is a special
coherent states are the quantum spin liquid (QSL) and the dimase of the Klein Hamiltonian with= 3. The Hamiltonian, apart
or VB states. A QSL state is a spin singlet with total §s#0  from a numerical prefactor and a constant term, can be written
and has both spin rotational and translational symmetry. A wedls
known example of a QSL state is the resonating-valence-bond
(RVB) state which is a coherent linear superposition of VB states. Hve = 2 Pg(si+ Si2t $i2) ) ®)
The linear superposition of the two ground states of the MG !
model is a simple example of a RVB state in 1d. In this particulgr
case, however, there is no energy gain due to the superposition
of the VB states. In the VB statesg, the CD states, the spin These are integer-spin 1d antiferromagnets which share common
rotational symmetry is present but the translational symmetryf@atures with the spin —%2 MG chain. Both have spin-disordered
broken. Some quantum paramagnetic states like the chiral, dingggund states and a gap in the excitation spectrum. From the
twisted and strip or collinear states are characterised by fHgb-Schultz-Mattis theorem, one can show that the half-odd
non-zero expectation values of appropriately defined ordi#iteger spin Heisenberg AFM (HAFM) chain with only n.n.
parameters [8]. A recent work classifies and analyses MG-lilg®in-spin interactions, has a gapless excitation spectrum in the

spin models with dimer (VB) ground states [9]. infinite chain length limit [12]. The theorem is not applicable to
. . . integer spin chains. Haldane, based on his analysis of the
Klein [10] proposed a method of construction of MG'“kenonl?nearp model mapping of the lar@HAFM Hamilt)(;nian
spin models whose exact ground states are the n.n. VB state o

. . . . . Y j hat the HAFM spin chai ith i i
In the Klein formalism, one defines a neighbourhdif of n 1d, conjegturedt a.tt .e spin chains Wl,t mteger spins
L . o have a gap in the excitation spectrum. Haldane’s conjecture has
each sita which consists of the site itself and Zs- 1 n.n.s.

. L L .. now been verified both theoretically and experimentally [13].
The Klein Hamiltoniankd, ;. , is written as a sum over projection X ; ,
© Affleck, Kennedy, Lieb and Tasaki (AKLT) constructed a spin-

operators P;(SN(i)) onto the maximally allowed spin state1 model in 1d the exact ground state of which is the valence

Haldane-gap antiferromagnets

S== of azneighbourhood. bond solid (VBS) state [13]. In the case of the MG model, the
2 ground state has broken translational symmetry. In the VBS
Hye :2 PZ(S _ ) state, the symmetry is unbroken and the ground state is non-
on Tt TN, (@ degenerate. The state can be described as a true QSL. Each spin
1 can be considered as a symmetric combination of the two
where spin-%2’s. In the VBS state, each spin -%2 component of a spin 1
forms a singlet (VB) with a spin -% at a neighbouring site. The
Sy = ngfZi)Sx ) (3)  principle behind the construction of the AKLT Hamiltonian is
similar to that in the case of the Klein Hamiltonian.
The projection operatcﬂ"j has the form
Hakr = 2 P(Si+S.1). 6)
S%ngy = 1(1 +1) '
P (SN (i) ) = H [[J G+ 10 + ])]] ' @ From (4)H, 7 Can be written as
1 1 2 1
where the product runs over the total spin values of gpens, Harr = Z[E(Si' S+1)"‘g( S- %) "'?J . @
I

other than the valyeAny n.n. VB state is an exact ground state
of H,;, In a VB configuration, each site of the lattice forms dhe presence of a VB between each neighbouring pair of sites
VB with one of its n.n.s. The Z spins in the neighbourhg@yl  implies that the total spin of each pair of spins cannot be 2.
Thus,H,, racting on the VBS state gives zero. The VBS state

can thus at most sum up to the total SﬁFF%—l. The :
can be described as a quantum paramagnet.

projection operatOIPE(SN(i)) acting on the VB configuration

gives zero. Sinclelklefn
semi-positive definite with zero as the lowest eigenvalue. Th
the VB states are the exact ground states. In the case of

honeycomb lattice, one can show that the n.n. VB states are ?
only ground states [11] whereas other ground states are pOSS-RIIB—MAZ) etc [14]. Experiments carried out on some of

for lattices like the square and the triangular lattices. From e ese compounds show that the VBS state provides the correct
(2)-(4), itis clear that the Klein Hamiltonian includes two-spin aﬁhysical picture for understanding the observed properties.

) iocti ¢ it One can define a non-local string order parameter which has
IS @ sum over projection operators, it1S, ., ;erg expectation value in the VBS state [13]. Several
FRidane gap antiferromagnets have been discovered so far.
e examples are Ni(HgN,),NO,(CIO,) (NENP),
sD14N,),N,(PF) (NDMAP), Ni(CH,,N,),N,(CIO,)
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The Haldane gap antiferromagnets exhibit rich physics in3NJ, /4 , where N is the number of rungs in the ladder. When
the presence of strong magnetic fields. In the absence of H1g not equal to zero but small, the corrections to the energy
magnetic field, the lowest excitations ai@=al triplet separated gnq the wavefunction are in powersJogo that the ground
from the ground state by an energy gap. In the presence of e more or less retains its form in which the VBs occupy the
magnetic field, there is a Zeeman splitting of the excited levelg;ngs. AnS = 1 excitation may be created in the ladder by
As the field increases, the energy gap of the lowest moggsmoting one of the rung singlets to B 1 triplet state. The
decreases and vanishes at a critical value of the field. Thisygak coupling along the chains gives rise to a propagating
accompanied by a 1d Bose condensation of magnons [14]. Twghagnon. In first order perturbation theory, the correction to

possible scenarios have been suggested at higher field$h@ ground state energy is zero. The dispersion relation, with
quantum critical state with power-law correlations and a statgspect to the ground state energy, is

with AFM LRO. The nickel-based organometallic compound,
with abbreviated name NTENP, represen®=al chain with w(K) = Iz + Joosk 8)

exchange interactions of alternating strength. The alternatio?] Cis th H )
parameter i = (J; - Jz)/( 3+ ), whereJ, andJ, are the wherek is the momentum wave vector of the propagating

) . excitation. The SGis givenb
strengths of the alternate n.n. exchange interactionsd As 9 y
increases from zero, the energy gap decreases and vanishes at 4 — w(r)=Jg-J. ©)
a critical valued,. The spin gap is reopened beyond this
quantum critical point. The ground state is no longer the VBE10ugh the arguments given above strictly hold true in the
state but a dimerized one in which two VBs form on each stro§ong-rung coupling limit, a SG exists for all valueg p# 0.

link. Bose and Gayen [17] have studied a two-chain ladder model
with frustrating diagonal couplings. The intra-chain and diagonal
couplings are of equal strengdh For Jg =2J, the exact

The simplest ladder model consists of two chains coupled byound state consists of singlets along the rungs with the energy
rungs. More generally, a ladder may consistaifains. Ladders g _=—3NJg/4 . The triplet excitation is localized and separated

provide a bridge between 1d and 2d many body systems gyt energy gap from the ground state. Xian [18] later pointed
are ideally suited to study how physical properties change as

one goes from a single chain to the square lattice limit [15, 16]. 94t that as long abJr/J)> (Jr/ J) 1401 the rung dimer

the spin ladder model, each site of the ladder is occupied b§tate is the exact ground state. At the critical point, there is a
spin and the spins interada the HAFM exchange interaction first order transition from the rung singlet state to the Haldane

Hamiltonian. The intra-chain n.n. and the rung exchand¥'ase of thes = 1 chain. Kolezhuk and Mikeska [19] have
interactions are of strengtandJ,, respectively. Whed,, = 0 constructed a class of generaliSed2 two-chain ladder models
R ' R !

there is a decoupling of the chains for which the excitatid” Which the ground state can be determined exactly. The
. HamiltonianH is a sum over plaquette (square) Hamiltonians
spectrum is known to be gapless. Whgp =0, an energy o . . .
. - and each such Hamiltonian contains various two-spin as well
gap opens up provided the number of chains in the ladder Is

. . as four-spin interaction terms. Several known models with exact
even. For an odd number of chains, the excitation spectrum_is

| Thus. ladd ith ber of chains bel S_round states are special cases of the generalised ladder model.
gapless. Thus, fadders with an even humber of chains be'on hoese include the MG model, the AKLT model and the ladder

the gengrgl clasg of spin gap (SG) antiferromagnets of which mgdel with diagonal couplings. Ti&= 1 spins of the AKLT

MG chain is a prime example. In suc.:h systems, thg energy 98l are composed from tife= % spins belonging to the
does n(?t o.ccu.r .due to some anisotropy but |s_quantq%der rungs. The two degenerate ground states of the MG
rpechamcal in origin. A large number ofcompounds with Iaddeéhain correspond to singlets along the diagonals and on the
like structure are now known. The family of compoundg, s respectively. Kolezhuk and Mikeska [19] introduced a
Sh-1CU,1 Oy, consists of planes of weakly coupled laddergyy model which is a special case of the generalised ladder model.
of (n+1)/2 chains. Fon =3 and 5, one gets the two-chain and his model has a rich phase diagram with all the phase boundaries
three-chain ladder compounds StOy and SgCu,0 being exact. The ladder model with diagonal couplings is
respectively. Experimental observations on these compourRftained from the toy model for special values of the
are consistent with the theoretical predictions that fon an Parameters.The standard spin ladder models with bilinear
chain ladder, the excitation spectrum is gapped (gapless) wifg¢hange are not integrable. For integrability, multispin
n is even (odd). The origin of the SG can be understood gyeractionterms have to be included in the Hamiltonian. Some
considering a two-chain ladder in the strong coupling linet, integrable ladder models have already been constructed which
JR>>J. In the limitd = 0, the ground state of the ladder consist@xhibit rich phase diagrams [20]. A recent example of a spin
of singlets (VBs) along the rungs. The ground state energy@lder belonging to the organic family of materials is the

4. Spinladders
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compound (GH,,N),CuBr,, a ladder system with strong rungferromagnetically couple@u?*ions [25]. The triplet excitation

coupling [(JR/J:3-5)] [21]. The phase diagram of the AFM created on a particular dimer propagates through the dimer

. . ... network due to the weak inter-dimer exchange couplings. The

spin ladder in the presence of an external magnetic field S . . . .

. . . L f|gld-|nduced 3d magnetic ordering observed in these
particularly interesting. In the absence of the magnetic field an

atT = 0, the ground state is a QSL with a gap in the excitati&%)mpoundS can be described in terms of a Bose-Einstein

spectrum. At a fieldH, , there is a transition to a gaplesscondens"Jltlon of low-lying magnons. The C”t'c_al pfb'mhcl

Lutt liquid oh H. = A h ) ) separates a gapped QSL stdte<(, ) from a field-induced
uttinger liquid phase Qg Hey = - SG’.t_e Spin gapig 1S _ magnetically ordered state<¢h,, ). In the condensed state, the

the Bohr magneton argithe Landeé splitting factor). There is siate of each dimer is found to be a coherent superposition of

another transition at an upper critical fielg to a fully polarized ¢, singlet and th&, = +1 triplet states. The phase in the
, .

ferromagnetic state. BoH, andH, are quantum critical points. o,,ernosition specifies the orientation of the staggered magneti-
The quantum phase transition (QPT) from one ground state{Qisn in the plane transverse to the magnetic field direction.

another is brought aboqt by changmg. t'he magnetic f'elﬁlhe number of magnons in the condensed state is not, however,
Quantum effects are persistent at small finite temperatures Efﬂﬁinite as magnons cannot occupy the same sites in a spin

can be probed experimentally. In the case of the ladder systg)r/gtem due to a hard-core repulsion between them. The

(CgHyN), CuBr, the magnetization data Obtalnedinteractionrestrictsthenumberofmagnonstobelargebutﬁnite.

experimentally exhibit universal scaling behaviour in the vicinity

of the critcal fielddd ; andH,,. In the gapless reginté.,, <H < Another novel phenomenon observed in SG AFMs is that
He the ladder model can be mapped on an XXZ HAFM chaiaf magnetization plateaus in which the magnetizat@aushe

the thermodynamic properties of which can be calculated exaomagnetic field curve exhibits plateaus at certain rational values
by the Bethe Ansatz. The theoretically computed magnetizatiohthe magnetization per site. For general spin systems, the

M versusmagnetic field H curve is in excellent agreement witquantization condition can be written as [26]

the experimental data. Organic spin ladders provide ideal testing ,

grounds for the theories of quantum phase transitions. Other Sy —m, =integer, (10)
organic ladder compound exhibiting QPTs are (5IAP)whereS; =nS, nbeing the number of spins of magnitugii
CuBr,.2H,0 and Cy(CH,,N,), Cl, [22]. unit period of the ground state amg =nmis the magnetization
associated with the unit cell. The quantization condition is
necessary but not sufficient as not all the plateaus predicted by
The MG model has initiated a large body of work on spin modelse condition exist in general. High-field measurements reveal
with dimer states as ground states. For short-ranged dim#re existence of magnetization plateaus in several AFM
(mainly between n.n.s), there is a gap in the excitation spectrisompounds. The = % SG antiferromagnet Sr(Ga0,),

In experiments, the presence of the ggyis confirmed through (described by the SS model) is the first example of a 2d spin
the measurement of properties like susceptibijitywhich goes system for which magnetization plateaus have been observed
to zero exponentially at IoW as y ~ ex{—4/kgT) . Some experimentally [27]. The triplet excitations in the SS model are

other examples of SG antiferromagnets are [23]: spin-Peierls (gbyost localized. In the presence of a magnetic field and at special
systems and AFM compounds consisting of weakly couplé@lues of the magnetization, the triplet excitations localize into a
spin dimers. The SP transition generally occurs in quasi-1d AFMPerlattice structure to minimize the energy so that the
spin systems with half-odd integer spins and is brought abdl@gnetization remains constant. Momoi and Totsuka [28] have
by spin-phonon coupling. Below the SP transition temperatugéggested that the appearance of plateaus in,(80y), is

Tsp. a periodic deformation of the lattice sets in such that tigere to the transition from a superfluid to a Mott insulating state
distances between the neighbouring spins are no longer unifasfrmagnetic excitations. In the presence of a magnetic field in
but alternate in magnitude. This results in an alternatiothe zdirection, theS, = +1 excitation is the lowest in energy.
J(1+9) and J(1-9), in the strengths of the n.n. exchangd hese excitations can be regarded as bosons with a hard-core
interaction strengths. The ground state is dimerized in whig@pulsion. The repulsive interaction arises frometheomponent
singlet spin pairs occupy the links with enhanced exchangéthe exchange interaction and disallows the occupation of a
couplings. MG-like spin models have been utilised to explagingle dimer by more than one boson. The xy - part of the
the properties of CuGeQthe first example of an inorganic exchange interaction is responsible for the hopping of the triplet
compound in which the SP transition has been observed [2d)citation to neighbouring dimers. One thus has a system of
Well-known examples of AFM compounds, which can bénteracting bosons in which itinerancy competes with
described as crystalline networks of spin dimers, include ACuGbcalization. The transition from itinerancy to localization is
(A =K, TI) in which a spin dimer arises from two anti-analogous to the Mott metal-insulator transition in electronic

5. Conclusion and outlook
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systems. If repulsive interactions dominate, the triplet excitatioRreferences

(bosons) localize to form a superlattice. A direct measuremenyy
of the superlattice in SrG(BO,), has been made by Kodaeta 2]
al using a high-field NMR facility [29].The superlattice
corresponds tdM = ny8 = 1/ 8 which requires a high magnetic [4]
field of strength 27T for its observation. Superlattice structuresl5]
for the other plateaus & = /3 and /4 have not been [6]

detected as yet because of the requirement of very high magnet'[g]

fields.
ields (8]

A few topics not covered in this overview include: the nature [g]
of spin excitations in MG-like spin models and doped VB systems o]
The elementary excitations in the MG model are a pair of spinfy 1)
1/2 ‘defects’ separating the MG ground states. The pair gives
rise to a continuum of scattering excitations. A bound state di-2!
the two spin-1/2 s can form in a restricted range of the [13]
o g4l
momentum wave vectors. The elementary excitations of th
Heisenberg AFM in 1d are also a pair of spifi2-objects, the

‘spinons’. There is now a fair amount of work on spin dimer

[16]
[17]
models with spin 4/ 2 excitations. Low-dimensional candidate [1g;
compounds with similar excitations are now known. The study19]
of doped SG systems like the spin ladders and the Haldane gap
antiferromagnets yields lots of useful information on chargd?20]
transport in a background of antiferromagnetically interacting
spins. There has been a considerable amount of experimen%]r]
activity on doped spin ladder compounds. The variety of22]
phenomena exhibited by such systems include
superconductivity mediated by bound pairs of holes. Thé23]
superconducting transition temperature is, however, low in24!
contrast to the case of the cuprate compounds which exhib[i£5]
high temperature superconductivity when doped with holes,
SG systems have recently been suggested as candidates for[t%%
realization of quantum computation and communication[27]
protocols. The spin systems considered so far include some SG
antiferromagnets like the MG model, the Haldane gap chain angsg;
the two-chain spin ladder. A number of reviews exist from whichy,g;
more information can be picked up on the MG-like models [23[301
30-32]. In summary, the MG model has spawned wide-ranging
research activities in theoretical and experimental magnetisngi]
One anticpates that similar research efforts will continue
unabated in the coming years. [32]
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