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Abstract : The Majumdar-Ghosh model occupies a special position amongst the models of interacting spin systems. The model has motivated the
search for other low-dimensional spin systems with quantum paramagnetic ground states and a gap, the so-called spin gap, in the excitation spectrum.
In this brief review, some generic features of MG-like spin models will be described in terms of theoretical results and experimentally observed
phenomena.
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1. Introduction

The celebrated Majumdar-Ghosh (MG) model illustrates some
characteristic features of low-dimensional antiferromagnetic
(AFM) quantum spin systems. This has given rise to a flurry of
research activity, both theoretical and experimental, to gain
insight on the unique properties of such systems. In this brief
overview, a number of spin models will be discussed which are
descendants of the MG model and which describe a variety of
novel phenomena in interacting spin systems. We assume the
magnitude of the spins to be S = ½  unless mentioned otherwise.

2. Frustrated spin systems

The MG chain is the first example of a frustrated quantum spin
model for which the ground state can be determined exactly.
The origin of frustration in the model lies in the presence of
both nearest-neighbour (n.n.) as well as next-nearest-neighbour
(n.n.n.) spin-spin interactions. The spin-spin correlations in the
ground state are short-ranged but one can define a four-spin

correlation function S S S Si
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range order (LRO) in the two ground states. These states, because
of a coherent structure, describe a quantum paramagnetic phase.
A general MG-type model in one dimension (1d) has been
proposed which includes exchange couplings to 2n – nearest
neighbours with strengths J1 = 2n, J2 = 2n – 1, ....., J2n = 1 [1, 2].
The 2d models include the Shastry-Sutherland (SS) model [3],
the J1 – J2, J1 – J2 – J3 and the J1 – J2 – J3 – J4 – J5 models

[4-6]. The SS model is defined on a square lattice and includes
n.n. interactions (of strength J1) as well as alternate diagonal
exchange interactions (of strength J2) in every second square.
For J J1 2  below a critical value ~ 0.7, the exact ground state
consists of singlets along the diagonals. At the critical point,
the ground state changes from the gapped disordered state to
an antiferromagnetically ordered gapless state. The AFM
compound SrCu2(BO3)2 is an experimental realization of the SS
model [7]. In the frustrated J1 – J2 and J1 – J2 – J3 models, J1, J2
and J3 are the strengths of the n.n., diagonal and n.n.n. exchange
interactions respectively. The J1 – J2 – J3 – J4 – J5 model incudes
two more exchange interactions, knight’s-move-distance-away
and further-neighbour diagonal of strengths J4 and J5
respectively. In this case, the four columnar dimer (CD) states
are the exact ground states for the ratio of interaction strengths
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In a CD state, the spin pairs in the alternate columns of the
2d square lattice are in singlet (alternatively termed as dimer or
valence bond (VB)) spin configurations. There is no rigorous
proof as yet that the CD states are the exact ground states
though approximate theories tend to support the conjecture [6].
One can, however, prove that any one of the CD states is the
exact ground state when the dimer bonds are of strength 7J and
the rest of the exchange interactions are of strengths as specified
in eq. (1).
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Two well-known examples of spin-disordered but quanum
coherent states are the quantum spin liquid (QSL) and the dimer
or VB states. A QSL state is a spin singlet with total spin S = 0
and has both spin rotational and translational symmetry. A well-
known example of a QSL state is the resonating-valence-bond
(RVB) state which is a coherent linear superposition of VB states.
The linear superposition of the two ground states of the MG
model is a simple example of a RVB state in 1d. In this particular
case, however, there is no energy gain due to the superposition
of the VB states. In the VB states, e.g., the CD states, the spin
rotational symmetry is present but the translational symmetry is
broken. Some quantum paramagnetic states like the chiral, dimer,
twisted and strip or collinear states are characterised by the
non-zero expectation values of appropriately defined order
parameters [8]. A recent work classifies and analyses MG-like
spin models with dimer (VB) ground states [9].

Klein [10] proposed a method of construction of MG-like
spin models whose exact ground states are the n.n. VB states.
In the Klein formalism, one defines a neighbourhood N(i) of
each site i which consists of the site itself and its Z – 1 n.n.s.
The Klein Hamiltonian, Hklein, is written as a sum over projection

operators PZ N i

2

S ( )c h  onto the maximally allowed spin state
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where the product runs over the total spin values of the Z spins,
other than the value j. Any n.n. VB state is an exact ground state
of Hklein. In a VB configuration, each site of the lattice forms a
VB with one of its n.n.s. The Z spins in the neighbourhood N(i)

can thus at most sum up to the total spin S Z= -2 1. The

projection operator PZ N i
2

S ( )c h  acting on the VB configuration

gives zero. Since Hklein is a sum over projection operators, it is
semi-positive definite with zero as the lowest eigenvalue. Thus
the VB states are the exact ground states. In the case of the
honeycomb lattice, one can show that the n.n. VB states are the
only ground states [11] whereas other ground states are possible
for lattices like the square and the triangular lattices. From eqs.
(2)-(4), it is clear that the Klein Hamiltonian includes two-spin as

well as multi-spin interactions. The MG Hamiltonian is a special
case of the Klein Hamiltonian with Z = 3. The Hamiltonian, apart
from a numerical prefactor and a constant term, can be written
as

H PMG
i

i i i= + +å + +3
2

2 2S S Sa f . (5)

3. Haldane-gap antiferromagnets

These are integer-spin 1d antiferromagnets which share common
features with the spin –½ MG chain. Both have spin-disordered
ground states and a gap in the excitation spectrum. From the
Lieb-Schultz-Mattis theorem, one can show that the half-odd
integer spin Heisenberg AFM (HAFM) chain with only n.n.
spin-spin interactions, has a gapless excitation spectrum in the
infinite chain length limit [12]. The theorem is not applicable to
integer spin chains. Haldane, based on his analysis of the
nonlinear s model mapping of the large S HAFM Hamiltonian
in 1d, conjectured that the HAFM spin chains with integer spins
have a gap in the excitation spectrum. Haldane’s conjecture has
now been verified both theoretically and experimentally [13].
Affleck, Kennedy, Lieb and Tasaki (AKLT) constructed a spin-
1 model in 1d the exact ground state of which is the valence
bond solid (VBS) state [13]. In the case of the MG model, the
ground state has broken translational symmetry. In the VBS
state, the symmetry is unbroken and the ground state is non-
degenerate. The state can be described as a true QSL. Each spin
1 can be considered as a symmetric combination of the two
spin-½ ’s. In the VBS state, each spin -½ component of a spin 1
forms a singlet (VB) with a spin -½ at a neighbouring site. The
principle behind the construction of the AKLT Hamiltonian is
similar to that in the case of the Klein Hamiltonian.

H PAKLT
i

i i= +å +2 1S Sa f . (6)

From (4), HAKLT can be written as
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The presence of a VB between each neighbouring pair of sites
implies that the total spin of each pair of spins cannot be 2.
Thus, HAKLT acting on the VBS state gives zero. The VBS state
can be described as a quantum paramagnet.

One can define a non-local string order parameter which has
a non-zero expectation value in the VBS state [13]. Several
Haldane gap antiferromagnets have been discovered so far.
Some examples are Ni(C2H8N2)2NO2(ClO4) (NENP),
Ni(C5D14N2)2N3(PF6) (NDMAP), Ni(C5H14N2)2N3(ClO4)
(ND-MAZ) etc [14]. Experiments carried out on some of
these compounds show that the VBS state provides the correct
physical picture for understanding the observed properties.
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The Haldane gap antiferromagnets exhibit rich physics in
the presence of strong magnetic fields. In the absence of the
magnetic field, the lowest excitations are a S = 1 triplet separated
from the ground state by an energy gap. In the presence of the
magnetic field, there is a Zeeman splitting of the excited levels.
As the field increases, the energy gap of the lowest mode
decreases and vanishes at a critical value of the field. This is
accompanied by a 1d Bose condensation of magnons [14]. Two
possible scenarios have been suggested at higher fields: a
quantum critical state with power-law correlations and a state
with AFM LRO. The nickel-based organometallic compound,
with abbreviated name NTENP, represents a S = 1 chain with
exchange interactions of alternating strength. The alternation

parameter is δ = − +J J J J1 2 1 2b g b g , where J1 and J2 are the
strengths of the alternate n.n. exchange interactions. As d
increases from zero, the energy gap decreases and vanishes at

a critical value d c . The spin gap is reopened beyond this
quantum critical point. The ground state is no longer the VBS
state but a dimerized one in which two VBs form on each strong
link.

4. Spin ladders

The simplest ladder model consists of two chains coupled by
rungs. More generally, a ladder may consist of n chains. Ladders
provide a bridge between 1d and 2d many body systems and
are ideally suited to study how physical properties change as
one goes from a single chain to the square lattice limit [15, 16]. In
the spin ladder model, each site of the ladder is occupied by a
spin and the spins interact via the HAFM exchange interaction
Hamiltonian. The intra-chain n.n. and the rung exchange
interactions are of strength J and JR  respectively. When JR = 0,
there is a decoupling of the chains for which the excitation

spectrum is known to be gapless. When JR ¹ 0 , an energy
gap opens up provided the number of chains in the ladder is
even. For an odd number of chains, the excitation spectrum is
gapless. Thus, ladders with an even number of chains belong to
the general class of spin gap (SG) antiferromagnets of which the
MG chain is a prime example. In such systems, the energy gap
does not occur due to some anisotropy but is quantum
mechanical in origin. A large number of compounds with ladder-
like structure are now known. The family of compounds

Sr Cu On n n- +1 1 2  consists of planes of weakly coupled ladders

of ( )n+1 2  chains. For n = 3 and 5, one gets the two-chain and

three-chain ladder compounds SrCu2O3 and Sr2Cu3O5
respectively. Experimental observations on these compounds
are consistent with the theoretical predictions that for an n -
chain ladder, the excitation spectrum is gapped (gapless) when
n is even (odd). The origin of the SG can be understood by
considering a two-chain ladder in the strong coupling limit, i.e.,
JR >> J. In the limit J = 0, the ground state of the ladder consists
of singlets (VBs) along the rungs. The ground state energy is

-3 4NJR  , where N is the number of rungs in the ladder. When

J is not equal to zero but small, the corrections to the energy
and the wavefunction are in powers of J so that the ground
state more or less retains its form in which the VBs occupy the
rungs. An S = 1 excitation may be created in the ladder by
promoting one of the rung singlets to the S = 1 triplet state. The
weak coupling along the chains gives rise to a propagating S =
1 magnon. In first order perturbation theory, the correction to
the ground state energy is zero. The dispersion relation, with
respect to the ground state energy, is

w ( )k J JR= + cosk (8)

where k is the momentum wave vector of the propagating
excitation. The SG is given by

D = - -w pa f ~ J JR . (9)

Though the arguments given above strictly hold true in the
strong-rung coupling limit, a SG exists for all values of JR > 0.

Bose and Gayen [17] have studied a two-chain ladder model
with frustrating diagonal couplings. The intra-chain and diagonal
couplings are of equal strength J. For J JR ³ 2 , the exact
ground state consists of singlets along the rungs with the energy

E NJg R= -3 4 . The triplet excitation is localized and separated
by an energy gap from the ground state. Xian [18] later pointed

out that as long as J J J JR R C
a f a f> -~ .1401 the rung dimer

state is the exact ground state. At the critical point, there is a
first order transition from the rung singlet state to the Haldane
phase of the S = 1 chain. Kolezhuk and Mikeska [19] have
constructed a class of generalised S = ½ two-chain ladder models
for which the ground state can be determined exactly. The
Hamiltonian H is a sum over plaquette (square) Hamiltonians
and each such Hamiltonian contains various two-spin as well
as four-spin interaction terms. Several known models with exact
ground states are special cases of the generalised ladder model.
These include the MG model, the AKLT model and the ladder
model with diagonal couplings. The S = 1 spins of the AKLT
chain are composed from the S = ½ spins belonging to the
ladder rungs. The two degenerate ground states of the MG
chain correspond to singlets along the diagonals and on the
rungs respectively. Kolezhuk and Mikeska [19] introduced a
toy model which is a special case of the generalised ladder model.
This model has a rich phase diagram with all the phase boundaries
being exact. The ladder model with diagonal couplings is
obtained from the toy model for special values of the
parameters.The standard spin ladder models with bilinear
exchange are not integrable. For integrability, multispin
interaction terms have to be included in the Hamiltonian. Some
integrable ladder models have already been constructed which
exhibit rich phase diagrams [20]. A recent example of a spin
ladder belonging to the organic family of materials is the
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compound (C5H12N)2CuBr4, a ladder system with strong rung

coupling J JR
~ .- 35a f  [21]. The phase diagram of the AFM

spin ladder in the presence of an external magnetic field is
particularly interesting. In the absence of the magnetic field and
at T = 0, the ground state is a QSL with a gap in the excitation
spectrum. At a field Hc1 , there is a transition to a gapless

Luttinger liquid phase ( g HB c SGm 1 = D , the spin gap, mB  is

the Bohr magneton and g the Landé splitting factor). There is
another transition at an upper critical field Hc2 to a fully polarized
ferromagnetic state. Both Hc1 and Hc2 are quantum critical points.
The quantum phase transition (QPT) from one ground state to
another is brought about by changing the magnetic field.
Quantum effects are persistent at small finite temperatures and
can be probed experimentally. In the case of the ladder system
(C5H12N)2 CuBr4, the magnetization data obtained
experimentally exhibit universal scaling behaviour in the vicinity
of the critcal fields Hc1 and Hc2. In the gapless regime Hc1 < H <
Hc2 , the ladder model can be mapped on  an XXZ HAFM chain,
the thermodynamic properties of which can be calculated exactly
by the Bethe Ansatz. The theoretically computed magnetization
M versus magnetic field H curve is in excellent agreement with
the experimental data. Organic spin ladders provide ideal testing
grounds for the theories of quantum phase transitions. Other
organic ladder compound exhibiting QPTs are (5IAP)2
CuBr4.2H2O and Cu2 (C5H12N2)2 Cl4 [22].

5. Conclusion and outlook

The MG model has initiated a large body of work on spin models
with dimer states as ground states. For short-ranged dimers
(mainly between n.n.s), there is a gap in the excitation spectrum.
In experiments, the presence of the gap D  is confirmed through

the measurement of properties like susceptibility, c , which goes

to zero exponentially at low T as c ~ exp-D k TBa f  . Some

other examples of SG antiferromagnets are [23]: spin-Peierls (SP)
systems and AFM compounds consisting of weakly coupled
spin dimers. The SP transition generally occurs in quasi-1d AFM
spin systems with half-odd integer spins and is brought about
by spin-phonon coupling. Below the SP transition temperature
TSP , a periodic deformation of the lattice sets in such that the
distances between the neighbouring spins are no longer uniform
but alternate in magnitude. This results in an alternation,
J 1+da f  and J 1-da f , in the strengths of the n.n. exchange
interaction strengths. The ground state is dimerized in which
singlet spin pairs occupy the links with enhanced exchange
couplings. MG-like spin models have been utilised to explain
the properties of CuGeO3, the first example of an inorganic
compound in which the SP transition has been observed [24].
Well-known examples of AFM compounds, which can be
described as crystalline networks of spin dimers, include ACuCl3
(A = K, Tl) in which a spin dimer arises from two anti-

ferromagnetically coupled Cu 2+ ions [25]. The triplet excitation
created on a particular dimer propagates through the dimer
network due to the weak inter-dimer exchange couplings. The
field-induced 3d magnetic ordering observed in these
compounds can be described in terms of a Bose-Einstein
condensation of low-lying magnons. The critical point h = hc1
separates a gapped QSL state (h < hc1 ) from a field-induced
magnetically ordered state (h < hc1 ). In the condensed state, the
state of each dimer is found to be a coherent superposition of
the singlet and the Sz = +1 triplet states. The phase in the
superposition specifies the orientation of the staggered magneti-
zation in the plane transverse to the magnetic field direction.
The number of magnons in the condensed state is not, however,
infinite as magnons cannot occupy the same sites in a spin
system due to a hard-core repulsion between them. The
interaction restricts the number of magnons to be large but finite.

Another novel phenomenon observed in SG AFMs is that
of magnetization plateaus in which the magnetization versus the
magnetic field curve exhibits plateaus at certain rational values
of the magnetization per site m. For general spin systems, the
quantization condition can be written as [26]

SU – mU = integer, (10)

where SU = nS, n being the number of spins of magnitude S in
unit period of the ground state and mU = nm is the magnetization
associated with the unit cell. The quantization condition is
necessary but not sufficient as not all the plateaus predicted by
the condition exist in general. High-field measurements reveal
the existence of magnetization plateaus in several AFM
compounds. The S = ½ SG antiferromagnet SrCu2(BO3)2

(described by the SS model) is the first example of a 2d spin
system for which magnetization plateaus have been observed
experimentally [27]. The triplet excitations in the SS model are
almost localized. In the presence of a magnetic field and at special
values of the magnetization, the triplet excitations localize into a
superlattice structure to minimize the energy so that the
magnetization remains constant. Momoi and Totsuka [28] have
suggested that the appearance of plateaus in SrCu2(BO3)2 is
due to the transition from a superfluid to a Mott insulating state
of magnetic excitations. In the presence of a magnetic field in
the z-direction, the Sz = +1 excitation is the lowest in energy.
These excitations can be regarded as bosons with a hard-core
repulsion. The repulsive interaction arises from the z - component
of the exchange interaction and disallows the occupation of a
single dimer by more than one boson. The xy - part of the
exchange interaction is responsible for the hopping of the triplet
excitation to neighbouring dimers. One thus has a system of
interacting bosons in which itinerancy competes with
localization. The transition from itinerancy to localization is
analogous to the Mott metal-insulator transition in electronic
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systems. If repulsive interactions dominate, the triplet excitations
(bosons) localize to form a superlattice. A direct measurement
of the superlattice in SrCu2(BO3)2 has been made by Kodama et
al using a high-field NMR facility [29].The superlattice

corresponds to M m= =8 1 8 which requires a high magnetic

field of strength 27T for its observation. Superlattice structures

for the other plateaus at M = 1 3  and 1 4  have not been

detected as yet because of the requirement of very high magnetic
fields.

A few topics not covered in this overview include: the nature
of spin excitations in MG-like spin models and doped VB systems.
The elementary excitations in the MG model are a pair of spin -

1 2  ‘defects’ separating the MG ground states. The pair gives

rise to a continuum of scattering excitations. A bound state of

the two spin - ¢1 2 s can form in a restricted range of the
momentum wave vectors. The elementary excitations of the

Heisenberg AFM in 1d are also a pair of spin –1 2  objects, the

‘spinons’. There is now a fair amount of work on spin dimer

models with spin –1 2  excitations. Low-dimensional candidate

compounds with similar excitations are now known. The study
of doped SG systems like the spin ladders and the Haldane gap
antiferromagnets yields lots of useful information on charge
transport in a background of antiferromagnetically interacting
spins. There has been a considerable amount of experimental
activity on doped spin ladder compounds. The variety of
phenomena exhibited by such systems include
superconductivity mediated by bound pairs of holes. The
superconducting transition temperature is, however, low in
contrast to the case of the cuprate compounds which exhibit
high temperature superconductivity when doped with holes.
SG systems have recently been suggested as candidates for the
realization of quantum computation and communication
protocols. The spin systems considered so far include some SG
antiferromagnets like the MG model, the Haldane gap chain and
the two-chain spin ladder. A number of reviews exist from which
more information can be picked up on the MG-like models [23,
30-32]. In summary, the MG model has spawned wide-ranging
research activities in theoretical and experimental magnetism.
One anticpates that similar research efforts will continue
unabated in the coming years.
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