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A bounded trajectory of a continuous or discrete dy-
namical system is decomposed into two components.
One component, termed as regular, is periodic with a
given period and the transformation of the trajectory
into the regular component is based on a variational
principle. The other component, termed as irregular,
iIs not periodic with the given period. The regular
and irregular components have a property similar to
orthogonality. The decomposition amounts to repre-
sentation of the vector space of bounded trajectories
as a product of two vector spaces comprising regular
and irregular components. The decomposition leads
to a new classification of bounded trajectories of a
one-dimensional discrete dynamical system into as-
ymptotically regular, mixed and irregular types. It
also leads to new measures called periodic mean, pe-
riodic covariance and to two measures of irregular-
ity. The potential of these diagnostic tools is explored
by detecting windows of period seven, and by eluci-
dating the structure of one such window of the
benchmark system governed by logistic map. A win-
dow of period k begins with the period-doubling re-
gime having a basic cycle of period k. It is followed
by a mixed regime which contains windows of peri-
ods of multiples of k. The windows have a similarity
property and they are nested.

THERE are many nonlinear phenomena where the behav-
iour seems regular and easily recognizable as simple in
some sense in a certain range of parameters, and is de-
cidedly otherwise in other ranges of paramecters. Lami-
nar and turbulent flow regimes of a viscous fluid and
periodic and chaotic regimes of nonlincar dynamic sys-
tems are classic examples. Thus, one iIs accustomed to
think 1n terms of the presence or abscnce of a certain
property which lends the air of simplicily or regularity,
Can we think in terms of the behaviour of a nonlinear
system as consisting of a regular part and an irregular
part? Conventional wisdom secms to suggest that the
simultaneous existence of two such opposite character-
istics might not be logically permissible. There are,
however, instances when one quahitatively thinks of such
a possibility, For example, there are several cases of
turbulent shear flows, where investigations have re-
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vealed a recurring pattern, which is often called a coher-
ent structure. We often describe the observations of the
ocean and the atmosphere in terms of a seasonal variation
and an anomaly that may be episodic or connected with
inter-annual change. What we explore here is a rather
general theoretical framework that seeks to open up the
possibility of systematic quantitative analysis of the be-
haviour of nonlinear dynamical systems in such terms.

Preliminaries

We 1ntroduce the basic ideas in a simple way by consid-
ering a continuous one-dimensional dynamical system
whose state at time ¢ 1s given by a scalar state variable x.
Let x(z) be a trajectory of the system. We will restrict
ourselves to bounded trajectories so that ix(f)! is less
than some constant C. We seek to represent the trajec-
tory as follows: |

x(0) =X () + x'@), (1)

where x'(f) satisfies the requirements of regularity,
which we will specify in a moment, and x'(1) does not.
Since we wish to make the decomposition unique, we
seek a rule that will transform a given trajectory x(f) into
1ts regular component x'(1).

There 1s another way to describe our quest. Let us
consider continuous and sufficiently differentiable func-
tions on the real line. Let § be the sct of bounded func-
tions. We will use continuity but the property of
differentiability 1s not needed for the subsequent devel-
opment. Any clement x(¢) of S ts a possible trajectory of
a onc-dimensional dynamical system. To stress the con-
text of dynamical systems, we will call § as the space of
all possible bounded trajectories of dynamical systems
of one dimension. Note that § 1s a vector space, if we
take addition as point-wise addition, multiplication by a
scalar as point-wise multiplication by a scalar, and
identity for addition as the trajectory that 1s zero at all
times. Let 87 be the subset of § whose elements meet the
requircments of regulanty, Then the rule that we seek to
transtorm a given trajectory 1nto its regular component
is a mapping of S into S".

Now, we would hke to choose the requirement of

-
|

regularity in such a way that §* is a vector subspace of §
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If we choose periodicity as the requirement of regular-
ity, §" cannot be a vector subspace as it is not closed
under point-wise addition. (The sum of two pertodic
functions, the ratio of whose periods is irrational, i1s not
periodic.) We choose here periodicity with a given
period T as the requirement of regularity. So S is closed
under addition and scalar multiplication and it is readily
seen to be a vector subspace of §.

Let F[x(1)] denote a mapping from S into S. Let us

consider a few examples.

Noeo| 2N +1 2=

N I/m
Flx(D)]= lim[ ! z:{Ar(td-f.;HnT)}”'l \ (2)

where a is a constant and m 1s an integer. Another
example 1s

Noe= |2N+] &=

N
F{x(t)]= Iim ln[ 1 Zexp{x(t+a+n7)}]. (3)

And yet another one 1s

N e
] (4)

Fx(t)] = Ai_lil:l—[x(t+a+n7)

n=-N

It 1s not difficult to show that the above rules give tra-
jectories that are periodic with period 7. The basic
argument is given later for one special case. In view of
the available freedom to choose, we need to impose
some conditions on the mapping.

Suppose we require that if x(¢) 1s periodic with period
T, the mapping should give x'(¢) equal to x(r). That is,
such a trajectory should be invariant under the transfor-
mation F. This requirement can be met by eq. (2) if a is
zero or a multiple of T and m 1s an odd integer. Equa-
tions (3) and (4) can also meet it, if a similar restriction
1s put on a. We still have a measure of choice.

It is expedient to introduce a binary operation that has
some properties of inner product. Let x(¢) and y(¢) be
any two elements of §. Their product [x(£),y(?)] 1s a sca-
lar given by the following definition.

T -

1 : |
x(t), y(t)]=— | lim|-
[x(1), y(1)] BT

N
] Z{x(r+nT)y(z+nT)} dt.
n=-N

(3)
A variational principle

Now we state our choice in terms of a variational prin-
ciple. Consider a bounded trajectory y(t) that is periodic
with period T and the given trajectory x(f). [x(¢) — y(t),
x(1) — y(1)] can be interpreted as a global measure of the
departure of y(t) from x(¢). Consider the periodic trajec-
tory that makes this measure an extremum. That 1s,
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o[x(t) — y(1), x(1) - y(1] = 0. (6)

Since y(r) is periodic with period T, it then follows that

T N
1 . 2
= ‘{[ dy iﬂ[zNH 2 (x(t +nT)— y(t) }]dr = 0. (7)

n=—N

Since Oy is arbitrary, it further follows that

N

. 1
= ] _
y(t) im NHFE_N,x(HnT) (8)

Therefore, we define the mapping F[x(¢)] by the follow-
ing relation,

¥'(1) = Flx(0)] = lim — N‘+—1- x(¢+nT). (9)

n=-N

The above choice 1s a special case of eq. (2) with a
equal to zero and m equal to one. It is easy to verify that
the trajectory given by the above rule is indeed periodic.

Fix(t + mT)] — F(x(1)]

N
lim 1 [2{x(t+(m+n)T)—x(r+nT) }}

N—eoo 2N +1 —
1 N+m N
= |im x(t+nT)— x(t+nT
N 2N +1 n=—ZN+m ( ) H=Z—N ( )

1 N+m -N+m-1 ]
lim [z x(t+nT)— Zx(r+nT)

No=2N+1} 22, n=—N

=0,

as the terms in the last square bracket are bounded.

If we regard the regular component of a trajectory
given by the eq. (9) as an approximation having the
specified type of regularity, it is optimal in the sense
that the global error [x'(¢), x'(#)] is minimized by it. The
irregular component xf(t) (= x()-x"(1)) may then be
viewed as local error or a perturbation.

Regularity decomposition and its properties

We now generalize the above formulation to dynamical
systems whose state at time t 1s given by a D-
dimensional vector x. Let x; (= 1,2, ..., D) denote a
component of the state variable. Let x(¢) be a bounded
trajectory. Let S be the space of possible bounded trajec-
tories of a dynamical system of D dimensions. It is a
vector space with addition, scalar multiplication and
unity defined in a fashion stmilar to the earlier case. In
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view of previous arguments, we define regular and ir-
regular components for a given period T as follows.

SN IR | '
() = xj()= lim 2N+1H=§;ij(t+nT), (10)
(x;) = xi(t) = x () — x}(1). (11)

We have explicitly shown the index j in the above rela-
tions only to emphasize that the jth component of the
regular and wrregular parts of a trajectory depend only
on 1ts jth component. The index will not be shown un-
less it 1s necessary for clarity or emphasis. The above
definitions constitute the regularity decomposition of a
bounded trajectory. Analogously, we have for any two
bounded trajectories x(¢) and y(¢),

o T ’
() = lim — H;ij(mnr)yk(mm, (12)
(Ij)’k)f = xj(f)}’k(f) = (x,yk)"- (13)

Now we give basic properties of the regular and irregu-
lar components. Their derivation 1s straightforward and
1S hot given here.

For any x(f) in S,

(xr)r (xr)f B v 0
(xi)r (xl')f '_ 0 *xi ’

Consider the set of regular parts of all trajectories in S.
We will denote this subset of S by §”. Then S" is a vector
subspace of S as for any two elements x'(f) and y'(¢) in
S" and for any scalar ¢,

(14)

(15)
(16)

(x+y) =x"+y"
(cx) = cx’.

Similarly, let S’ be the set of irregular parts of all trajec-
tories in S. Then, §' is also a vector subspace as for any
two elements x'(¢) and y'(¢) in S’ and for any scalar c,

(17)

(x+y)=x'+y,

(cx)' = cx', (18)
Since each element x(¢) in § corresponds to the ordered
pair (x'(1), x'(1)), S is represented as the Cartesian prod-
uct $” X S, Furthermore, for any x(¢) in S” and for any
yf(t) in S, with scalar product defined as in eq. (5),
[x; (1), v (D] is zero. In this sense, these subspaces are
orthogonal.
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For any two trajectories x(¢) and y(¢) in S,

(19)
(20)

(i) = xjyx +(xj;'}’;;)rr

(Xj¥6)" = XY+ xjye + X3k — (x5 ).

If jth component of any trajectory x(f) in S is periodic
with period 7, for any trajectory y(¢) in .S,

(9 = %%, (21)
(x5 = X%, (22)
x}' = X, (23)
xi=0 (24)
For any x(f) in S,
(Ce)")" = (x> + (<)), (25)
((x;)%) = 2x]x; +((x5)*). (26)

We may call the regular component given by eq. (10) as
the periodic mean. One could call it a phase average,
but such a nomenclature appears to be an embellishment
as there is no need to introduce a fast variable in the
present context. Furthermore, there is likely to be con-
fusion when one wants to deal with two types of regu-
larity, that is, periodicity with two different periods.

Finally, we will call (x}yi)’ as the j—kth element of pe-

riodic covariance matrix of the trajectories x(¢) and y(¢).

Application to a discrete dynamical system

We now elucidate the above i1deas by considering their
application to a discrete dynamical system. Let {x,,}
(m=20, 1, 2...) be a bounded trajectory of a discrete
dynamical system of dimension D. Let the regular com-
ponent, which we wish to i1solate, be pertodic with pe-
riod P. Let (x,,) be the two-dimensional array of P rows
and N columns given by

X M XM+p  Xpa2p @ Xy (N-DP
X M+ XM+Pa ¢ ¢ ¢
(xpn) =1 XM4+2 ¢ ¢ ® ® .
@ ® 9 ® @
XrMep-l  NM2P-1 ® ®  XpfeAP-
(27)

where M o1s an acbitrary non-negative integer and the
indices p and n run from zevo to -1 and N-1, respee-
tively, As N = oo, the trajectory gets wrapped into an
array of P rows and infinitely many cofumns, from
which the first A terms of the sequence [x,) are ex-
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cluded. Since we are concerned with properties for large
m. the exclusion of the first M terms ts merely a device
to accelerate convergence in numerical simulations. Let
the row-wise mean of the array be defined by

N1
, l
XPN-‘—‘I—V'EXFH. (28)
n=0

The regular and the irregular components, denoted by
capital and Greek letters, are then given by

(Xn) = X=X, = r}fTuX”N’ m~ M = p(mod P), (29)

(30)

(Km)i - ‘Em = hlfiﬂ (xm - XPN)~

It is clear that the regular and irregular components have
the properties given earlier. Let x;, and x;,, with a sub-
script jor k (J, k=1, 2,...,D) denote jth component of
the state vector x,, and jth component of an element of
the array (x,,). Row-wise covariance 1s then given by

N-1
|
CjkpN‘ - FE (xjpn - ij)(xkpn - kaN)- (3 1)
n=_0
Then, the periodic covariance is given by
((Ijm)f(-rkm)i)r = Cjkp = h!’l_f;ﬂ CjkpN: m — M = p(mod P).
(32)

Thus, X,y and Cu,y are N-term approximations of the
periodic mean X, and the periodic covarfance Cjy,,
and (X, ~X,) and (Cy,» — Cy,) are the truncation er-
Iors.

We constder now a one-dimensional discrete system.
The above notation can then be simplified as the index j
takes only one value and the indices j and k can
be dropped from the above expressions. Also, the fol-
lowing recursion relations for the one-dimensional dis-

crete system turn out to be useful in numerical
simulations.
(X8 — XN )
— Y P
Xpnvey = Xpn + —, (33)

C;J(N-H} = C_HN - (Xp(N+l))2 + (X;JN)z +

[(xpN)z"(XpN)z _C[JN], (34)

N+1

where X0 and C,p are zero and N 2 0. It is also usetul to
introduce column-wise averages denoted by <>.
Clearly,
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s N

P-1 N-1

P-1
I 1
P p:O PN p=0 n=_
1 P-1 N-1
(Xpn)*) +{Cpn) = _}_’FZ Z(I,un)z' (36)
p=0 n=0

The terms on the right are array averages and they de-
pend only on the product PN. It then readily follows that

1 PN+ M-1
(Xp) = lim —— ;fxn,=x, (37)

PN+ M-}

(X)) +(C= lim —— (5, =X*+C,  (38)
m=M

N—ee PN

where X and C are the periodic mean and the periodic
variance of the trajectory when P is one. The preceding
equation can be rewritten as

(X, = X)°) +(C,) = C. (39)
The first term on the left side 1s a non-negative measure
of the variation of the regular component over one pe-
riod. The second term on the left is the column-wise
average of the periodic variance of the irregular compo-
nent and 1s by definition non-negative. What the above
result states is that while the two terms individually de-
pend on the chosen period P, their sum does not. This
result is of fundamental importance in the regularity
decomposition.

A classification of trajectories

Equation (39} leads us to the following classification of
the bounded trajectories of a discrete dynamical system
of one dimension.

Case I: (C,) is zero for some P. Let the lowest value of
P tor which it is zero be Pg;,. Then the regular compo-
nent for the period P,;, 1s a periodic trajectory to
which the given trajectory approaches in the following
sense.

N-1
.1
lim "_z(xM+nP+p - Xp)z = (), (40)

N—eo
N n=0(

for each p < P,,in. We call this type of trajectory asymp-
totically regular or of R type.

Case II: (C,) is not zero for any P and varies with P.
Consequently, no matter which value of P is selected,
the periodic variance cannot be decrecased below a cer-
tain threshold. This type of trajectory can be termed
asymptotically mixed trajectory or of M type.
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Case III: (C,) is a non-zero constant. In this case, for all
values of P and p, X, is equal to X. This means that the
regular component is a constant irrespective of which pe-
riod P we choose and the periodic variance of the irregu-
lar component is a non-zero constant. Such a trajectory
can be termed as asymptotically irregular or of I type.

It 1s clear that the attractor set of a trajectory of R type
1s finite and it has zero dimension. Consequently, a
bounded trajectory, whose attractor has a nonintegral
dimension, is necessarily of M type or I type.

It should be noted that the notion of regular compo-
nent has information about the order in which the trajec-
tory visits various points of the phase space, unlike the
notion of the attractor or invariant set which do not
provide any information about the order. For instance, if
two periodic trajectories of period 3 visit three points A,
B, and C in order ABC or ACB, they have the same at-
tractor, namely, { A, B, C}.

Logistic map

Now let u's consider, as a bench mark example, the sys-
tem governed by the logistic map, namely,

Xne1 = aX,(1 — x,), (41)

where 0<x, <1 <a<4. Let us decompose the trajec-
tory of this system with the given initial condition xy and
for the given value of the parameter a into regular and
irregular components for a given period P. It follows
from the properties of the regularity decomposition that

(gﬁ)r = Xn(l " Xn) "'(XHH ) (42)

d

The above relation shows that the periodic variance is
coupled with the-periodic mean due to nonlinearity of
the logistic map. When the period P is unity, we have
the following simple relation between the periodic vari-
ance C and the periodic mean X.

C=Xb-X), g (43)
where b is (1 — 1/a). It further follows that
0<X<bh 0<C< b4, (44)

Hence, b and h*/4 are natural scales for X, C and their
N-term approximations.

Numerical results and discussion

Let us now consider a few numecrical results. Consider
first the case of a equal to 4. The logistic map is well
known to be chaotic' in this case. Figure 1 shows how
the N-term approximation Xon to the periodic mean var-
1cs as N increases from 1000 to 100,000 for period P = 1
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0.485

Figure 1. Convergence of the N-term approximation Xy to the peri-
odic mean for the logistic map for three initial conditions. a = 4:
P =1; M =1000; AN = 1000; xo = 0.501 (----), 0.51(-+---), 0.6 (—).

for three initial conditions. There is a clear trend of
convergence to a value close to 0.5.

Figure 2 shows the effect of the initial condition on
Xown for N equal to 10,000 and 100,000. Clearly, the pe-
riodic mean for P = 1 for 48 of 51 initial conditions that
are scanned 1s approximately equal to 0.5, the three ex-
ceptional initial conditions being zero, 0.25 and 0.5. In
these three cases, the trajectory lands on a fixed point (0
or 0.75) and the absence of round-off errors in these
exceptional cases enables the numerical simulation to
capture trajectories that are unstable.

Con for P equal to unity behaves similarly and shows a
trend towards convergence to 0.125. The effect of initial
conditions on Cyy 1s also within the truncation error,
except for the three exceptional initial conditions men-
tioned above.

We now estimate truncation error in the periodic mean
for P =1 in a range of the parameter a. The difference
I Xon — Xownsl 1s shown in Figure 3 for two values of N,
namely 1000 and 10,000, with N* taken as 100,000.
Note that the parameter range of [2.8,4] is scanned with
a coarse resolution of Aa =0.01. The truncation error
shows extraordinary variation and is extremely low in a
periodic regime away from a bifurcation point. The ap-
proach to a bifurcation point is heralded by a rise of
about ten orders of magnitude in the truncation error.

-~ Detalled examination has revealed that the truncation

error away from a bifurcation point decreases like N
and 1ts Jow values are due to exponential approach of
the trajectory to the asymptotic periodic state. The ap-
proach of a trajectory to the asymptotic state at a bifur-
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Xo

Figure 2. Effect of the initial condition xy, on the periodic mean for
the logistic map. a=4; P=1; M=1000;, xp=0:0.5:0.01;
N = 10,000 (13), 100,000 (x).

cation point is however considerably slower. Figure 4
shows that the trajectory behaviour at @ = 3 is given by
x, = bl/e ~ (e’n)"* as e2n — oo , where € = (xg — b). The
truncation error in the non-periodic regime as shown in
Figure 3 is relatively higher but is less than that for a
equal to 4.

Extensive computations were carried out for the peri-
odic mean and the periodic variance in the parameter
range [3.5,4] with fine resolution of Aa =10 for
period P varying from 1 to 100 with N equal to 10,000
terms. The initial condition x4 was taken as 0.1. The first
1000 terms were discarded by setting M equal to 1000.

Let us first consider the case of P equal to one. Figure
5 shows the variation of the periodic mean Xyy, which is
scaled by b. Similarly, Figure 6 shows the variation of
the periodic variance Cyy, which is scaled by °/4. Close
connection between the two figures is on account of eq.
(43) as shown in Figure 7. Two broad valleys and one
wide plateau of Xyy /b in Figure 5, which correspond to
two wide plateaus and one broad valley in Cyy /(b2/4),
are windows for periods 5, 3 and 6. There are numerous
other spikes, which are narrow valleys or hills. They are
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Figure 3. Estimated truncation error in periodic mean in the pa-
rameter range (2.8, 4]. Aa = 0.0L; P = |; M = 1000; x4 = b + 0.001:
N* = 100,000; N = 1000 (>), 10.000 (O). |
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Figure 4. Approach of a trajectory to the asymptotic state at a bifur-
cation point. a=3; b=2/3; An=1000; xo = b + ¢; ¢ = 0.001 (O),
0.01 (x), 0.1 (0O0). Interpolation formula (——): (x, ~&)e = (-1)"
{tanh(A(e*m)'HAE DY) A = 4.24.

connected with windows in the fractal/chaotic regime, as
we shall see later.

Several reviews and books give excellent accounts of
the structure of the period-doubling windows'™. It is
sufficient to recall for the present purpose a few proper-
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a

Figure 5. Scaled periodic mean for the logistic map over the pa-
rameter range [3.5,4]. P = 1; Aa = 10™; M = 1000: xo = 0.1.
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Figure 6. Scaled periodic variance for the logistic map over the
parameter range [3.5, 4]. Parameters as in Figure §.
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Figure 7. Relatonship between scaled periodic mean and sealed
pertodic variance for the logistic map over the parameter range 3.5,

4]. Parameters as in Figure S,
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ties of the logistic map in the parameter range 1 <a < 4.
I1rst, there 1s at most one stable periodic orbit for each
value of a (ref. 1). So there are only two possibilities for
any given value of g, that is, either there is one stable
periodic orbit or there is none. Second, a period-
doubling window of basic period £ is a subinterval
where the first possibility occurs, and in which there are
stable periodic orbits of periodicity k2" with period
doubling taking place at pitchfork bifurcations. A win-
dow begins with a tangent bifurcation and ends with an
accumulation point. Third, although such windows are
believed to be dense in the above range, the set of points
where the second possibility occurs has non-zero meas-
ure*®. The dynamics at such points has exponential
sensitivity to initial conditions as manifest by positive
Lyaponov exponent. While the dynamics when a is in
this set displays some properties of chaos, it is not clear
in which subset all the properties required for chaos as
given by Devaney hold. For example, when a > 3.8284
(ref. 2), there is a cycle with period 3 and as a result of
Sarkovskii’s theorem®’, there are cycles of all periods.
This condition implies chaos in the sense of Li and
Yorke®.

It 1s expedient to introduce two measures of irregular-
ity. (We will exclude from our consideration the region
where C 1s zero, which refers to the case where the tra-
jectory approaches a steady state.) The first measure /p
indicates how large the column average of periodic vari-
ance (Cpn) for a given period P is in comparison with
similar quantity Cgy for period of unity, both being N-
term approximations. The second measure /,;, indicates
the minimum value of /» when P varies in the range | to

Prax. Thus, the measures are given by the following two
definitions.

Ip = (Con)/Con, (45)
Iy = _min (Ip), (46)

We will show how the first measure can be used to de-
tect windows of a given period, say, seven. Figure 8
shows how [, vartes with the parameter a when the in-
terval [3.5,4] is scanned with the resolution Aa = 107,
The first measure 1s seen to take values close to zero at
cight locations, each of which could be an interval or a

I L - 4. | N T
1.00 - —'——l-——p"-r—r”]— I,_,
0.80 ~
1 0.80 i
0.40 ,
0.20 -
0.00 T
3.60 3.60 3.70 3.80 3.90

Figure 8. Detection of windows of period 7 by the application of the
first measure of wrregularity 7. Aa, M, and xy as in Figure S Note
cipht deep valleys where 13 is close to zero.
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Table 1. Windows of period seven detected with resolution
Aa = 107
Beginning of  First Beginning of End of  Window
a cycle of bifurcation mixed mixed width

Symbol seven, a) point, ¢y  regime, 83 fegime, az  da—d)
A 3.70166 370215 3.70249  3.70279 Q.00113
B 3.77414 3.77445  3.77467  3.77485 0.00071
C 3.88604 3.88609 3.886153 3.88618 0.00014
D 3.922i19 3.92224 3.92225 0.00006
E 3.95103 395106 3.95107 0.00004
F 3 96898 3.96899  0.00002
G 3.98475
H 3.99454

point. They correspond to windows of period seven.
Their details are given in Table 1. The structure of one
such window is discussed in detail later. Combinatorial
arguments lead to the conclusion® that there are nine
period-doubling windows® of period 7.

A major qualitative observation is the following. A
period-doubling window of basic period k is followed by
a mixed regime, where the trajectories that are captured
numerically are of M type. In this regime, the periodic
variance with period k is small compared to C. The
mixed regime alse contatns periodic suyb-windows of
period equal to multiples of k. The entire subinterval
containing the period-doubling window and the adjacent
mixed regime is called in this paper, for brevity, a win-
dow of period &. In such a window, I, << 1. Note that by
definition, 7, is unity. Hence k is greater than 1. The first
neriod-doubling window, which 1s traditionally inter-
preted as window of period 1, is treated here as window
of period 2 for consistency.

The ratio of the window width to resolution Aa 1s an
important parameter for detecting a window as well as
for studying its structure. If it is greater than 2, the de-
tection of the window is assured. The ratio has to be
much larger for determining detailed structure as will be
clear subsequently. It can be seen from Table 1 that as a
approaches 4, the window width diminishes rapidly and
the resolution of the details of the structure of the win-
dow decreases for a fixed Aa.

If the trajectory is asymptotically periodic with a pe-
riod k less than or equal to Ppax, Inin 18 Very small. Away
from a bifurcation point, it is less than about 107%° in
double precision computations. So, very low values of
log(lmi,) indicate periodic regimes.

Let us now examine the structure of the first window
of period 7. Figure 9 a shows that [7 falls rapidly to zero
and remains approximately zero in the window. At the
end of the window it rises rapidly. Figure 9 b shows Xgn
for P equal to 1 falls rapidly and remains fairly unal-
tered throughout the window. It rises rapidly thereafter.
Figure 9 ¢ shows how log(l;) varies in the window A.
The graph shows a low flat valley followed by a middle
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Figure 9 a-c. Structure of the window A, Distribution of a, the first
measure of irregularity I; b, Xoxy (P = 1), and; ¢, log(/;) (---) and
log(Imin) (—) in the window. The three steep hills in the low-level
valley in ¢ indicate bifurcation points and the middle levej plateau on
the right indicates the mixed regime containing two deep valleys due
to periodic windows. Aa, M, and x¢ as in Figure 5.

level plateau. The variation of log(J/y,) reveals in
greater detail the structure of the window. The low flat
valley up to the first steep hill corresponds to a periodic
regime of period 7. The hills are indicators of bifurca-
tion points. Slow convergence at a bifurcation point
leads to a rise in the truncation errors as discussed ear-
lier. The flat valley between the first and the second hill
is the periodic regime of period 14. The end of the val-
ley is marked by a sudden rise to a middle level plateau
of about ~5. The rise portion corresponds to the region
near the accumulation point of the period doubling re-
gime containing higher bifurcation points. The middle
level plateau has deep valleys of period 7xm, where m 1s
an integer but not a power of 2.

Figure 10 a—g shows how the first measure of irregu-
larity I» varies with P at several points within and near
the window A. Figure 10a shows that it is approxi-
mately one for all P in the irregular regime just before
the window. Figure 10 b shows that this measure has low
minima occurring at multiples of 7 at the first point 1n
the deep valley. The graph appears periodic, thus indi-
cating a trajectory of R type with period of 7.

Figure 10 ¢ shows minima at multiples of seven at the
peak of the first hill. However they differ in two ways
from the previous figure. First, the depths of the minima
increase slowly. Second, the lowest value of Ip is around
107'°, unlike about 107** in the previous figure. Both
features indicate the effect of truncation errors and the
presence of a bifurcation point. Peaks of the steep hills
are used to determine the location of bifurcation points,
Figure 10d shows a cycle of 14 at the first point after
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Figure 10 a-h. Variation of the first measure of irregularity Ip al
several points in and near the window A. a, just prior to the begin-
ning of the periodic regime, a = 3.70163; b, beginning of the cycle
of 7. «a = 3.70166; ¢, first bifurcation point, a = 3.70215. (Note the
minimas are not as deep as in b and there is a slow decrease suggest-
ing truncation error effect); d, cycle of 14 after the first peak,
a=3.70219; e, cycle of 28 after the second peak, a = 3.70243,
f. cycle of 56 after the third peak, a = 3.70248: g, end of the mixed
regime, d=3.70279; h, irregular regime after the window.
a = 3.70280; Aa, M, and xo as in Figure 5.
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the first hill, thus confirming the presence of the bifur-
cation point.

The number of bifurcation points that can be deter-
mined by this method depends on the value of P,,,. To
detect the nth bifurcation point in the window of basic
period k, the period of the cycle after the bifurcation
point, namely k-2", has to be at most P,,.,. Thus n cannot
exceed log(Prax/k). Thus, for the basic period of seven,
one can detect at most three bifurcation points.

Figure 10 e and f show the occurrence of cycles of 28
and 56 after the second and the third hill. They are con-
sistent with the interpretation of a hill in the deep valley
as a consequence of a bifurcation point in the period
doubling regime. Finally, Figure 10 g and % contrast the
behaviour of Ip at the last point in the middle level pla-
teau with the first point 1n the following high ground.
The former shows a periodic character with a period of
7. However, the value of Ip is not sufficiently small to
be attributed to truncation errors. On the other hand, I
1s approximately one for all P in the latter case. We
conclude that the middle level plateau corresponds to
trajectories of M type and the high ground corresponds
to the trajectories of I type. The transition from the
middle level plateau to the high ground appears to be a
bifurcation point, whose nature has yet to be understood.

Figure 11 offers a quick visual way of grasping the
qualitative features of a window. It shows for the above
window the levels of log(Ip) for a range of a and P. The
changes of periodicity from 7 to 14, subsequently from
14 to 28, at sharp hills are readily noticeable. The con-
trast between the middle level plateau after the accumu-
lation point and the high ground i1s also noteworthy.
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Period P

Figure 11. Structure of the first window of period seven is revealed
by this Raster plot of the logarithm of the first measure of irregular-
ity. Log(lp) is shown 1o vary with the parameter ¢ and the period P.
Horizontal light coloured fines at multiples of 7 on the left indicate
the periodic regime of period 7. Transition to period of 14 and 28 is
readily noticed. The regime on the extreme right where the colour
appears uniform is the irregular regime. One can see the mixed re-
gime between the period-doubling regime and the irregular regime.
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Tahle 2. Stnxcture of the window A

a Xow Loglum Type Period Comments

3.70164 0.6654 0.0 ! End of irregular regime
3.70166 (1.6643 -239%4 R 7 Beginming of periodic regime
3.70218 0.6636 -1056 R /14  First bifurcation point
3.70241 0.6636 -1068 R 14/28 Second bifurcation point
3.70247 06637 -)342 R 28/56 Third bifurcation point
370251 06637 -5.00 M Beginning of mixed regime
3.70253 0.6636 -24.61 R 84  Periodic regime

3.70267 0.6639 -2463 R 21 Periodic regime

370268 0.6640 -2478 R 42  Periodic regime

370279 0.6639  -3.609 Af End of mixed regime
3.70280 0.6646 0.0 I Beginning of irregular regime

Table 3. Salient features of the major windows detected with
resolution Ag = 107°

Beginning of
the basic

First
bifurcation

Window
width

Beginning End of
of mixed  mixed

0.62 [} ——| i k e | 1
0.60
0.%0
% 0,68 a
0.54 e _ -
0.52 " 1 r—
3.830 3.840 3.850

.. 00 i
ﬁ —4.0 T -+~
£ -80
= -12.0
= ~16.0 |
o ~20.0
e —24.0 . !
£ -26.0

—

Figure 12. Structure of the window of period 3. The distribution of
a, Xov (P =1); b, first and the second measures of irregularity (/5
(---) and l,,n (—)). Note that this window is similar to the window
A of period 7, but it 1s better resolved. Four of the five bifurcation
poiats are indicated by the steep hills in low flat valley on the left in
b. Also, numerous deep valleys due to periodic windows are seen in

the middle level plateau on the right.

Period cycle, point, d;  Tegime, ax regime, a4 ds—4
2 3.00000 3.44950 3.56990 3.67857 0.67857
3 3.82844 3.84150 3.84944 3.85680 0.02836
4 3.96013 3.96077 396120 3.96159 0.00146
5 3. 73819 3.74112 3.74301 3.74471 0.00652
5 3 90558 390611 3.90646 3.90677 0.00119
5 3.99026 3.99095 3.99033 3.99034 0.00008
6 3.62657 3.63038 3.63272 3.63484 0.00827
6 3.93752 3.93760 3.93765 3.93769 0.00017
6 3.97777 3.97778

Table 4. Structure parameters of well-resolved windows of periods

from2to7
Period (ax—ay)(as—ay)) (as—aM(as—a)) (ag— a3l (as — ay)
2 0.6624 0.R399 0.1601
3 0.4605 0.7408 0.2595
4 0.4384 0.7329 0.2671]
S 0.4494 0.7393 0.2607
5 0.4454 0.7395 0.2605
6 0.4607 0.7437 0.2563
7 0.4336 0.7345 0.2655
7 0.4366 0.7465 0.2535

Table 2 summarizes the main features of the structure
identified with the above tools.

The topography of other well-resolved windows is
qualitatively similar. Figure 12 a and b shows the varia-
tion of Xop, log(l;) and log(/,,,) for the well-known win-
dow of period 3. The low flat valley with steep hills (the
period doubling regime) and the middle level plateau
(the mixed regime) are much better resolved. In particu-
tar, the former shows four out of five possible bifurca-
tion points and the latter shows numerous deep narrow
valleys (periodic regimes).

Figure 13 shows the variation of log([,) over the in-
terval [3.5,4]. Presence of the middle level plateau is
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Figure 13, Distribution of the second measure of irregularity in the
parameter range [3.5, 4]. Aa, M and xp as in Figure 5.

clearly seen 1n several well-resolved windows, thus
confirming that it is a generic feature.

The major features of windows of periods up to 6 ob-
served by the present method are summarized in Table
3. (One window of period 6 is not detected, and the last
window given in the table is poorly resolved. Also, the
first window is interpreted as the window of period 2 for
the sake of consistency as explained earlier.)

The values of a), a:, and a3 in the above table agree
well with the values published in the literature® on the
beginning of the basic cycle, the first bifurcation point
and the accumulation point of these period-doubling
windows. A few conclusions can be drawn from the
above table. First, the mixed regime occurs only in the
range from 3.5699 to 4 and the irregular regime occurs
only in the range from 3.67857 to 4. Second, there are
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eight well-resolved windows in Tables 1 and 3 where
the window width a4 — a; exceeds, say, 50 times Aa. If
the window width is used for scaling, the resulting
structure parameters are given in the Table 4.

The values 1n the second, third and the fourth column
are, respectively, the scaled width of the basic periodic
regime, the period-doubling regime and the mixed flow
regime. (The values in the last two columns add up to
one. Both sets are given here for ease of reference.) One
can consider other parameters, which would give the
locations of various windows or bifurcation point. If we
exclude the first window in Table 4, the structure pa-
rameters show little variation. These approximately
constant values suggest that the well-resolved windows,
with one exception, have a similarity prOperty9. One also
notices that the mixed regime occurs in roughly one
fourth of the window. Finally, the first window of period
6 is nested in the window of period 2. One can see
nesting in other windows also (see Figures 12 and 13).
Thus, nesting of windows is a generic property.

Concluding remarks

It has been shown that a bounded trajectory of a dy-
namical system can be decomposed into regular and ir-
regular components. This decomposition leads to a new
classification of bounded trajectories of a one-
dimensional discrete dynamical system into asymptoti-
cally regular (R), mixed (M) and irregular (/) types. It
also yields new diagnostic tools like periodic mean, pe-
riodic covariance and two measures of irregularity. They
have been applied to detect windows of period seven in
the dynamical system governed by logistic map and to
elucidate the structure of such windows. All the three
types of trajectories are found to occur in this system.
Two general implications of the present results are
worth noting. First, one can determine numerically the
periodic mean and the periodic variance for a given dis-
crete dynamical system for a given P, even when there is
exponential sensitivity to initial conditions. These meas-
ures are quite robust. In a relatively 51mple system such
as a logistic map, they do not vary with initial condi-
tions except for certain special cases. The special cases
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correspond to unstable trajectories captured in compu-
tations on account of rare absence of round-off errors.
Since [ is very small in a window of period k (> 1), the
regular component for period P = k provides a fair ap-
proximation to the large time behaviour. The periodic
variance gives an estimate of the margin of error. This
approximation is optimal in the sense discussed in the
paper. So, this is a partial approximate answer to the
prediction problem in the presence of exponential sensi-
tivity to initial conditions. Note that in the mixed re-
gime, we end up with a periodic trajectory as an
approximation to a non-periodic trajectory. Second, in
the inverse problem of determining a map that gives a
given bounded trajectory, the periodic mean and the

periodic variance for a given value of P determined as
above constrain the map.
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