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ABSTRACT

We investigate the possibility of probing the triplet Higgs boson sector via single charged

Higgs production in the process e+e− → H+lνl, at high energy electron-positron colliders,

using the tree level H+W−Z coupling which is a unique feature of such models. We find that

even LEP-200 can give nontrivial information upto MH± ≃ 120 GeV if the doublet -triplet

mixing is not restricted by the current value of the ρ parameter which is the case in models

with a custodial symmetry. Further we point out that in such models, the 4-body, tree level

decay H+ → W ∗Z∗ → 4 fermions dominates and hence provides a very clean signal when

the four fermions are leptons. At NLC the discovery range for the charged Higgs in triplet

models via this process is ∼ 400 GeV.
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There is no evidence as yet of the existence of the scalar particle(s) which are essential for

the spontaneous breakdown of the SU(2)L⊗U(1)Y electroweak symmetry. Although a single

scalar SU(2) doublet suffices for the purpose, it is by no means compulsive for elementary

scalars, if they exist at all in nature, to be restricted to one doublet only. Theories with two or

more doublets are often explored in this spirit [1]. Also, it is a tenable hypothesis that there

are not only doublets but also higher representations of SU(2), such as triplets, comprising

scalar particles [2]. It is particularly interesting that whereas all the charged fermions must

get their masses via Yukawa couplings with Higgs doublets, the vacuum expectation values

(vev) of triplets can give masses to neutrinos without requiring any ”sterile” right-handed

neutrino species. Since the existence of nonzero neutrino masses is suggested by phenomena

such as the solar neutrino puzzle [3], it might be useful to consider this possibility of a

different origin of neutrino masses, which in turn might help us understand why they are so

small compared to those of the other fermions.

However, one is faced with the problem that the vev of the neutral member of the triplet

gives additional contributions to the parameter ρ = m2
W/(m

2
Z cos2 θW ) (where θW is the

Weinberg angle) at the tree-level, tending to change its value of unity which is guaranteed if

the representation of the Higgs is restricted to only doublets. Since the present experimental

value of ρ is (1.0004±0.0022±0.002) [4], any scenario with scalar triplets must be constrained

accordingly.

One option to build this constraint into the model is to postulate that the vev of the

neutral member of the triplet is small enough so that its contribution to ρ is within the

experimental limits. This smallness can then be translated into an upper limit on the mixing

angle between the doublet and the triplet.

The other option is to make the ingenious asumption, first suggested by Georgi and

Machacek [5] and by Chanowitz and Golden [6], that there are in fact more than one triplets,

arranged in such a manner that their contributions to the ρ-parameer cancel each other. In



order that this may happen, one needs to have one complex triplet ∆ (with hypercharge

Y=2) and one real χ (Y=0) triplet, in addition to the Y=1 complex doublet of the minimal

standard model. Furthermore the vev’s of these two triplet fields must be equal to guarantee

ρ = 1. Therefore, there is no restriction on the vev of the triplet and hence on the doublet-

triplet mixing.

In this paper, we examine some testable consequences of the existence of triplets in both

these situations. Several such studies have already been done in recent times in the context of

e+e− as well as of hadronic colliders [7], [8]. However, we focus here on a specific interaction

which is a distinguishing feature of triplet scalars (or those of higher representations), namely,

a tree-level interaction involving the W, the Z and a charged scalar and which has not been

studied in detail before. This interaction vertex is absent with an arbitrary number of

Higgs doublets added to the particle spectrum (for loop induced H+W−Z vertex see [9]).

The possibility of constraining the triplet sector using the above tree level coupling in Z-

factories has been discussed earlier by one of the present authors [10]. Here we investigate

its observable consequences in LEP-II and more energetic e+e− colliders. As we shall see

below, it leads to some very characteristic signals which are considerably free from standard

model backgrounds.

Let us first summarize the main features of the scalar sector for the two possibilities

mentioned above. With a complex triplet (Y = 2) ∆ and a doublet φ given by

∆ =



















∆++

∆+

∆0



















, φ =









φ+

φ0









(1)

the most general Higgs potential including ∆ and φ reads

Vφ∆ = µ2
1(φ

†φ) + µ2
2(∆

†∆) + λ1(φ
†φ)2 + λ2(∆

†∆)2 + λ3|∆TC ′∆|2 + λ4(φ
†φ)(∆†∆)
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+ λ5(∆
†Ti∆)(φ† τi

2
φ) − iλ6

(

∆i∗
P (φT τ2

τi
2
φ) + h.c.

)

(2)

where ∆P = P †∆ and P is a unitary matrix which relates the real 3-dimensional SU(2)

representation with generators (T̃j)ik = iǫijk to the equivalent representation given by Ti =

P T̃iP
† with diagonal T3. The matrices P and C ′ are then

P =



















−1/
√

2 i/
√

2 0

0 0 1

1/
√

2 i/
√

2 0



















, C ′ = P ∗P † =



















0 0 −1

0 1 0

−1 0 0



















(3)

Note here that the potential of eq. (2) breaks lepton number explictly and the model

therefore contains no majoron in the physical particle spectrum [11] (a triplet majoron is now

excluded by LEP measurements). Taking the vacuum expectation values to be < φ0 >= v

and < ∆0 >= w the ρ parameter in this model is ρ = (1 + 2w2

v2 )/(1 + 4w2

v2 ). The current

experimental constraint mentioned above translates (at 99% confidence level) to

w

v
≤ 0.066 (4)

The mass eigenstates for the charged scalars can be obtained from









H
′+

G+









=









−sH′ cH′

cH′ sH′

















φ+

∆+









(5)

where G+ is the would-be Goldstone boson. The mixing angles are (sH′ ≡ sin θH′ etc.)

sH′ =

√
2w√

v2 + 2w2
, cH′ =

v√
v2 + 2w2

(6)

It is worth noting here that in this case the H
′+ has tree level couplings to fermions through

the doublet component. The mass of the charged boson is given by

M2
H′+ = −(

λ5

2
+

λ6√
2w

)(v2 + 2w2) (7)
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Since two scales , v and w, are involved the dimensional coupling constant λ6 can be either

O(1)w or O(1)v. In the former case we expect the charged Higgs boson mass to be ∼ O(v2)

whereas in the latter case this charged particle can be much heavier ∼ O( v
w
v2).

It is known that one has to worry about hierarchy problems because of the large splitting

of the two vacuum expectation values implied by eq. (4). One way to avoid this problem

would be to supersymmetrize the model (for supersymmetric model with a real (Y = 0)

triplet see [12]). While discussing below the phenomenological consequences of triplet models

we will consider the model given by eq. (2) as a representative of models with small triplet vev

(e.g. a supersymmetric version of the same). Yet another solution to the above mentioned

problem suggested by the authors of refs. [5], [6] is to add a real triplet field χ (Y = 0)

χ =



















χ+

χ0

χ−



















(8)

and impose on the Higgs potential a SU(2)L ⊗ SU(2)R symmetry which at tree level forces

the two vacuum expectation values, < ∆0 > and < χ0 > to be equal. As a result the ρ

parameter is one at tree level. The fields carrying two group indices can be conveniently

represented by

Φ =









φ0∗ φ+

φ− φ0









, ξ =



















∆0 χ+ ∆++

∆− χ0 ∆+

∆−− χ− ∆0∗



















(9)

The corresponding Higgs potential is then

Vφ∆χ = µ̃2
1Tr(Φ†Φ) + µ̃2

2Tr(ξ†ξ) + λ̃1Tr(Φ†Φ)2 + λ̃2Tr(ξ†ξ)2 + λ̃3Tr(Φ†Φ)Tr(ξ†ξ)

+ λ̃4Tr(ξ†ξξ†ξ) + λ̃5Tr(Φ† τi
2

Φ
τj
2

)Tr(ξ†TiξTj)

+ λ̃6Tr(Φ† τi
2

Φ
τj
2

)ξij
P + λ̃7Tr(ξ†TiξTj)ξ

ij
P (10)
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where ξP = P †ξP . The trilinear terms proportional to λ̃6 and λ̃7, are often dropped by

requiring the discrete symmetry ∆ → −∆ and χ → −χ. This symmetry then has to be

implemented also on the Yukawa term

Lll∆ = ihabψ
T
aLCτ2

τi
2
ψbL∆i

P + h.c., ψi =









νi

li









(11)

resulting in a neutrino spectrum with one Weyl and one massive Dirac neutrino. Hence,

in principle, the model with the discrete symmetry has different physical consequences as

compared to the more general model of eq. (10) as far as the neutrino mass spectrum is

concerned.

Diagonalising the mass matrix of the scalar sector, in general one finds, after duly absorb-

ing the Goldstone bosons as longitudinal components of gauge fields, a 5-plet, H5
++,+,0,−,−−,

a 3-plet, H3
+,0,− and two singlets, H1

0 and H1
′0, as the physical states. The different multi-

plets charaterise their respective transformation properties under the custodial SU(2). The

members of the H5-plet are given by (for further details on the particle spectrum and cou-

plings see [8])

H++
5 = ∆++

H+
5 = (∆+ − χ+)/

√
2

H0
5 = (2χ0 −

√
2∆0)/

√
6 (12)

Clearly, none of them have any overlap with the components of the doublets φ, and as such

they do not couple to fermions at the tree-level in contrast to the case of the physical charged

Higgs H
′+ of eq. (5) of the earlier model. The mass of the 5-plet members is given by

M2
5 = 8λ̃4w

2 − 3λ̃5v
2 − 1

2
λ̃6
v2

w
(13)

One constraint on the above scenario arises from the lepton-lepton couplings that the

6



complex Y=2 triplet possesses (see eq. (11)). The mass thus acquired by the electron

neutrino will, for example with diagonal hab, be given by

Mνe
= hee

sH

2

MW

g
(14)

with

sH =
2w√

v2 + 4w2
(15)

and g is the SU(2) coupling constant. The experimental constraints from neutrinoless double

beta-decay imply that Mνe
< 1eV . This means that either the doublet-triplet mixing angle

or the ∆L = 2 Yukawa coupling is restricted to very small values. Since in this model ρ = 1

at tree level a large mixing angle sH is apriori not excluded. A large vev w will imply of

course larger contribution to the gauge boson mass coming from the triplet sector. We will

comment on this further at the end of the paper. It has also been shown that so far as

scalar interactions are concerned, one can maintain the equality of vev’s at higher orders.

However, no way has yet been found to prevent the custodial symmetry from being broken at

the loop-level by U(1) gauge couplings. This means that fine-tuning is required to make such

a model work. In any case, as has been discussed in ref. [8], the degree of such fine-tuning

required is not higher than that involved in connection with the naturalness problem within

the standard model itself (see also [13] in this connection).

As has been mentioned before, in both the models discussed above the H+W−Z coupling

exists at the tree level. The lagrangians are

L(1)
HWZ = − gMW

cos θW
sH′cH′H

′+W−
µ Z

µ + h.c.

L(2)
HWZ = − gMW

cos θW
sHH

+
5 W

−
µ Z

µ + h.c. (16)

We now focus on the production of H±(H
′± or H±

5 ) via the above interactions. First,

there is the s-channel process e+e− −→ Z∗ −→WH± which will dominate at lower energies.
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Here we concentrate upon the final states consisting of the leptonic decay products of the

W, i.e. on e+e− −→ H±lνl. In such cases, the eνe final state also receives contributions from

a t-channel diagram with the H± emitted from the propagator. As we shall see later, for

high values of the centre-of-mass energy, this latter diagram is dominant.

Fig. 1 shows the cross-sections for H±lνl-production plotted against MH± for different

values of
√
s. The contributions due to the electronic and muonic final states are added.

The curves correspond to sH = 1 and cH′sH′ = 1 for the two cases of H±
5 , H ′± respectively.

The cross-sections for various values of the mixing angles can be read off by multiplying by

the appropriate value of s2
H(s2

H′c2H′ ≃ s2
H′) . It is straightforward to see from the graphs that

in the LEP-II case (thin solid line), assuming an integrated luminosity of 1039cm−2 per year

there will be a few hundreds of events for sH = 1 upto at least MH5
= 110GeV . If now

one has only the Y = 2 triplet, the restriction from the ρ-parameter allowes a maximum s2
H

of 0.009. This leaves us with about 2 events per year. In such a case, the only reasonable

chance of observing this process exists in a higher-energy e+e− machine. As can be seen

from the plot (dotted line), such a machine with a luminosity of 50fb−1/year [14] can lead

to few tens of events upto MH′ ≃ 300 GeV even with a value of sH′ well within the limits

imposed by ρ. For sake of completeness we also show the expected cross section for higher

values of
√
s (1 TeV (dashed line) and 2 TeV (thick solid line)). On the other hand, since

this restriction gets relaxed if one presupposes a complex and a real triplet, at LEP-II itself

one can investigate a large area of the ρ− sH parameter space in the latter scenario.

It is instructive to note here that while the s-channel diagram dominates at lower beam-

energies (
√
s = 200 GeV) and hence the cross–sections for the electronic and muonic final

states are not too different (shown in fig. 2 by the solid and dashed line, respectively),

at higher energies the t-channel clearly dominates. For example, the cross–section for the

electronic final state (shown by solid line) is at least a factor 5 larger than that for muonic

8



final state (dashed line) already at
√
s = 500 GeV for MH± ≤ 150 GeV. For higher values

of
√
s the cross–sections is almost completely dominated by the process e+e− → eνeH

±

The signals of the triplet scalars thus produced also of course depend in a rather crucial

manner on their subsequent decay channels. For the (complex+real) case, as has already

been mentioned, the charged scalars H±
5 do not have tree-level interactions with fermions.

Possibilities of observing them through loop-induced decays into fermion pairs have already

been studied [8]. However, we would like to point out here that there also exists the tree-

level decays into four-fermions mediated by a W and a Z coupling with H5. So long as

MH5
< MW , both the W and the Z in this decay are virtual. We have explicitly calculated

such decay widths using methods described in ref. [15] modified appropriately. The width

up to mixing angles is given by

Γ(H+ → W ∗Z∗ → f1f̄1f2f̄ ′
2) =

g6m2
W

29 × 9 ×M3
H+ × (2π)5 × cos4 θW

(g2
V + g2

A)

×
∫ M2

H+

0
dQ2

1

∫ (M
H+−

√
Q2

1
)2

0
dQ2

2λ
1/2(M2

H+ , Q2
1, Q

2
2)

× [8Q2
1Q

2
2 + (M2

H+ −Q2
1 −Q2

2)
2]BZ(Q2

1)BW (Q2
2) (17)

where gV = T f1

3L−2Qf1 sin2 θW , gA = −T f1

3L, BV (Q2) = [(Q2−M2
V )2 +M2

V Γ2
V ]−1 and λ(x, y, z)

is the kinematical triangle function. We show the decay widths into this channel for leptonic

final states (with sH = 1) as a function of MH5
by the dashed line in fig. 3. Here we have

summed over the muons and the electrons in the final state. For purposes of comparison we

also show by the dotted line one of the representative results for the loop induced partial

width Γ(H+
5 → cs̄) taken from ref. [8] (also drawn there for sH = 1). The figure clearly

shows that indeed the partial decay width for our four-fermion modes are of similar orders for

MH5
∼ 50GeV , and completely dominate for higher values of MH5

. 1 When MH5
becomes

1It should be pointed out here that even for MH5
as small as 25 GeV, the four-fermion width (summed

over leptons and light quarks) is somewhat larger than the loop induced Γ(H5 → cs̄). If we further remember

9



greater than MW , the loop-induced Wγ channel also opens up for the H5. However, if

we take the numbers for the partial decay width for this channel given in [16] as a very

rough guideline, we find that the decay mode into the four fermions (via two gauge bosons

(real or virtual)) does indeed dominate. Consequently, the branching ratio for decays into a

pair of weak gauge-bosons (WZ) remains close to 100 per cent over most of the parameter

space under scrutiny. The 4-lepton (lνll
′+l

′−) channel then has a healthy branching ratio of

∼ 1.4% The corresponding signal is practically free from standard model backgrounds, and

thus it should be considered as the principal technique in looking for triplet Higgs bosons (in

this model) produced in e+e− collider experiments. Thus using this clean lepton channel,

for sH = 1, LEP-200 (NLC) can have a discovery range upto MH5
= 100(350) GeV. The

signal with four jets in the final state might seem hopeless at first glance when one thinks of

multijets coming from gauge boson pair production and their decays. However, it should be

remembered that the invariant mass of the four jets will be quite different from
√
s and hence

even the four jet final states can be used increasing the useful branching ratio to ∼ 50%.

This would increase the discovery range of H±
5 even further since the width into four quarks

final state will be a factor ∼ 35 higher than the four lepton channel. Hence, the discovery

range at LEP-200 (NLC) gets extended to 125 (425) GeV, for sH = 1. It should also be

pointed out that the e−/e+ coming from the reaction e+e− → e+H−
5 ν̄e(c.c.) is likely to be

lost in the beam pipe.

For the case of model 1 (i.e. H
′+) of course the two-fermion decay-modes can occur at

tree level just like the WZ decay and are thus not loop suppressed though suppressed by the

mixing angle sH′cH′ . As can be seen from Γ(H
′+ → cs̄) given by the solid line in fig. 3 (and

dotted line in fig. 4) this decay mode will dominate over the four-lepton decay mode upto

that the loop induced Γ(H5 → τντ ) is even smaller than that for cs̄ final state [8], this implies that the normal

search strategies for a charged Higgs at LEP might have missed such a charged Higgs.
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MH′+ = 150 GeV. However the width for the 4-quark decay mode (mediated by WZ (real

or virtual)), shown by dashed line in fig. 4, will be comparable to the two quark decay mode

for MH′+ ≥ 120 GeV as can be seen from fig. 4. For still heavier H
′+ (once the WZ channel

is allowed kinematically and the H
′+ → tb̄ opens up) these two decay modes (shown by the

thin and thick solid line respectively in fig. 4) will take over and eventually the branching

ratio into the clean 4-lepton channel will be ∼ 0.7% level. Since all the relevant decays occur

only through the mixing the actual value of the mixing angle sH′ is immaterial for gauging

the relative strengths of different channels. Of course, the statements about the tree-level

decays into WZ, tb̄ and the four jet channels, made above are true for the case of H+
5 as well.

At the end, we would like to make a comment regarding the production of doubly charged

Higgs bosons which form an integral part of the triplet models discussed here. If one considers

the process e+e− −→ H++l−l− (or its charge conjugate), the production rate is proportional

to the square of the H++-lepton-lepton coupling strength. This strength is bounded above

from the non-observation of neutrinoless double beta decay. As is evident from eqs. (14,15),

the maximum value of the coupling is thus inversely proportional to the quantity sH . A rather

model-independent limit can be obtained from indirect contributions of ∆++ to Bhabha

scattering (t-channel exchange) [17]

h2
ee

M2
++

< 1.9 × 10−5 GeV−2 (18)

Therefore, for very small sH , the production cross-section for a single doubly-charged Higgs

becomes less restricted. In the extreme cases, hee very small or w/v very small, there is an

interesting dichotomy which can be used for experimental studies: either the HWZ coupling

is sizeable or the coupling strength of ∆++ to leptons is non-negligible. A detailed exploration

of the signal of a such a singly-produced doubly charged Higgs is thus advisable. Although

this production mechanism has been studied previously [18], some relevant diagrams have
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been left out, which are potentially important for a high-energy e+e− machine. A study of

the full process is currently under way.

In conclusion, The tree level HWZ-coupling in the triplet model is found to be a rather

interesting way of either uncovering or ruling out such a scenario. For a model with only

complex triplets, LEP-II can have at best a marginal glimpse of the allowed region of the

parameter space, and machines with higher energy and luminosity are required for a closer

survey. On the other hand, with one complex and one real triplet a considerably large

region of the allowed parameter space is likely to come within the purview of LEP-II, with

conspicuous and testable signals.
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Figure Captions:

Fig. 1. σ(e+e− → lνlH
±) (pb) as a function of MH+ (for sH(sH′cH′) = 1) for different

values of e+e− center of mass energies: the thin solid, dotted, dashed and thick solid line

correspond to
√
s = 200 GeV, 500 GeV, 1 TeV and 2 TeV respectively. Cross-sections for

both charges of the Higgs and muonic as well as electronic channels in the final state are

added.

Fig. 2. σ(e+e− → eνeH
±) (solid line) and σ(e+e− → µνµH

±) (dashed line) for
√
s = 200

GeV and 500 GeV, for same values of the mixing angle as in fig. 1 and again summed over

the charge of the Higgs.

Fig. 3. The different possible two body decay widths (H+
5 → cs̄)at loop level (dotted line),

tree level (solid line) and the tree level leptonic four body decay width Γ(H+
5 → W ∗Z∗ →

4 leptons) (dashed line) for the charged Higgs. Again the mixing angles are put equal to 1 as

in fig. 1. The Γ(H+
5 → cs̄) (loop) has been taken from ref. [8]. The four body decay width

is summed over electrons and µ′s in the final state. For four quark final state the numbers

are obtained by multiplying the dashed figure by ∼ 35.

Fig. 4. The different possible tree level decay widths (H
′+ → cs̄) (dotted line), Γ(H

′+ →

W ∗Z∗ → 4 quarks) (dashed line), Γ(H
′+ → W+Z) (thin solid line) and Γ(H

′+ → tb̄) (thick

solid line) for the charged Higgs. Again the mixing angles are put equal to 1 as in fig. 1. mb

has been neglected.
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