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Abstract

Predictions for total inelastic cross-sections for photon induced processes are dis-
cussed in the context of the QCD-inspired minijet model. Large theoretical uncer-
tainties exist, some of them related to the parton distributions of hadrons in impact
parameter space. A model for such distribution is presented, based on soft gluon
summation. This model incorporates (the salient features of distributions obtained
from) the intrinsic transverse momentum behaviour of hadrons. Under the assump-
tion that the intrinsic behaviour is dominated by soft gluon emission stimulated by
the scattering process, the b-spectrum becomes softer and softer as the scattering
energy increases. In minijet models for the inclusive cross-sections, this will counter
the increase from o

The impact of parton scattering on the rise of inclusive cross-sections with energy was
suggested by Cline and Halzen [, after such rise was first observed in proton-proton
collisions at ISR . Minijet models were put forward to describe quantitatively the further
rise at higher energy [P, B, f]] and eikonal minijet models [B, B, [, §] were subsequently
developed to include an increasing number of partonic collisions in QCD resulting from

the rapid rise in gluon densities. Recent measurements of photo- and hadro-production
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total cross-sections [, [0 in energy regions where QCD processes dominate, confirmed
the rising trend and have been confronted with theoretical predictions obtaining varying
degrees of success [[I7].

The simplest mini-jet model [J] was written as

Uinel(s) = Osoft + Ujet(ptmina S) (1)

with the rise controlled only by an energy dependent parameter, namely pspn:,, which
regulated the Rutherford scattering divergence in the QCD jet-cross-section. The lack of
unitarity of this model was amended in the eikonalized mini-jet model, where inelastic
hadron-hadron cross-sections are written as

Oinel = /d2 s] (2)
Here the average number of collisions at impact parameter b is given by
n(b,s) = A(b)o(s) (3)

with fixed pynin. In this version, the excessive QCD rise, controlled by pymn(s) in the non-
unitarized models, was softened through eikonalization and introduction of the overlap
function A(b), which thus became a key ingredient of all models with a QCD component.
This function, which describes matter distribution in impact parameter space, in most
applications [fJ] has been assumed to be the Fourier transform of the product of hadronic
form factors of the colliding particles. In other models [[J], a gaussian shape has been
preferred, thus relating A(b) to the intrinsic transverse momentum distribution of partons
in the colliding hadrons. In either case, detailed information on A(b) relies on parameters to
be determined case by case. However, while direct measurements of the EM form factors
are available for nucleons and pseudoscalar mesons, experimental information regarding
photons or other hadrons such as vector mesons is lacking. The same observation applies
to the intrinsic-p; interpretation for the spatial distribution of partons in vector mesons
or photons. Thus the extension of this model to photonic cross-sections unveils one of
its main drawbacks, viz. lack of a fundamental description of parton b-distributions. To
reduce the uncertainties in the QCD description of the rise of the inelastic cross-section,
and allow this model to graduate to QCD respectability, it is mandatory to arrive at a
QCD description of the overlap function A(b).

For the case of photonic processes, there are further uncertainties related to the hadronic
behaviour of photons. The model has been adapted to photonic processes by writing the
inelastic cross-section as

O'(i;bld had / d2 —n(b s ] (4)

where P4 gives the probability that both colliding particles a, b be in a hadronic state[[J]
and n(b, s) Nsoft(b, S) + Npara(b, ). Here ngop (b, s) contains the non-perturbative part of
the cross-section from which the factor P24 has already been factored out and the hard,



QCD contribution to the average number of collisions at a given impact parameter b is

given by
1 i
nhard(b> S) = Aab(b) Phad O-tjzbt (5)

ab

o7 is the hard part of the cross-section. We then have

had __ phad, phad __ had\2. had __
Pfyp _P'y 7PW _(P“/ ) Ppp =1

The predictions of the eikonalised mini-jet model [[4] for photoproduction processes
therefore depend on 1) the assumption of one or more eikonals 2) the hard jet cross-section
aigt = Loun: ‘;%’dpf which in turn depends on the minimum p; above which one can expect

man +

perturbative QCD to hold, viz. pu,in, and the parton densities in the colliding particles a

and b, 3) the soft cross-section ¢’y/* 4) the overlap function Ag(b), usually written as

1

Aulh) = o [ TFa)Fsfa)e ™ (6)

where F is the Fourier transform of the b-distribution of partons in the colliding particles
and 5) last, but not the least, Phad.

To study the parameter dependence of this model, one can restrict attention to a single
eikonal : more eikonal terms although improving the fits, de facto introduce new sets of
parameters and very much reduce the predictivity of the model. The hard jet cross-sections
have been evaluated in LO perturbative QCD using two different photonic parton densities
DG [[§] and GRV [I§]. The dependence of 07" on pyni, for DG densities is given in Ref.
[[T]. Clearly this dependence is strongly correlated with the parton densities used. Here
we shall only show the results for eikonalised mini—jet cross-sections using GRV densities.
Further, for the purposes of this note, we try to estimate o ), from oy, which in turn
is determined by a fit to the photoproduction data. For ++ collisions, we use the Quark
Parton Model suggestion 0, = 2007,.

In the original use of the eikonal model, the overlap function A, (b) of eq. [ was
obtained using for F the electromagnetic form factors and thus, for photons, a number of
authors [[[7, [[§] have assumed for F the pion pole expression, on the basis of Vector Meson
Dominance (VMD). As mentioned, another possibility is that the b-space distribution of
partons in the photon is the Fourier transform of their intrinsic transverse momentum
distributions. For protons this has been assumed to correspond to a gaussian shape.
For photons, the perturbative part [I9 of the intrinsic transverse momentum has been

suggested to correspond to the functional expression

dN, 1
iz~ K2+ k2 ™)

Recently this expression was verified by the ZEUS [2{] Collaboration, with k, = 0.66 £
0.22 GeV. It is interesting to notice that for photonic collisions the overlap function will
have the same analytic expression for both ansitze for F: the VMD inspired pion form



factor or the intrinsic transverse momentum; the only difference being that the former
corresponds to a fixed value of kg = 0.735 GeV whereas the latter allows to vary the value
of the parameter ky. Thus both possibilities can be easily studied by simply changing kg
appropriately. The overlap function, which for proton-proton collisions would be given by

27 . 2 2./, 2
AFF (p) = / Q) GOy _ b vy Ks(bV?) 12 =0.71GeV?  (8)
PP ( 967

as proposed by L.Durand et al. [[{] in the first eikonal mini-jet model for proton-proton
collisions, for vp collision would become
1 v2k? 202
AP = |[vbK L (vb) —

T Ar k2 — 12

2 Eo(vh) — KO(kob)” (9)

and for v collisions
1
Afjf(b) = Ek:g’bKl(bk‘o) (10)

As for Pf/‘“d, this is clearly expected to be O(aey,) and from VMD one would expect
1/250. It should be noticed that the eikonalised minijet cross—sections do not depend on
A, and P;i‘fd separately, but depend only on the ratio of the two [BI], BZ|; which for our
ansétze for A,, means ratio of ky and P%“d. From phenomenological considerations [[§and
fits to HERA data, fixing k, = 0.735 GeV one finds a value P, ~ 1/200, which indicates
at these energies a non-VMD component of =~ 20%.

As mentioned, the QCD description requires the definition of ps,:,. From HERA data,
one notices that while lower values of Py, i.e. 1.4 GeV, can be invoked to describe the
beginning of the rise, a higher value, i.e. 2.0 or even 2.5 GeV, is better suited to describe
the rise at higher energy. In Fig.1a we show the fit to HERA data obtained with the above
parameters, using a purely phenomenological fit to determine the non-perturbative part of
the cross-section.

Having thus established the range of variability of the quantities involved in the cal-
culation of total photonic cross sections, we now proceed to calculate and compare with
existing data the eikonalized minijet cross-section for v collisions. For photon photon
collisions, we use the central value ps, = 2.0 GeV. We also use thad = 1/204, and A(b)
from eq.([[0) with 3 different values of k, which correspond to values within two standard
deviations from the ZEUS [R{] collaboration value. Our predictions for v collisions are
shown in Fig. (1b). A comparison with existing data shows that data points are better
fitted by a higher larger value of kg, and we choose ko =1 GeV.

As stressed,the theoretical description is rather unsatisfactory and we now move to
present a model for the overlap function which,in principle, should allow for a clearer
predictability and to provide an expression for A(b) which could be applied to various
cases of interest. We shall use Bloch-Nordsieck techniques to sum soft gluon transverse
momentum distributions to all orders and compare our results with both the intrinsic
transverse momentum approach as well as the form factor approach. In what follows, we
shall first illustrate the Bloch-Nordsieck result and show that it gives a gaussian fall-off
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Figure 1: Total inelastic photon-proton and photon-photon cross-section as described in
the text.

with an intrinsic transverse size consistent with MonteCarlo models [[J]. We then calculate
the relevant distributions and discuss their phenomenological application.

In ref.([23]) it has been proposed that in hadron-hadron collisions, the b-distribution
of partons in the colliding hadrons is the Fourier transform of the transverse momentum
distribution resulting from soft gluon radiation emitted by quarks as the hadron breaks up
because of the collision. This distribution is obtained by summing soft gluons to all orders,
with a technique amply discussed in the literature [24, B5]. The resulting expression[Rd, BT
is

1 .
Fon(K1) = o [ bbb )e 00 "

MMV R @)

[ VN ey

with

2 M dk
T~

as(

where ¢ = 4/3 and the hadronic scale M accounts for the maximum energy allowed in a



single (k% = 0) gluon emission.
The definition given in eqs.(B,B), requires for its consistency a normalized b-distribution,
ie.

/ dZBA(D) = 1. (13)
so that the proposed Bloch-Nordsieck expression for the overlap function A(b), satisfying
the above normalization, reads

o—h(b:M,A)

ABN = T dbe RN

(14)

An inspection of eq.([J), immediately poses the problem of extending the known asymp-
totic freedom expression for a; to the very small £ region. To avoid the small k£, divergence
in eq.([[), it has been customary to introduce a lower cut-off in £, and freeze o, at k; = 0,

i.e. to put
127 1

2

(kL) = 339N, (i T A7) /A2)] (15)
with a = 2 in ref. 2§]. For applications where the scale M is large (e.g., W-transverse mo-
mentum distribution calculations) eq.([[2) is dominated by the (asymptotic) logarithmic
behaviour and the small k| -limit, albeit theoretically crucial, is not very relevant phe-
nomenologically. However, this is not case in the present context, where we are dealing
with soft gluon emission in low-p; physics (responsible for large cross-sections). The typ-
ical scale of such peripheral interactions, is that of the hadronic masses, i.e. we expect
M ~ O(1+2 GeV) and the small k; limit plays a basic role. This can be appreciated on
a qualitative basis, by considering the limit bM << 1 of eq. ([[J). In this region, one can
approximate 1 — Jy(kb) =~ b*k? /4, to obtain

h(b; M, A) = b* A (16)
with 2 nr:
_ o 2, (2
A=L [ aa,(35) =5 (17)

One obtains a function h(b; M, A) with a gaussian fall-off as in models where A(b) is the
Fourier transform of an intrinsic transverse momentum distribution of partons, i.e.
exp(—k? /4A?). Note that the relevance of an integral similar to the one in eq.([[7]) has
been recently discussed in connection to hadronic event shapes [B9].

Our choice for the infrared behaviour of a; for a quantitative description of the distri-
bution in eq.([3), does not follow eq.([[[), but is inspired by the Richardson potential for
quarkonium bound states [B0J. In a number of related applications [BI], B, it has been
proposed to calculate the above integral using the following expression for ay :

127 p
(33 — 2Ny) In[1 + p( )]

as(kL) = (18)



which coincides with the usual one-loop expression for large (relative to A) values of k|,
while going to a singular limit for small k£, . For the special case p = 1 such an «a; coincides
with one used in the Richardson potential [B(], and which incorporates - in a compact
expression - the high-momentum limit demanded by asymptotic freedom as well as linear
quark confinement in the static limit. In [B]]] we have generalized Richardson’s ansatz to
values of p < 1. For 1/2 < p < 1, this corresponds to a confining potential rising less than
linearly with the interquark distance r. The range p # 1 has an important advantage, i.e., it
allows the integration in eq.([[J) to converge for all values of k,. For the motivations given
in [BI]] the value p = 5/6 was chosen in previous calculations of the transverse momentum
distribution of Drell Yan pairs [B]], BJ.

Having set up our formalism, we shall now examine its implications. The distribution
A(b) depends upon the hadronic scale M in the function h(b). This scale depends upon the
energy of the specific subprocess and, through this, upon the hadron scattering energy. It
plays a crucial role, just as it did for the Drell-Yan process, where the expression of eq.([[])
has been successfully [B4, BY, B3, B§] used to describe the transverse momentum distribution
of the time-like virtual photon or W-boson. In these cases[B4, B3, the scale M was found
to be energy dependent and to vary between /Q2/4 and +/Q?/2. In the calculation of the
transverse momentum distribution of a lepton pair produced in quark-antiquark annihi-
lation [B4], the scale M was obtained as the maximum transverse momentum allowed by
kinematics to a single gluon emitted by the initial ¢7 pair of c.m.energy v/5 in the process

a7 — g +~(Q% (19)

In the Drell-Yan case, one needed h(b) to calculate the transverse momentum distri-
bution of the lepton pair, here we use it to evaluate the average number of partons in
the overlap region of two colliding hadrons. In this case e ) is the F-transform of the
transverse momentum distribution induced by initial state radiation in the process

qq — jet jet + X (20)

where the jet pair in process (R() is the one produced through gluon-gluon or other
parton-parton scattering with total jet-cross-section oj.; and X can also include the quark-
antiquark pair which continues undetected after emission of the gluon pair which stimulated
the initial state bremsstrahlung. We work in a no-recoil approximation, where the trans-
verse momentum of the jet pair is balanced by the emitted soft gluons. Then the maximum
transverse momentum allowed to a single gluon is given by

~ \/g §jet

Qmax(s) == 7(1 - 3 ) (21)

with /5 being the jet-jet invariant mass over which one needs to perform further inte-
grations. An improved eq.(fJ) now reads

d d d
(b S) nsoft b S +Z/ it /ﬂfz Il f] 1'2 /dz/dptABN(b qma:c)d g

22
7 pgdz ( )



where f; are the quark densities in the colliding hadrons, z = §j¢;/(s122), and is the

ddez
differential cross-section for process (P{) for a given p; of the produced jets.

Unlike the usual expressions for n(b, s), eq.(B3) does not exhibit factorization between
the longitudinal and transverse degrees of freedom since the distribution Agy depends
upon the quark subenergies. Factorization can be obtained however, through an averaging
process whereupon one can factorize the b-distribution in eq.(R9), by evaluating Agy with

(mae at its mean value, i.e. write
n(b, s) = nsore(b, 8) + Apn (b, < Gmaz () >)0jet (23)

with

Ojet = Z/dzl /@fz (z1) fj (2 /dz/dptd 0 (24)
and
V5 X [ B fia(w) [ S22 fipp(2) /@, [ dz(1 - 2)
2 Zi,jfdmillfi/a(xl)fdxzfj/b(x2)f(dz)
with the lower limit of integration in the variable z given by z., = 4p2,.../(sT122). To

grasp the energy dependence of this scale, one can use a simple toy model, in which the
valence quark densities are approximated by 1/1/z and thus obtain

3 N
N minl a_
8pt " 2ptmin

< Qmax(s) >= (25)

< Qma:c(s) > (26)
for 2pymin << \/S. For pynin = 1.4 GeV | as in typical eikonal mini-jet models for proton-
proton scattering [@], one obtains values of < @q.(s) > which range from 0.5 to 5 GeV
for v/s between 10 GeV and 14 TeV respectively. A more precise evaluation of the above
quantities depends upon the type of parton densities one uses, and will be discussed in a
forthcoming paper.

From the discussion about the large b-behaviour of the function h(b), we then expect
Apn (b, s) to fall at large b more rapidly as the energy increases from /s = 10 GeV into
the TeV region. In Fig. 2, we compare this behaviour for the function A(b) with the one
obtained through the Fourier transform of the squared e.m. form factor of the proton,
eq.( ). The function A(b) from the Bloch-Nordsieck model is calculated for A = 0.1 GeV
and values of < @4 > which include those obtainable from eq.(Pf) in the energy range
Vs~ 10 GeV =14 TeV.

We notice that, as the energy increases, A(b) from the form factor model remains
substantially higher at large b than in the Bloch-Nordsieck case. As a result, for the same
et the Bloch-Nordsieck model will give smaller n(b, s) at large b than the form factor
model and a softening effect of the total eikonal mini-jet cross-sections can be expected.

In conclusion, we have studied the parameter dependence of the eikonalized mini-jet

model for photonic and hadronic total inelastic cross-section and found that a large un-
certainty arises through the description of parton distributions in impact parameter space.
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Figure 2:  Comparison between the A(b) distribution function from the Bloch-Nordsieck
model (full) and the form factor model (dots).

A model, derived from soft gluon summation techniques, is described and compared with
expectations from the currently used form factor models for such disatribution. Such
comparison indicates a distinctly different behaviour in this large b-region suggesting a
softening of the rise of the total cross-section in mini-jet models relative to the ones with
the hadron form-factors.
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