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Drift dissipative insfability in a two temperature plasma
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Abstract. The presence of a small amount of relatively cold electrons in an otherwise
hot plasma reduces the ion sound speed in the medium and hence reduces the growth
rate of the drift dissipative ion acoustic mode in an inhomogeneous weakly ionized
plasma. This is expected to improve the confinement time in certain magnetic con-
finement schemes. The propagation of a small but finite amplitude mode in the pre-
sence of ion viscosity is also investigated by using reductive perturbation method. Tt
is shown that, when the damping due to ion viscosity is stronger than the growth due
to collisions, there exists a stationary shock solution.
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1. Introduction

Magnetically confined plasmas are inherently inhomogeneous and drift instabilities
are a cause of concern in such a plasma (Krall 1968) as they produce enhanced particle
diffusion across the magnetic field and hence reduce the confinement time. In 2
collisional plasma it is the drift dissipative instabilities that are potentially dangerous
in reducing the confinement time because they have large growth rates (Imw~Rew).
These instabilities occur due to drift motion of the charged particles across the
magnetic field and the diffusion along the field either in a weakly ionized plasma
with a low neutral pressure (Timofeev 1963) or in a dense fully ionized plasma
(Moiseev and Sagdeev 1963). In order to increase the confinement time it is extremely
desirable to stabilize these instabilities. In this paper we present a linear mechanism
by which a significant reduction in the growth rate of one of these instabilities (for
which w>Q,, w, Q, being the characteristic wave frequency and ion gyrofrequency
respectively) can be achieved. ‘
Our proposition is based on the following considerations. The drift dissipative
instability for which o> Q; (Kadomtsev 1965, henceforth, we shall call this mode
as drift dissipative ion acoustic mode) has growth rate which is proportional to the
ion acoustic speed in the medium. However, the ion acoustic speed in an otherwise
hot plasma drastically decreases due to the presence of a small fraction of cold
electrons. (Jones et al 1975, Goswamj and Buti 1976). An. section_2, we have
shown that just by introducing a small amouiit of relatively cold electrons one can
significantly reduce the growth rate of drift dissipative ion acoustic mode. This is
expected to improve the confinement time In certain magnetic confinement schemes.
Moreover, it is well known that (Hendel et a/ 1968) ion viscosity has a stabilizing effect
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on this instability. Now that the growth rate of the instability is reduced, a rather
weak ion viscosity will be sufficient to quench the instability. In section 3 we derive
a modified Korteweg-de Vries equation describing the propagation of a small but
finite amplitude drift dissipative ion acoustic mode in such a system. It is shown
that in the presence of an ion viScosity there exists a stationary shock solution when
the viscous damping dominates over the collisional growth.

2. Linear analysis

Let us consider a plasma with cold ions (density N, T;=0) embedded in a magnetic
field in the z-direction where bulk of the electrons are hot (density N, and temperature
T,) with a small fraction of cold electrons (density N, and temperature 7,) such that
NuN.>1 and T/T,> 1. The density gradient will be considered to be in the
x-direction while the wave propagation will be considered to be in the y-z plane. In
equilibrium, the ions are at rest and the electrons have a drift in the y-direction. The
charge neutrality condition, namely N, =N, + N, together with the conditions

Ni/N.>1 and T,/T.> 1 demands that the density gradient scale lengths will be mostly
governed by the hot electrons, i.e. ’

Ke_L1dN,__ 1dN,_,1 aN,
N, dx N,dx TN, dx

= U'Kh + BKC | (1)

where a=N,/N, and B=N,/N,. We shall assume that the main density gradient is
produced by the hot electrons. Cold electrons are more or less uniformly distributed
and hence K, <K,. Basic linearized set of equations consists of the continuity

equations for jons and two types of electrons and the equations of motion for ions
and the two types of electrons, namely ‘
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4 7) we have neglected the electron inertia. Moreover, use has been made
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of the perpendicular equations of motion in writing the continuity equations for
electrons. The effect of the magnetic field on the ions is neglected as we shall restrict
ourselves only to the mode for which w > £, Assuming the perturbed quantities
to go as exp ({ k' r — iwt) we get (Kadomtsev 1965)

_fi:(kzz__ikch) (Dckzz_iw)—li’é_:c (8)
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where Dc =Tec Tc/me and Dh = Th th/me‘

Therefore, the linear dispersion relation can be written as

k2 (1_ ik, K, )a +(1_ ik, K, ) B
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or

""2/k2 - (Teff/ml) [1 _iky(Kv)eff/Qekzzl—l (1 1)
where

Tt = TyTo/(aT, + BTy) (12)
a-nd (KV)Off = (aTcKth + ﬁ'T;IKCVC)/(aTc ’I‘ ﬁTh)' (13)

In deriving eq. (11) we have assumed that D k.2, Dyk,*> w. It can be shown that
eq. (11) is consistent with this assumption unless &, is extremely small (Kadomtsev
1965). » in the above equations is the collision frequency and the subscripts 4 and ¢
refer to the hot and cold components respectively. Thus, from eq. (11), the
frequency and growth rate of the wave is obtained as

w = szeff
and
_ ky(Kv)
y =K | ] a4
where

Coett = (T, ot/ m:)l/ 2,

For large T;,/T,, T,y is closer to T, (see eq. (12), also Jones et al 1975) and hence
an appreciable reduction in C, takes place. Therefore, a significant reduction in the
growth rate, which is given by eq. (14), also takes place. From eq. (13) it is seen, that
for T,/T, large (kv).; < K, v, as K. v. <K, v, and hence the decrease in the growth
rate given by eq. (14) is genuine. Thus, just by introducing a small amount of
relatively cold electrons, into the bulk of a hot plasma a significant reduction in the
growth of the drift-dissipative ion acoustic mode and hence increase in the confinement
time of certain magnetic confinement schemes can be obtained.
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3. Nonlinear analysis

From the linear analysis we have seen that the presence of a small amount of co_ld
electrons has a stabilizing effect on this instability. - Therefore, a weaker ion, viscosity
will be sufficient to completely quench the instability. Following reductive perturba-
tion method, in this section, we look for a steady state solution of the drift-dissipative

ion acoustic mode in the presence of ion viscosity. The nonlinear set of equations
is the following:
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In the above set of equations densities are normalized to ng, velocities to Cyyy, poten-
tial to Tyle, lengths to A, (A%ep = Te/4m nye?) and time to ion plasma period,
wpl"l (wpf = 4m nge?m;). Collisons for the cold electrons are ignored and density
gradient exists only for the hot electrons. The quantity ¢ appearing in the above set
of equations is a velocity potential introduced through eq. (21). Since the mode
under consideration is an electrostatic mode and the propagation is nearly perpendi-

cular to the magnetic field, the motions of the ions along the direction of the magnetic
field has been neglected.

¢ The term on the right hand side of, eq. (16) represents the
viscous force with p = 5/349,, 5, = CouTifvy, 1y = ComTywy/ Q2 C,, Cy being
constants and T; and , being ion temperature and ion-ion collision frequency
respectively. _ The constants as obtained by Braginskii (1965) are C;=0-95 and C; =
0'3_- In writing eq. (16) the jon pressure term is neglected because the ion temperature
T, } 15 assumed to be much smaller than the electron temperature T, and the strength
%cthz,l?érs z?:;leimt;: mpared to the ion viscosity term goes as O(L2,2/vyky Coggr)-

Gef®w3 strength of the jon pressure term is even smaller than that
of the ion-viscosity term if v Q.
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Equation (18) can be integrated with respect to z to give 7, = a exp [Teg (d —b)/T}]
and then the Poisson’s equation (Eq. (20)) can be written as

eﬁ'

962 ~n (22

o 2 e £ (4 e
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where 7; is the perturbed part of the ion density.
Now, let us introduce stretched variables {=€'/2 (y—¢) r=¢€¥2%t. The perturbed
(uantities can now be written, in terms of the smallness parameter ¢ as

T’li = €ni(1) + €2nt(2’ ’l"' .
(/) — €95(1) -+ 52.:;5‘2’ + ...
v, = e, 4 ey, |
,7[, — 621//‘1’ + 6317[:‘2’ 4

The last expansion, namely that for ¢ follows from eq. (18). In the absence of the
collisions the electron density fluctuations are governed only by the potential fluctua-
tions namely n,=exp(¢). The collisional term. 9y/dz in eq. (18) is treated as a correc-
tion to the potential fluctuations 9¢/dz. Thus, dyr/dz is taken to be one order
smaller than the term 0¢/9z. Hence, the above expansion for ¢.

The smallness parameter « is chosen in such a way that to the lowest order eq. (17)
gives

321/’(1’ K 5(}5(1)
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This requirement is satisfied if (K/k,2 Q,7,) ~ €l/2 and
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To the lowest order in € eqs (15), (16), (22) give n;V = v, =¢®M, To the next
higher order in ¢ these equations give
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Eliminating »,'®, ¢ and v,*» and using the relation M=y N =4 eqs (24)-(26)
can be reduced to

ot

om® + BG—=A) 7, on't %33’11‘1) 1 a]_:eﬁ’atﬁ‘l’_a o
2
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Equations (23) and (28) constitute the coupled set of equations describing .the pro-
pagation of a small but finite amplitude drift dissipative ion acoustic mode in a two
temperature plasma. We note that the coefficient of the nonlinear term in eq. .(28)
is similar to one obtained by Goswami and Buti (1976). In order to obtain a
stationary solution to the set of eqgs (23) and (28) we follow a method similar to one

used by Goswami and Buti (1977). Differentiating eq. (28) twice w.r.t. z and making
use of eq. (23) we get,

®n . (3— A) o2 ( an) on__ 0 s ' __ (30)
T \"a) Viamer Yol oren

oToz* 2 9z2\ 9L

where (y =aT ¢/2T;)(K/Q.7.)and the subscript and superscript to » have been dropped
for convenience. Now, let us consider propagation along a particular direction 0
(6 being the angle between B, and k). Therefore n would depend on £ and z only

through a single variable y = Z cos 6 + ¢ sin 8 and only parametrically in 6. Thus,

integrating eq. (30) twice with respect to x under the boundary conditions such thatn
and its derivatives go to zero as y - --co, we get

— 3
o G A)siné)na_n +=}sin30?_n——ytan29n
o 2 ox ox3

2
— & sin? eg_’z —0. 31
X

Equation (31) is the modified K-dV-Burger’s equation describing the propagajtior} of
a finite amplitude drift dissipative jon acoustic mode in presence of ion viscosity in a
two temperature plasma. We would like to point out here that eq. (31) is valid only
for 6 > 45° because, in deriving eq. (23) we assumed that k, < k,. Moreover, from
linear theory we have seen that drift dissipative ion mode gets heavily Landau

damped for k, > k,. Hence, the only interesting regime of propagation is that
for which 0 > 45°,

4. Solution of equation (31)

In this section we shall obtain some steady state solution of eq. (31) wunder different
circumstances.

Case I: For y=>38=0, i.e. when both collisions and ion viscosity effects are absent
eq. (31) reduces to

on , 3—-A) . on 1 .. 9
— = sin 009" 1 _gips =
P 5 in 0 n e + 5 sind 6 Fye 0. (32)
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For exact perpendicular propagation eq. (32) reduces to eq. (14) of Goswami and
Buti (1976). For oblique propagation (45°<0<90°) eq. (32) has a solitary solution
for A < 2 which is given by

2 1 U \uz
=13 i P —
1 u (3— A ) sin 8 sech? [(2 sin3 9) (= Um) ] 33

where U, the velocity of the moving frame, israther arbitrary but of the order of Coeft.

For T,=T,, A=1 the eq. (33) represents an obliquely propagating ion acoustic
solitary wave. For T},>T,, A>1, the amplitude of the ion acoustic wave increases.
The physical reason why this happens is given by Goswami and Buti (1976). For
§<90°, we notice that the amplitude of the solitary wave further increases whereas
the width of the solitary wave further decreases. The most interesting thing to note,
however, is that the width decreases much faster (proportional to sin36) than the
rate at which the amplitude increases (proportional to 1/siné).

Case IT: When y - 0 and >0 eq. (31) becomes a K-dV-Burger’s equation. Physic-
ally, this means either total absence of collisional growth or collisional growth is
weaker than the viscous damping, & representing the net damping. It is well known,
that this equation has a stationary shock solution (Johnson 1970). To see how the
shock profile depends on the propagation angle let us do the following rather
heuristic calculations. Let us say that # depend on = and y only through A=y — Ur
then integrate eq. (31) w.r.t. A under the boundary condition that » and its derivatives
g0 to zero as A—>— o0 and we get,

. o
3 sin® %",\Z —8sin? 6 ?a_’; + Q_A;E‘_’f ni—Un =0, (34)

In the limit A=+ o0 eq. (34) gives

U
(3—A)sin 8’

nan =

In order to see the asymptotic behaviour of the solution we write n =n 4+ 7 in
eq. (34) and linearizing the equation we get

~

. _
} sin® 0 %’;~ 5 sin® 0 %-{- U =0. (35)

Equation (35) has a solution 7 =exp (vA) where v is given by

8 i[az B 2U]‘ 36)
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From eq. (36) it is clear that the shock profile has an oscillatory profile if

L (37)
2 sin 6
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and it will have a monotonic profile if the inequality given by eq. (37) is not sa.tisﬁ_ed.
Therefore, for a given strength of viscosity and a given Mach number for propagg.tlon
there exists a critical angle # at which the shock profile goes from monotonic to
oscillatory. .

Case III: When y > 0, it is not possible to obtain a stationary §qlutlon of the
eq. (31). Physically it is understood as follows. When the collisional growth

dominates over the viscous damping, any initial perturbation keeps on growing and
hence no stationary solution.

5. Conclusion

The presence of a small amount of relatively cold electrons in an gthus:rwise hot plasma
is shown to significantly reduce the growth rates of drift dissipative ion s.m.md m.o_de.
Hence, an ion viscosity which is rather weak will be sufficient to quench this instability.
Therefore, by simply introducing a small amount of cold electrons into a system, the
confinement time of certain magnetic confinement schemes is expected to be improved
significantly. . .

The propagation of a small but finite amplitude drift dissipative 1on.sound mode is
also studied using reductive perturbation method. It is shown that in the presence
of ion viscosity there exists a stationary shock solution. For a given strengf‘h. of
viscous damping and a given Mach number for propagation there c?xists a critical
angle at which the shock profile changes from oscillatory to monotonic.-

References

Braginskii S I 1965 Reviews of Plasma Physies (ed. M A Leontovich) (New York: Consultants Bureau)
Vol. 1

Goswami B N and Buti B 1976 Phys. Lett. AST 149

Goswami B N and Buti B 1977 Plasma Phys. 19 53

Hendel H W, Chu T X and Politzer P A 1968 Phys. Fluids 11 2426

Johnson R S 1970 J. Fluid Mech. 42 49

Jones WD, Lee A, Gleeman S M and Doucet H J 1975 Phys. Rev. Lett. 35 1349
Kadomtsev B B 1965 Plasma Turbulence (NY, London: Academic Press), pp. 97

Krall N A 1968 Advances in Plasma Physics, Vol 1 (eds A Simon and W B Thompson (NY,
London: Interscience Publishers)

Moiseev S S and Sagdeev R Z 1963 Sov. Phys. JETP 17 515

Timofeev A V 1963 Zh. Tekh. Fiz 33 909




