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[1] The relative success of the Community Atmosphere Model with superparameterized
convection (SP‐CAM) in simulating the space‐time characteristics of the Madden Julian
Oscillation encourages us to examine its simulation of the Indian summer monsoon and
monsoon intraseasonal oscillations (MISOs). While the model simulates the onset and
withdrawal of the Indian monsoon realistically, it has a significant wet bias in boreal
summer precipitation over the Asian monsoon region. The space‐time characteristics of
the MISOs simulated by the SP‐CAM are examined in detail and compared with those of
the observed MISO to gain insight into the model’s bias in simulating the seasonal mean.
During northern summer, the model simulates a 20 day mode and a 60 day mode in
place of the observed 15 and 45 day modes, respectively. The simulated 20 day mode
appears to have no observed analog with a baroclinic vertical structure and strong
northward propagation over Indian longitudes. The simulated 60 day mode seems to be a
lower‐frequency version of the observed 45 day mode with relatively slower northward
propagation. The model’s underestimation of light rain events and overestimation of heavy
rain events are shown to be responsible for the wet bias of the model. More frequent
occurrence of heavy rain events in the model is, in turn, related to the vertical structure of
the higher‐frequency modes. Northward propagation of the simulated 20 day mode is
associated with a strong cyclonic vorticity at low levels north of the heating maximum
associated with a smaller meridional scale of the simulated mode. The simulated vertical
structure of heating indicates a strong maximum in the upper troposphere between 200 and
300 hPa. Such a heating profile seems to generate a higher‐order baroclinic mode response
with smaller meridional structure, stronger low‐level cyclonic vorticity, enhanced
low‐level moisture convergence, and higher precipitation. Therefore, the vertical structure
of heating simulated by the cloud‐resolving model within SP‐CAM may hold the key for
improving the precipitation bias in the model.
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1. Introduction

[2] Through determining the interannual variability of the
seasonal mean, on one hand, and clustering of synoptic
disturbances, on the other, northward propagating [e.g.,
Yasunari, 1979; Sikka and Gadgil, 1980] monsoon intra-

seasonal oscillations (MISOs) represent major building
blocks of the Indian summer monsoon (ISM) [Goswami
et al., 2006]. The MISO represents a signal with amplitude
as large as the annual cycle and much larger than the inter-
annual variability of the seasonal mean [Waliser, 2006;
Goswami et al., 2011]. The MISO manifests in the form of
active and break spells and imparts a significant challenge
and point of promise for water resource management. Hence,
extended range prediction of the active and break spells has
tremendous socioeconomic implications. In order for fore-
cast models to have skill in predicting the active and break
spells, they must simulate the space‐time spectra of the
MISO with fidelity. A space‐time spectral analysis of the
Indian MISO indicates an eastward propagating component
with periodicity between 20 and 70 days and zonal wave
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numbers between 1 and 3, which is about 1.5 times stronger
than the corresponding westward propagating component
[see Lin et al., 2008, Figure 10]. The MISO over the Indian
region is also characterized by strong northward propagation
that is about 4 times stronger than the corresponding
southward propagating component [see Lin et al., 2008,
Figure 15a]. However, most climate models exhibit diffi-
culty in simulating the MISO [Waliser et al., 2003; Lin et al.,
2008] and underestimate the northward propagating com-
ponent, in particular [see Lin et al., 2008, Figure 15a].
Because of their contribution to the seasonal mean, improved
MISO simulation in a model would have a beneficial impact
not only on the extended range prediction of the active and
break spells, but also in seasonal prediction.
[3] As the problem of better simulation of the MISOs in

climate models is similar to the difficulties faced in simu-
lating the Madden Julian Oscillation (MJO), we may gain
insight from the experience of the community in attempting
to improve MJO simulations. Considerable effort has been
expended during the last few years to improve the poor
simulation of the MJO by models [e.g., Slingo et al., 2005;
Lin et al., 2006; Waliser et al., 2009; Kim et al., 2009]. In
addition to efforts to improve the MJO through modifica-
tions to conventional convection parameterizations, methods
involving explicit representation of some aspects of clouds
have emerged to improve the poor simulation of the MJO.
For example, global cloud‐resolving model simulations
have been conducted that produce realistic mesoscale cloud
clusters and have demonstrated better simulation of the MJO
[Miura et al., 2007; Sperber et al., 2008; Oouchi et al., 2009;
Liu et al., 2009; Sato et al., 2009]. However, due to the large
computation cost of such models, the ability to simulate
multiple years to analyze systematic biases in the MJO life
cycle remains computationally prohibitive [Khairoutdinov
et al., 2008, hereafter KDR08]. Another rather attractive
alternative to global‐cloud resolving models is the multi-
scale modeling framework (MMF) [Khairoutdinov and
Randall, 2001; Khairoutdinov et al., 2005; Tao et al.,
2009] that has demonstrated good simulation of MJO
space‐time characteristics [Benedict and Randall, 2009].
[4] In the MMF approach, a 2‐D cloud‐resolving model

(CRM) is embedded with each grid column of a general cir-
culation model (GCM) such that explicit simulation of sub-
grid scale cloud processes replaces the traditional cumulus
parameterization of the GCM, hence minimizing the need for
imperfect parameterization assumptions. Because the CRM
time step is much shorter than that of the GCM, the CRM is
integrated several times in oneGCM time step (for details, see
Benedict and Randall [2009]). The horizontal average of the
CRM output within a GCM grid box determines the physical
tendencies for the next GCM time step.
[5] While the MMF approach has been extensively tested

for simulating the eastward propagating convection
anomalies from the Indian ocean to the western Pacific
during boreal winter [Benedict and Randall, 2009], rela-
tively little work has been conducted to address the fidelity
of the MMF in simulating the northward propagating ISM
intraseasonal oscillation [Stan et al., 2010; DeMott et al.,
2011]. As the MISO and ISM forecasting remain a chal-
lenge for both statistical and dynamical approaches, and as it
has significant societal impacts, the objective of this paper is
to investigate the quality of the MISO simulation as obtained

from an atmospheric model intercomparison project (AMIP)
run of the SP‐CAM. Such an analysis and comparison with
the observedMISOmay suggest the utility of the SP‐CAM to
be used as a tool for extended range prediction of the MISO
or as a “laboratory” to better understand shortcomings in
convection‐parameterized models. In addition, as the MISO
contributes significantly to the seasonal mean precipitation
and winds, a diagnosis of the biases in the MISO simulation
may also provide clues toward improvement of the simula-
tion of the seasonal mean climate.
[6] The model and data used to diagnose the model are

described in section 2, and simulation of the monsoon cli-
matology is described in section 3. Basic characteristics of
the monsoon intraseasonal variability (ISV) as produced by
the model are presented in section 4, and a more detailed
diagnosis of the simulated variability is made in section 5.
This is followed in section 6 by a discussion of how biases
in simulating the MISO affect the seasonal mean bias. Major
conclusions are summarized in section 7.

2. Model Simulations and Data Used

[7] The National Center for Atmospheric Research
(NCAR) Community Atmosphere Model version 3 (CAM
3.0) [Collins et al., 2006] acts as the host GCM for the super-
parameterization approach employed [e.g., Khairoutdinov
et al., 2005]. The version of CAM3.0 used has a 2.8° × 2.8°
horizontal grid (T42 spatial truncation), 30 vertical levels up
to 3.6 hPa, and a time step of 30 min. Embedded within each
GCM grid cell is a 2‐D CRM composed of 32 columns
oriented in the north‐south direction having 4 km horizontal
grid spacing, periodic boundary conditions, 28 vertical levels
collocated with the 28 lowest CAM levels, and a time step of
20 s. This embedded CRM effectively replaces the CAM’s
conventional parameterizations of moist physics, convection,
turbulence, and boundary layer processes. However, cou-
pling between the surface and atmosphere is computed only
on the GCM grid. The effects of subgrid scale temperature
and wind perturbations (e.g., gust fronts) on surface fluxes
are thus not included. CRM scale enhancements of surface
drag related to localized gustiness of near‐surface winds are
explicitly included, however. The AMIP simulation was
conducted using prescribed monthly mean (interpolated to
daily mean) sea surface temperatures and sea ice concentra-
tions [Hurrell et al., 2008]. The simulation produced 19 years
of global daily output spanning 1 September 1985 to 25
September 2004.
[8] Further implementation details on the super-

parameterization approach can be found in the studies by
Benedict and Randall [2009], Khairoutdinov and Randall
[2003], and Khairoutdinov et al. [2005]. Additional details
of the SP‐CAM AMIP simulation used in this study can be
found in KDR08.
[9] To evaluate the simulated precipitation, the Global

Precipitation Climatology Project (GPCP) rainfall data
[Huffman et al., 2001] regridded to the model resolution
(2.8° × 2.8°) are used. The regridding is done using a
bilinear interpolation technique. The GPCP data used for
model validation are from 1997 to 2008. The NOAA Out-
going Longwave Radiation (OLR) data set is used to provide
additional diagnostics of convective variability. Horizontal
winds are taken from National Centers for Environmental
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Prediction (NCEP)/NCAR reanalysis at 2.5° × 2.5° resolu-
tion [Kalnay et al., 1996]. The NCEP winds and NOAA
OLR data are used for 1986 to 2004.
[10] In order to extract MISOs from the simulation and

observations, daily anomalies are calculated as the departure
of daily values from a smoothed climatology at daily reso-
lution. The smoothed climatology is reconstructed based on
the annual mean and first three harmonics of the long‐term
mean seasonal cycle.

3. Simulation of Monsoon Climatology

[11] AsMISOs are hypothesized to arise from a convective‐
radiative‐dynamical feedback process [e.g., Goswami and
Shukla, 1984; Wang, 2005], they critically depend on the

background climatic state. Therefore, examination of the
simulated climatological mean field is necessary for under-
standing any biases in the model MISO simulation. In this
section, we present an overview of simulated climatological
mean June–July–August–September (JJAS) precipitation
and winds and compare them with observations.
[12] As reliable high‐resolution rainfall data are available

over continental India compiled by the India Meteorological
Department (IMD), [Rajeevan et al., 2006], we compare the
climatological mean JJAS precipitation simulated by SP‐
CAM with IMD data (Figures 1a and 1b). It is noted that the
model simulates the climatological rainfall distribution over
the continent reasonably well with a pattern correlation of
0.56, except that the rain shadow region over southeast India
is rather small in the model simulation. This appears to be

Figure 1. Climatological mean (JJAS) precipitation (mm d−1) from (a) IMD and (b) SP‐CAM. Standard
deviation of 10–90 day bandpass‐filtered daily precipitation anomalies (mm d−1) (JJAS) from (c) IMD
and (d) SP‐CAM.
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related to the inability of the climate model to resolve and
simulate the amplitude of the Western Ghat precipitation.
The amplitude of ISV as represented by the standard devi-
ation of 10–90 day filtered rainfall anomalies simulated by
themodelwithin the continent is reasonable (Figures 1c and 1d)
with a pattern correlation of 0.56, except that the model ISV
is stronger than observed over east‐central India and weaker
than observed close to the Western Ghat.
[13] The Indian monsoon, however, is not confined within

continental India and has a much larger spatial scale
[Webster et al., 1998]. To document the model biases in
simulating the Indian monsoon on a larger scale, a compar-
ison of the climatological mean JJAS precipitation in the SP‐
CAM and the observations using GPCP is made (Figure 2).
While it indicates some similarities, a few important differ-
ences are noted. First, the northern rainband or the conti-
nental tropical convergence zone (TCZ) extends northward
to about 20°N in both the SP‐CAM simulations (Figure 2b)
and observations (Figure 2a). Also, as in observations, the
model simulates a maximum in precipitation in the equatorial
Indian Ocean with a dry zone between the oceanic maximum
or the oceanic TCZ and the continental TCZ. Furthermore,
the oceanic TCZ is located in the eastern Indian Ocean as in
observations. However, the SP‐CAM simulation is far too
wet in the regions of maximum precipitation compared to
observations (Figure 2b). Also, it simulates an extra center of

high precipitation in the western Bay of Bengal (BoB), near
the eastern coast of India at 15°N. Another feature of the
simulation is that the northern rainband is too zonally ori-
ented compared to the northeast‐to‐southwest orientation of
the observed precipitation (Figure 2a).
[14] The strong wet bias and zonally oriented nature of

simulated precipitation are also reflected in biases of the
simulated JJAS climatological mean winds at 850 hPa
(Figure 2d) compared to the observed climatology (Figure 2c).
The low‐level jet (LLJ) at 850 hPa is much stronger in the
model than in observations, consistent with the model wet
bias. Furthermore, consistent with the zonally oriented char-
acter of the simulated precipitation (Figure 2b), the winds
associated with the LLJ are too zonally oriented, and strong
zonal winds extend too far into the western Pacific. As a
result, the climatological vorticity at 850 hPa simulated by the
model is also too zonal and fails to simulate the cyclonic
vorticity maximum in southeastern India (Figure 2c).
[15] In order to examine whether the model correctly si-

mulates the onset and withdrawal of the monsoon and the
time evolution of rainfall over the continent and near‐coastal
ocean, the annual cycle of daily climatological rainfall
averaged over the two boxes in Figure 2b is computed
(Figures 3a and 3b). The fluctuations in the daily climatol-
ogy of rainfall from GPCP as well as from SP‐CAM seen in
Figures 3a and 3b are the climatological intraseasonal os-

Figure 2. Climatological mean (JJAS) precipitation (mm d−1) from (a) GPCP and (b) SP‐CAM and
850 hPa winds (m s−1) from (c) NCEP and (d) SP‐CAM. In Figures 2c and 2d, the shaded area is the
corresponding vorticity (10−6 s−1), and the thick white line is the zero vorticity.
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cillations (CISO) [Wang and Xu, 1997]. However, because
of the limited number of years (12) to create the clima-
tology for GPCP, some sampling bias may be present in
the GPCP CISO. The smoothed climatology constructed
from the first three harmonics of the daily climatology and
annual mean for both GPCP and SP‐CAM are also shown
in Figure 3. It is encouraging to note that the model sim-
ulates a rapid onset and a slow withdrawal of monsoonal
precipitation as observed [Krishna Kumar et al., 2011].
The timing of these onsets and withdrawals are similar to
observations, with a rapid increase in climatological pre-
cipitation during May and gradual decline during August
and September. A simulated wet bias persists throughout
the summer monsoon season, however. It is also encour-
aging to note that during the winter season, the simulated
rainfall is near zero as in observations. The annual cycle
and northward migration of the TCZ is explored by
plotting simulated daily climatological precipitation aver-
aged from 70°E and 90°E as a function of latitude and
time (Figure 4b) compared to observations (Figure 4a). It is
noted that the model shows promise in simulating the
double TCZ in the monsoon domain (Figure 4b), one over
the Indian subcontinent and the other over the Indian
Ocean, owing to a reasonable northward propagation of the
TCZ. The model, however, shows a wet bias over the

Figure 3. Seasonal evolution of rainfall (mm d−1) over
the two boxes, (a) Box‐1 and (b) Box‐2, shown in
Figure 2b. Smoothed climatology is on top of unsmoothed
daily climatology.

Figure 4. Climatological annual cycle of precipitation over
70°–90°E (mm d−1) from (a) GPCP and (b) SP‐CAM.

Figure 5. Standard deviation of 10–90 day bandpass‐
filtered daily precipitation (mm d−1) anomalies (JJAS) from
(a) GPCP and (b) SP‐CAM. (The boxes in Figure 5b are
plotted for Figures 15 and 16.)
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continental branch of the TCZ, which increases in amplitude
earlier than observations (Figure 4a).

4. Simulation of Monsoon Intraseasonal
Variability

[16] The space‐time characteristics of simulated monsoon
intraseasonal variability are examined in this section and
compared with those of the observed variability. We define
the amplitude of ISV as the standard deviation of the 10–
90 day bandpass‐filtered daily precipitation anomaly during
June–September. Model variability (Figure 5b) is compared
to that from observations (Figure 5a). The spatial patterns of
precipitation ISV in observation and the model (Figure 5)
are similar to the climatological seasonal mean precipitation

(Figure 2a). This relationship between the mean and vari-
ance appears to be consistent with the fact that observed and
simulated precipitation follows a Poisson distribution (figure
not shown) for which variance is proportional to the mean.
Thus, compared to observations, the stronger ISV simulated
by the model is consistent with its large wet bias in the
simulation of seasonal mean precipitation.
[17] A quick assessment of the model’s ability to simulate

the eastward and northward propagation characteristics of
summer ISV over the Indian continent is done in Figure 6.
This is based on lag regressions of 10–90 day filtered pre-
cipitation with respect to a reference time series of 10–90 day
filtered precipitation averaged over central India. It is seen
that within the continental India, the model simulates the
eastward (Figure 6b) and northward (Figure 6d) propagation

Figure 6. (a) Longitude‐time and (c) latitude‐time plots of 10–90 day filtered IMD anomalies regressed
on CIPI, averaged over 10°–20°N and 70°–90°E, respectively. (b and d) Same as Figures 6a and 6c but
for SP‐CAM output.

GOSWAMI ET AL.: MISO AND SP‐CAM D22104D22104

6 of 17



reasonably well compared to IMD observations (Figures 6a
and 6c). However, it is consistent with earlier discussions
of the model’s inability to simulate the observed high ISV in
the Western Ghat region (Figures 6a and 6b).
[18] In order to examine the model’s fidelity in simulating

the dominant modes of ISV during northern summer, space‐
time spectra of daily precipitation from GPCP and from the
SP‐CAM are calculated following the methodology of
Wheeler and Kiladis [1999]. The daily anomalies from the
JJAS period for all 12 available years of GPCP and a similar
12 years of data from the SP‐CAM are used in the spectral
calculations. Space‐time spectra are calculated for zonally
propagating modes using global data at each latitude and
then averaging the resulting power between 20°S and 30°N.
These spectra are shown for GPCP (Figure 7a) and the
model (Figure 7b). Similarly, space‐time spectra for
meridional propagation are calculated using data between
20°S and 30°N and then averaging the spectral power
between 60°E and 135°E. These spectra are shown in
Figure 7c from GPCP and in Figure 7d from the model. In
calculating the space‐time spectra for meridional propaga-
tion, the choice of the domain bounds is based on the fact
that the northward propagating MISO is generally confined
between 20°S and 30°N within this domain [see Goswami,
2005]. Meridional wave number 1 is defined on the basis
of the largest wave that entirely fits inside the domain. In

interpreting these spectra, it must be kept in mind that the
domain is not periodic and hence some artificial spectral
power may be introduced into the wave number‐frequency
spectrum. However, sensitivity tests indicate that the loca-
tion and power of the dominant spectral signals are insen-
sitive to modest changes in the domain size.
[19] The spectra indicate the following behavior.
[20] 1. The model simulates the eastward propagating

mode at wave number 1 with a longer period (60 days) than
in observations (45 days). With significant power at west-
ward propagating wave number 1, the simulated mode may
have a stationary component, although we would need to
conduct an analysis of coherence between eastward and
westward components to confirm this.
[21] 2. In observations, the dominant northward propa-

gating mode appears to be the same 45 day eastward
propagating mode (Figures 7a and 7c). However, in the
model, the dominant northward propagating mode is a 20 day
mode with no zonal propagating counterpart (Figures 7b
and 7d). The simulated 60 day mode, in addition to having
a meridional structure with meridional wave number 1, has a
significant power in meridional mean component.
[22] Thus, in addition to simulating the observed 45 day

mode with a longer period of 60 days, the model’s dominant
northward propagating mode in the region is a 20 day mode.
A question that can be raised is the degree to which this new

Figure 7. Wave number‐frequency power spectra of precipitation. Zonal power spectra (divided by the
background) calculated over 0°–360°, 15°S–15°N for (a) GPCP precipitation and (b) model‐simulated
precipitation. Meridional power spectra calculated over 15°S–30°N, 60°–110°E for (c) GPCP precipita-
tion and (d) model‐simulated precipitation.
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Figure 8. Wave number‐frequency power spectra of zonal wind at 850 Mb. Zonal power spectra calcu-
lated over 0°–360°, 15°S–15°N for (a) NCEP/NCAR reanalysis U wind and (b) model‐simulated U wind.
Meridional power spectra calculated over 15°S–30°N, 60°–110°E for (c) NCEP/NCAR reanalysis U wind
and (d) model‐simulated U wind.

Figure 9. Space‐time coherence squared spectrum for symmetric latitudes 15°S–15°N: (a) model‐
simulated precipitation with zonal wind at 850 hPa; (b) GPCP precipitation with NCEP/NCAR
reanalysis wind at 850 hPa; (c) model‐simulated zonal wind at 200 hPa with zonal wind at 850 hPa;
and (d) NCEP/NCAR reanalysis zonal wind at 200 hPa with that at 850 hPa.
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model mode exhibits coherence between convection and the
large‐scale circulation. Comparing the space time spectra of
daily 850 hPa (JJAS) winds simulated by SP‐CAM with the
space‐time spectra of observed winds (Figure 8), we find
that the meridional propagating component of the simulated
60 day mode exhibits coincident peaks in wind and pre-
cipitation, indicating strong coupling between convection
and the large‐scale circulation. While the simulated 20 day
mode in precipitation (Figure 7d) clearly exhibits northward
propagation, near the same periods in low‐level winds, a
significant stationary component is indicated (Figure 8d)
with comparable power in both northward and southward
wave number bands.
[23] To gain further insight into the covariability of the

model convection and circulation fields in the spectral

domain, the coherence squared spectra between symmetric
precipitation and winds were estimated using the daily
anomalies. The coherence squared spectrum is obtained by
normalizing the cross‐power spectrum that contains both
magnitude and phase of the relationship between the two
fields, with the individual powers in each field [Hendon and
Wheeler, 2008]. It can be interpreted as the wave number‐
frequency distribution of the squared correlation coefficient
between the two fields. The coherence squared spectra
between the SP‐CAM symmetric precipitation and daily
wind fields at 850 hPa (Figure 9a) shows a peak coherence
squared of 0.4 coherence associated with the MJO that is
weaker than the coherence exhibited by GPCP precipitation
and NCEP winds at 850 hPa (Figure 9b). The model sym-
metric precipitation and 200 hPa wind fields show very high

Figure 10. (a) Longitude‐time and (c) latitude‐time plots of 10–20 day filtered GPCP anomalies
regressed on CIPI, averaged over 10°–20°N and 70°–90°E, respectively. (b and d) Same as Figures 10a
and 10c but for SP‐CAM output with 15–30 day filter.
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coherence corresponding to the MJO (not shown). While the
observed precipitation field (GPCP) exhibits strong coher-
ence with both lower and upper level circulation, the model
precipitation field is more strongly coupled with the upper
level winds, indicating a bias in the vertical wind structure.
The small coherence squared spectra of 200 and 850 hPa
symmetric model winds in the MJO band (Figure 9c) also
corroborates this notion, in contrast to the strong correlation
between upper and lower level winds seen in observations
(Figure 9d).

5. Diagnosis of the Simulated Modes

[24] Observed monsoon intraseasonal variability consists
of a well‐documented quasi‐biweekly mode (or a 15 day
mode) as described in many studies and a mode centered on
45 days (for a review, see Goswami [2005]). These modes
have distinct horizontal and vertical structures and propa-
gation characteristics. The simulated 20 and 60 day modes
do not occupy the same place in the space‐time spectra as
the observed modes, and so it is important to identify to
what extent the model modes are dynamically distinct from
the observed modes and what the simulated modes repre-
sent. For example, is the simulated 20 day mode similar to
the observed 15 day mode, and is the simulated 60 day
mode simply a model version of the observed 45 day
mode?

5.1. The 20 Day Mode

[25] We first compare horizontal and vertical structure and
propagation characteristics of the simulated 20 day mode
and the observed 15 day mode. For this purpose, the sim-
ulated 20 day mode in precipitation and winds is isolated
using a 15–30 day Lanczos filter [Duchon, 1979]. The
observed 15 day mode is isolated by using a 10–20 day
Lanczos filter on GPCP daily precipitation and NCEP wind
anomalies. We use lag‐regression techniques to illustrate
propagation characteristics of these modes for which a ref-
erence time series is needed [Wilks, 1995]. A reference
precipitation time series for use in regression is created by
averaging filtered anomalies over central India between
15°–25°N, 73°–82°E where the amplitude of variability is
large both in observation and in model simulation. We then
lag regress filtered anomalies for the entire map on to the
reference time series. The zonal propagation of the respec-
tive modes is illustrated in Figures 8a and 8b, where
regression coefficients averaged between 10°N and 20°N
are plotted. Similarly, north‐south propagation is illustrated
in Figures 10c and 10d where the regressed values averaged
between 70°E and 90°E are plotted. While the observed
15 day mode has clear westward propagation (Figure 10a), the
simulated 20 day mode is relatively stationary in the east‐
west direction (Figure 10b). Although there seems to be
two discontinuous precipitation regimes, one east of 100°E
and another west of this line, in both the regimes, the sim-
ulated mode does not have a strong propagating character.

Figure 11. Filtered 200 hPa wind anomalies regressed on CIPI: (a) 10–20 day filtered NCEP; (b) 30–
80 day filtered NCEP; (c) 15–30 day filtered SP‐CAM; and (d) 35–80 day filtered SP‐CAM. Vorticity
anomalies are in colors.
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Similarly, while the observed 15 day mode is relatively
stationary in the north‐south direction (Figure 10c), the
simulated 20 day mode is clearly northward propagating at a
rate of about 1.2° d−1 (Figure 10d).
[26] In order to gain insight into the vertical structure of

the simulated 20 day mode and compare it with the vertical
structure of the observed 15 day mode, filtered wind
anomalies are regressed onto the filtered central India
precipitation index (CIPI). The regressed wind patterns for
the observed 15 day mode (Figures 11a and 12a) show that
the 850 hPa cyclonic anomaly pattern (Figure 12a) also
extends up to 200 hPa (Figure 11a). This barotropic vertical
structure of the observed 15 day mode is consistent with
earlier studies [Chatterjee and Goswami, 2004]. For the
simulated 20 day mode, however, the cyclonic and con-
vergent 850 hPa circulation (Figure 12c) is overlaid by a
divergent anticyclonic circulation pattern at 200 hPa
(Figure 11c), indicating that together with a barotropic
component, a baroclinic component may be present in the
vertical structure. A more detailed examination of the
vertical structure associated with the mode (see Figure 14b)
also supports this conclusion.
[27] Although the period of the simulated 20 day mode is

close to that of the observed 15 day mode, the vertical
structure and propagation characteristics of the mode sug-
gest that it is distinctly different from the observed 15 day
mode. Thus, it may be inferred that the simulated 20 day
model is a new model‐generated mode that is not observed.

5.2. The 60 Day Mode

[28] The simulated 60 day mode, as well as the observed
45 day mode in precipitation and winds, is isolated using a
30–80 day (for observation) and a 35–80 day (for simula-
tion) Lanczos filter. A reference time series is created by
averaging filtered anomalies over central India between
15°–25°N, 73°–82°E for GPCP and for the model‐simulated
rainfall. Lag regressions of the filtered anomalies are then
calculated with respect to the reference time series. The
zonal propagation of the mode is illustrated in Figures 13a
and 13b where regressed values averaged between 10°N
and 20°N are plotted. Similarly, meridional propagation is
illustrated in Figures 13c and 13d where the regressed
values averaged between 70°E and 90°E are plotted. Further-
more, while the observed 45 day mode has a clear eastward
propagation (Figure 13a), the simulated 60 daymode has only
a weak eastward propagation between 60°E and 120°E
(Figure 13b). Similarly, while the observed 45 daymode has a
clear northward propagation with speed of about 1.1° lat d−1

(Figure 13c), the simulated 60 day mode exhibits much
slower northward propagation at a rate of about 0.5° lat d−1

(Figure 13d).
[29] Filtered wind anomalies are regressed against the

filtered precipitation index averaged over central India (10°–
20°N, 70°–90°E) to examine the vertical structure of the
simulated and observed modes. The regressed wind patterns
for the observed 45 day mode (Figure 12b) show that the
850 hPa cyclonic and convergent pattern of anomaly is

Figure 12. Filtered 850 hPa wind anomalies regressed on CIPI: (a) 10–20 day filtered NCEP; (b) 30–
80 day filtered NCEP; (c) 15–30 day filtered SP‐CAM; and (d) 35–80 day filtered SP‐CAM. The cor-
responding vorticity (10−6 s−1) is plotted in the background (shading). Line plots (middle top and
bottom) are correspondingly filtered regressed vorticity (10−6 s−1) averaged over 70°–85°E; the blue
line represents NCEP output, and the red line represents SP‐CAM output.
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overlaid by a divergent anticyclonic anomaly pattern at
200 hPa (Figure 11b). The simulated 60 day mode also
demonstrates a similar cyclonic and convergent 850 hPa
circulation overlaid by a divergent anticyclonic circulation
pattern at 200 hPa (Figures 12d and 11d).
[30] Both the observed 45 day mode and the simulated

60 day mode have a similar dominant baroclinic compo-
nent in the vertical structure and time scale. Thus, the
simulated 60 day mode seems to be the model version of
the observed 45 day mode. Comparing Figures 12b and
12d, we find that the horizontal scale of simulated 60 day
mode (red line) is smaller than that of the observed 45 day
mode (blue line). It can also be noted that the simulated
regressed wind field at the 20 day mode (Figure 12c)

resembles that of the simulated 60 day mode (Figure 12d),
particularly over the monsoon region.

5.3. On the Northward Propagation

[31] It has been suggested that the northward propagation
of the observed 45 day mode is a result of a feedback
between convective heating and circulation [e.g., Jiang
et al., 2004]. In the presence of an easterly shear of back-
ground winds, the atmospheric response to a heating
anomaly produces a barotropic cyclonic vorticity center and
anomalous lower tropospheric moisture convergence to the
north of the heating maximum. This helps the heating
anomaly to propagate northward. To examine the model’s
fidelity in simulating this process, bandpass‐filtered vortic-
ity anomalies are composited relative to OLR anomalies

Figure 13. (a) Longitude‐time and (c) latitude‐time plots of 30–80 day filtered GPCP anomalies
regressed on CIPI, averaged over 10°–20°N and 70°–90°E, respectively. (b and d) Same as Figures 13a
and 13c but for SP‐CAM output with 35–80 day filter.
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corresponding to active spells, defined using minima of
filtered OLR averaged over central India (15°–25°N, 73°–
82°E). The vertical structure of the vorticity anomalies for
the simulated 20 and 60 day modes averaged between 70°E
and 90°E are shown in Figures 14b and 14d as a function of
latitude. Similar composites of vorticity anomaly for the
observed 15 day mode and the 45 day mode are shown in
Figures 14a and 14c. The composite OLR for each mode
averaged between 70°E and 90°E are also shown below
each vorticity plot, in addition to the anomalous 850 hPa
vorticity. It is noted that the minimum of OLR (convection
maximum) for the observed 15 day mode is nearly collo-
cated with the location of the barotropic vorticity maximum
(Figure 14a, top and bottom), consistent with the lack of
northward propagation in this case as in the theory of Jiang
et al. [2004]. However, the low‐level cyclonic vorticity
maximum for the model 20 day mode is slightly shifted
north of the OLR minimum (Figure 14b, top and bottom),
consistent with the northward propagation of this mode.
Consistent with Figures 12c and 11c, in the case of the
simulated 20 day mode, the center of low‐level cyclonic
vorticity is overlaid by an anomalous anticyclonic circula-
tion in the upper troposphere, indicating the baroclinic
nature of the vertical structure.
[32] In the case of the simulated 60 day mode (Figure 14d,

top and bottom), however, the low‐level vorticity maximum
is nearly collocated with the OLR minimum, consistent with
a weak northward propagation or a nearly stationary char-
acter of this mode in the north‐south direction (Figure 13d).
For the observed 45 day mode (Figure 14c, top and bottom),

the cyclonic vorticity maximum is located north of the OLR
minimum, as expected.

6. Diagnostic of Seasonal Mean Bias

6.1. Simulated Probability Distribution of Daily
Rainfall and the Seasonal Mean Bias

[33] The analyses in the earlier sections have brought out
the wet bias of the model compared to observation based on
daily rainfall climatology. As the mean and variance of
rainfall distribution are linearly related, it is possible that the
bias in simulating the mean rainfall may be related to biases
in simulating the frequency distribution of rain rates. Three
representative areas over central India (Figure 5b, box 1),
Bay of Bengal (Figure 5b, box 2), and Arabian Sea (Figure
5b, box 3) are chosen, and the probability distribution
function (PDF) in percentage is computed for different rain
rate categories, based on daily rainfall with a bin width of
5 mm. The PDF over central India (Figure 15a) reveals that
the model underestimates the probability of occurrence of
lighter rain rates and overestimates the moderate rain rates.
The observations over Bay of Bengal (Figure 15b) and
Arabian Sea (Figure 15c) show that lighter rain rate cate-
gories dominate, which the model is not able to capture.
The model rain rates are shifted toward moderate and
heavy categories over both the oceanic basins. Thus, the
model shows a tendency for simulating heavy rain events
with higher frequency over oceanic regions and also, to a
certain extent, over Central India and fails to simulate the
lighter rainfall categories with the same frequency as in the

Figure 14. Composite of vorticity (5 × 10−6 s−1) anomaly averaged over 70°–90°E, for the active
monsoon condition, for observed data (NCEP) with (a) 10–20 day filter and (c) 30–80 day filter
and for SP‐CAM output with (b) 15–30 day filter and (d) 35–80 day filter. Corresponding OLR
(Wm−2) (red line) and 850 hPa vorticity (blue line) composites are plotted at the bottom.
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observations. These biases explain the wet bias in the
simulation of the seasonal mean rainfall.

6.2. Vertical Structure of Rain Events and Seasonal
Mean Bias

[34] The above analyses clearly demonstrate the model
tendency of generating more heavy rainfall events, which
seems to suggest too frequent deep convection. Thus, a
natural question is what could be the possible source of such
model bias? To find an answer to this question, we want to
further quantify the possible source of such model behavior
by analyzing the vertical structure of heating.
[35] A significant fraction of monsoon interannual vari-

ability (IAV) in observations as well as in models arise from
“internal dynamics” and appears to owe its origin to the
intraseasonal oscillations [Goswami, 1998; Ajaya Mohan
and Goswami, 2003; Goswami and Xavier, 2005]. Mon-
soon intraseasonal oscillations (ISOs) may influence the
seasonal mean monsoon through two different mechanisms.
As the spatial structure of the dominant MISO has a sig-
nificant projection on the dominant mode of IAV of the
monsoon, an asymmetry in the frequency of occurrence of
active and break spells can lead to a bias of the seasonal
mean ISO anomalies leading to a contribution to the sea-
sonal mean [Goswami et al., 2006]. However, this linear
mechanism cannot explain the total internal IAV simulated
by a model [Goswami and Xavier, 2005]. Also, the non-
linear relationship between area averaged variance of ISO

anomalies and IAV of seasonal mean monsoon [Goswami
and Xavier, 2005] indicate that there exists a nonlinear
mechanism through which the MISO could influence the
seasonal mean. Therefore, it is reasonable to think that
biases of a model in simulating the seasonal mean monsoon
may be linked to the biases of the model in representing the
MISO.
[36] From Figure 14, we note that the simulated cyclonic

vorticity anomalies associated with active phases of both the
lower‐ and higher‐frequency modes are more than three
times stronger than the observed anomalies. In particular,
the cyclonic vorticity anomalies associated with the simu-
lated 20 day mode are even stronger than those for the
simulated 60 day mode. Therefore, the simulated 20 day
mode not only dominates the ISV, it may also influence the
seasonal mean. Another interesting feature about the vertical
structure of the vorticity anomaly associated with the two
simulated modes is that unlike the observed modes where
the maximum of vorticity anomaly tends to occur aloft, the
maximum vorticity anomalies for the simulated modes occur
very near the surface (Figure 14).
[37] The low‐level cyclonic vorticity simulated by the

model produces strong low‐level moisture convergence and
leads to the positive precipitation bias of the model (see
Figure 2). As mentioned earlier, since the ISOs can influ-
ence the seasonal mean, a strong 20 day mode in the model
with its associated strong vorticity may be a leading con-
tributor to strong low‐level moisture convergence and the
mean precipitation bias of the model. Therefore, it is
important to understand why the vorticity anomalies in the
simulated modes are generally much stronger than those
observed and why it is particularly strong in the 20 day
mode. One possibility is that the meridional scale of the
simulated modes is significantly smaller than that of the
observed modes (see Figure 13), leading to a much stronger
meridional gradient of zonal wind anomalies and stronger
vorticity anomaly. Figure 14b suggests that the vertical
structure of vorticity anomalies associated with the 20 day
simulated mode is characterized by a higher‐order baroclinic
component that makes it more complex than the observed
mode. Dynamically, if the simulated mode is associated
with a higher‐order baroclinic structure compared to ob-
servations, it would also be associated with a smaller hori-
zontal scale [Pedlosky and Frenzen, 1980]. This can happen
if the heating profile produced by the model has a strong
maximum in the upper troposphere (200–300 hPa), and if
that maximum is much stronger in the case of the 20 day
mode compared to the 60 day mode. To gain some insight
on this issue, we examined the vertical profiles of CRM
heating tendencies for the two modes over three represen-
tative regions shown in Figure 5b. The composite vertical
profile of CRM heating tendency for 15–30 and 35–80 day
filtered data during active phases over different subregions
is shown in Figure 16. The vertical profile of heating ten-
dency for active periods is found to have sharper vertical
structure for the 15–30 day mode over the BoB (Figure 16b,
red line), Western Ghat (Figure 16c, red line), and central
Indian (Figure 16a, red line) regions compared to the 35–
80 day mode (Figure 16, blue line). Similar differences in
the vertical profile of CRM heating tendency are also noted
between 15 and 30 day and 35–80 day modes during breaks
(not shown). It is also noted that the maximum heating rates

Figure 15. Probability distribution function in percentage
for (a) central India, (b) Bay of Bengal, and (c) Arabian
Sea (the boxes are shown in Figure 5b), based on daily
rainfall (mm d−1)with a bin width of 5 mm.
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are in the upper troposphere between 200 and 300 hPa. The
CRM heating tendencies are stronger in the 15–30 day
mode, and, as a response, the SP‐CAM shows enhanced
upper (lower) level divergence (convergence), which adds to
the larger precipitation bias in the 15–30 day mode com-
pared to the 35–80 day mode, although depending on the
energetics of the system, the large‐scale circulation biases
may simply be a response to the precipitation bias rather
than a cause.

7. Conclusions

[38] Realistic simulation of the observed space‐time
characteristics of MISOs is important for a model’s ability to
simulate the seasonal mean with fidelity. In the present
study, we examine simulation of seasonal mean boreal
summer monsoon characteristics and MISOs from a 20 year
SP‐CAM AMIP style forced by observed sea surface tem-
peratures. The SP‐CAM has a reasonable seasonal cycle of
the Indian monsoon. However, the model shows a strong
wet bias during northern summer over the Asian monsoon
region. A similar wet bias in Asian summer monsoon sim-
ulation by SP‐CAM was found by Luo and Stephens [2006],
which they had attributed to the periodic boundary condition
of the CRMs. An attempt is made to diagnose the cause of
this wet bias in the model simulations.
[39] The model shows limited ability to capture observed

intraseasonal modes with fidelity. The model simulates an
eastward propagating mode of wave number 1 with a longer
period (60 days) compared to observations (45 days). The
simulated mode also appears to have significant power at
westward propagating wave number 1, suggesting a sta-
tionary component compared to observations. While the
vertical structure of the simulated mode is similar to the
observed 45 day mode, its northward propagation is much
slower than its observed counterpart.

[40] The model does not realistically simulate the
observed quasi‐biweekly mode. Instead, it produces a very
strong 20 day mode with robust northward propagation. The
simulated 20 day mode has a baroclinic component in the
vertical structure in contrast to the observed 10–20 day
mode, which has a strong barotropic component. Thus, the
20 day simulated mode shows no observational analog and
may hold a key for understanding its seasonal mean pre-
cipitation bias in the model.
[41] The strong northward propagation of the simulated

20 day mode is associated with strong cyclonic vorticity
produced at low levels to the north of the heating maximum,
consistent with the hypothesis of Jiang et al. [2004]. Strong
vorticity associated with the mode, in turn, is associated
with a smaller meridional scale of the simulated mode. As
the circulation response depends crucially on the vertical
structure of convective heating, we examined the CRM
heating rates within the SP‐CAM. Analysis of the vertical
structure of the SP‐CAM heating rates indicates that it
produces a strong heating maximum in the upper atmo-
sphere between 200 and 300 hPa. Such a heating profile
would tend to support a higher‐order baroclinic mode
response (second baroclinic mode or higher). Higher‐order
baroclinic modes are generally associated with a smaller
meridional structure, stronger low‐level cyclonic vorticity,
stronger low‐level moisture convergence, and higher pre-
cipitation. The vertical structure of heating simulated by the
CRM within SP‐CAM may therefore hold a key for
improving the wet bias of summer simulation of the model.
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