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Driven Depinning in Anisotropic Media
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We show that the critical behavior of a driven interface, depinned from quenched random im-
purities, depends on the isotropy of the medium. In anisotropic media the interface is pinned by
a bounding (conducting) surface characteristic of a model of mixed diodes and resistors. Different
universality classes describe depinning along a hard and a generic direction. The exponents in the
latter (tilted) case are highly anisotropic, and obtained exactly by a mapping to growing surfaces.
Various scaling relations are proposed in the former case which explain a number of recent numerical
observations.
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The pinning of interfaces by impurities occurs in many
circumstances such as in random magnets or fluid flow
through porous media. There has been considerable re-
cent progress in understanding such collective depinning
phenomena. Insights gained from charge density waves
[1] have been extended to describe the critical behav-
ior of depinning interfaces [2,3]. The renormalization
group (RG) analysis indicates that the interface is a self-
affine fractal at the depinning transition. Narayan and
Fisher have argued that the roughness exponent ζ, of a
d-dimensional critical interface is (4 − d)/3, to all orders
of perturbation theory [3]. However, a number of numer-
ical [4–6] and experimental results [7,6], mostly in d = 1,
have cast doubt on the generality of this consclusion.

Amaral, Barabasi, and Stanley [8] (ABS) have ob-
served that numerical results fall roughly into two groups,
which they classify according to the dependence of the
average interface velocity v(s) on its slope s. In one
class, the slope dependence is either absent or vanishes

at the threshold. In the other, λeff ≡ v′′(0) diverges on
approaching the depinning transition. We suggest that
a more natural classification is obtained by considering
the dependence of the threshold force Fc(s) on slope; in
turn related to the anisotropy of the random medium.
The importance of such slope dependence, and the role
of anisotropy, has been hinted at in a number of recent
publications [3,9–13], but we believe that it has not been
clearly elucidated. As a bonus, we find a third (and new)
universality class describing the depinning of interfaces
tilted with respect to the anisotropy axis. Interestingly,
by taking advantage of a mapping to growing surfaces in
one lower dimension, we can exactly calculate the highly
anisotropic roughness exponents of such tilted surfaces.
The results are confirmed by numerical simulations in
one and two dimensions.

Theoretical studies of interface depinning usually start
with the continuum equation,

∂h(x, t)

∂t
= ∇2h + F + f(x, h), (1)

where h(x, t) is the height of the interface at position
x at time t. The first term on the right hand side de-

scribes the smoothening effect of surface tension, the sec-
ond term the uniform driving force, and the third a ran-
dom force with short range correlations. This equation
arises naturally from the energetics of a domain-wall in
a disordered medium close to equilibrium [14]; its ap-
plicability to describing fluid flow in a porous medium
[15] is less well-justified. Far from equilibrium, the most
relevant local term consistent with translational symme-
try is λ(∇h)2/2. The usual mechanisms for generating
such a term are of kinematic origin [16] (λ ∝ v) and
can be shown to be irrelevant at the depinning threshold
where the velocity v goes to zero [3]. However, if λ is

not proportional to v and stays finite at the transition, it
is a relevant operator and expected to modify the criti-
cal behavior. As we shall argue below, anisotropy in the
medium is a possible source of the nonlinearity at the
depinning transition.

A model flux line (FL) confined to move in a plane
[17,18] provides an example where both mechanisms for
the nonlinearity are present. Only the force normal to the
FL is responsible for motion, and is composed of three
components: (1) A term proportional to curvature aris-
ing from the smoothening effects of line tension. (2) The
Lorentz force due to a uniform current density perpen-
dicular to the plane acts in the normal direction and has
a uniform magnitude F (per unit line length). (3) A
random force n̂ · f due to impurities, where n̂ is the unit
normal vector [18]. Equating viscous dissipation with the
work done by the normal force leads to the equation of
motion

∂h

∂t
=
√

1 + s2

[

∂2
xh

(1 + s2)3/2
+ F +

fh − sfx√
1 + s2

]

, (2)

where h(x, t) denotes transverse displacement of the line

and s ≡ ∂xh. The nonlinearities generated by
√

1 + s2

are kinematic in origin [16] and irrelevant as v → 0 [3],
as can be seen easily by taking them to the left hand
side of Eq.(2). The shape of the pinned FL is deter-
mined entirely by the competition of the terms in the
square brackets. Although there is no explicit simple s2

term in this group, it will be generated if the system is
anisotropic.
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To illustrate the idea, let us take fh and fx to be in-

dependent random fields with amplitudes ∆
1/2
h and ∆

1/2
x

respectively; each correlated isotropically in space within
a distance a. For weak disorder, a deformation of order
a in the normal direction n̂ takes place over a distance
Lc ≫ a along the line. The total force due to curvature
on this piece of the line is of the order of Lc(a/L2

c), and
the pinning force, [(Lc/a)(n2

h∆h + n2
x∆x)]1/2. Equating

the two forces [14] yields Lc = a(n2
h∆h + n2

x∆x)−1/3 and
an effective pinning strength per unit length,

F0(s) = aL−2
c = a−1

(∆h + s2∆x

1 + s2

)2/3

. (3)

The roughening by impurities thus reduces the effective
driving force on the scale Lc to F̃ (s) = F −F0(s). There-
fore, even if initially F is independent of s, such a depen-
dence is generated under coarse graining, provided that

the random force is anisotropic, i.e. ∆h 6= ∆x. An ex-
pansion of F̃ (s) around its maximum (which defines the
hard direction) yields an s2 term which is positive and
remains finite as v → 0.

The FL indicates the origin of the two types of behav-
ior for λeff = v′′(s = 0) observed by ABS [8]: Nonlinear-
ities of kinematic origin are proportional to v and vanish
at the threshold; those due to anisotropy survive (and
diverge) at the depinning transition. An immediate con-
sequence of the latter is that the depinning threshold Fc

depends on the average orientation of the line. In addi-
tion, due to the relevance of this term in the RG sense for
d ≤ 4, the critical behavior at the transition is modified.
A one-loop RG of Eq.(1) with the added nonlinearity
was carried out by Stepanow [12]. He finds no stable
fixed point for 2 ≤ d ≤ 4, but his numerical integration
of the one loop RG equations in d = 1 yield ζ ≈ 0.8615
and a dynamical exponent z = 1. Due to the absence of
Galilean invariance, there is also a renormalization of λ
which is related to the diverging λeff observed in Ref. [8].
The nonperturbative nature of the fixed point precludes
a gauge of the reliability of these exponents.

Numerical simulations of Eq.(1), with an added

(∇h)2/2 in d = 1 [11,13], indicate that it shares the
characteristics of a class of lattice models [5,6] where
the external force is related to the density p of ‘blocking
sites’ by F = 1 − p. When p exceeds a critical value of
pc, blocking sites form a directed percolating path which
stops the interface. For a given geometry, there is a direc-
tion along which the first spanning path appears. This
defines a hard direction for depinning where the thresh-
old force Fc(s) reaches maximum. Higher densities of
blocking sites are needed to form a spanning path away
from this direction, resulting in a lower threshold force
Fc(s) for a tilted interface. Thus on a phenomenological
level we believe that Eq.(1) modified by the inclusion of
nonlinearity, and directed percolation (DP) models of in-
terface depinning belong to the same universality class of
anisotropic depinning. This analogy may in fact be gen-
eralized to higher dimensions, where the blocking path

is replaced by a directed blocking surface [20,21]. Un-
fortunately, little is known analytically about the scaling
properties of such a surface at the percolation threshold.

As emphasized above, the hallmark of anisotropic de-
pinning is the dependence of the threshold force Fc(s) on
the slope s. Above this threshold, we expect v(F, s) to
be an analytical function of F and s. In particular, for
F > Fc(s), there is a small s expansion v(F, s) = v(F, s =
0) + λeffs2/2 + · · ·. On the other hand, we can associate
a characteristic slope s = ξ⊥/ξ‖ ∼ (δF )ν(1−ζ), to DP
clusters where δF = F − Fc(0), and ν is the correlation
length exponent. Scaling then suggests

v(F, s) = (δF )θg(s/δF ν(1−ζ)), (4)

where θ = ν(z−ζ). Matching Eq.(4) with the small s ex-
pansion, we see that λeff diverges as (δF )−φ (as defined
by ABS [8]) with φ = 2ν(1 − ζ) − θ = ν(2 − ζ − z).
In d = 1, the exponents ν and ζ are related to the
correlation length exponents ν‖ and ν⊥ of DP [19] via
ν = ν‖ ≈ 1.73 and ζ = ν⊥/ν‖ ≈ 0.63, while the dynam-
ical exponent is z = 1. Scaling thus predicts φ ≈ 0.63,
in agreement with the numerical result of 0.64 ± 0.08 in
Ref. [8]. Close to the line F = Fc(0) (but at a finite s),
the dependence of v on δF drops out and we have

v(Fc, s) ∝ |s|θ/ν(1−ζ). (5)

As z = 1 in d = 1, the above equation reduces to v ∝ |s|,
in agreement with Fig.(1) of Ref. [8]. Note that Eqs.(5)
and (6) are valid also in higher dimensions, though val-
ues of the exponents quoted above vary with d [21]. As
F = Fc(s) is the line where v(F, s) vanishes, Eq.(4) sug-
gests

Fc(s) − Fc(0) ∝ −|s|1/ν(1−ζ). (6)

An interface tilted away from the hard direction not
only has a different depinning threshold, but also com-
pletely different scaling behavior at its transition. This
is because, due to the presence of an average inter-
face gradient s = 〈∇h〉, the isotropy in the internal x
space is lost. The equation of motion for fluctuations,
h′(x, t) = h(x, t) − s · x, around the average interface
position may thus include terms such as κs · ∇h′, which
break the rotational symmetries in x space. The result-
ing depinning transition belongs to yet a new universality
class with anisotropic response and correlation functions
in directions parallel and perpendicular to s; i.e.

〈

[h(x) − h(x′)]2
〉

= |x‖ − x′
‖|ζF

(

|xt − x′
t|

|x‖ − x′
‖|η

)

→
{

|x‖ − x′
‖|ζ for xt − x′

t = 0

|xt − x′
t|ζ/η for x‖ − x′

‖ = 0
,

where η is the ansiotropy exponent, and xt denotes the
d − 1 directions transverse to s.
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A suggestive mapping allows us to determine the ex-
ponents for depinning a tilted interface: Imagine pushing
up all points on the interface along a (d−1)-dimensional
cross section of fixed x‖. This move decreases the slope of
the interface uphill but increases it downhill. Since Fc(s)
decreases with increasing s, at criticality the perturba-
tion propagates only a finite distance uphill but causes
a downhill avalanche. The disturbance front moves at a
constant velocity (δx‖ ∝ t) and hence z‖ = 1. Further-
more, the evolution of successive cross sections xt(x‖)
is expected to be the same as the evolution in time of
a (d − 1)-dimensional interface! The latter is governed
by the Kardar-Parisi-Zhang (KPZ) equation [16], whose
scaling behavior has been extensively studied. From this
analogy we conclude,

ζ(d) =
ζKPZ(d − 1)

zKPZ(d − 1)
, η(d) =

1

zKPZ(d − 1)
. (7)

In particular, the tilted interface with d = 2 maps to the
growth problem in 1+1 dimensions where the exponents
are known exactly, yielding ζ(2) = 1/3 and η(2) = 2/3.
This picture can be made more precise for a lattice model
introduced below. Details will be presented elsewhere.

To get the exponent θ for the vanishing of velocity of
the tilted interface, we note that since z‖ = 1, v scales as
the excess slope δs = s − sc(F ). The latter controls the
density of the above moving fronts; sc(F ) is the slope
of the critical interface at a given driving force F , i.e.,
F = Fc(sc). Away from the symmetry direction, the
function Fc(s) has a non-vanishing derivative and hence

δF = F − Fc(s) = Fc(sc) − Fc(s) ∼ δs ∼ v. (8)

We thus conclude that generically θ = 1 for tilted inter-
faces, independent of dimension.

Due to scarcity of analytical results, there is need for
a simple model suitable for numerical investigation. We
propose a variant of previously studied percolation mod-
els of interface depinning [5,21] with the essential ingre-
dient of a slope dependent threshold. A solid-on-solid
(SOS) interface is described by a set of integer heights
{hi} where i is a group of d integers. With each con-
figuration is associated a random set of pinning forces
{ηi ∈ [0, 1)}. The heights are updated in parallel accord-
ing to the following rules: hi is increased by one if (i)
hi ≤ hj−2 for at least one j which is a nearest neighbor of
i, or (ii) ηi < F for a pre-selected uniform force F . If hi is
increased, the associated random force ηi is also updated,
i.e. replaced by a new random number in the interval
[0, 1). Otherwise, hi and ηi are unchanged. The simula-
tion is started with initial conditions hi(t = 0) = Int[six],
and boundary conditions hi+L = Int[sL]+hi are enforced
throughout. The CPU time is greatly reduced by only
keeping track of active sites.

The above model has a simple analogy to a resistor-
diode percolation problem [20,21]. Condition (i) ensures
that, once a site (i, h) is wet (i.e., on or behind the in-
terface), all neighboring columns of i must be wet up to

height h−1. Thus there is always ‘conduction’ from a site
at height h to sites in the neighboring columns at height
h−1. This relation can be represented by diodes pointing
diagonally downward. Condition (ii) implies that ‘con-
duction’ may also occur upward. Hence a fraction F of
vertical bonds are turned into resistors which allow for
two-way conduction. Note that, due to the SOS con-
dition, vertical downward conduction is always possible.
For F < Fc, conducting sites connected to a point lead
at the origin, form a cone whose hull is the interface sep-
arating wet and dry regions. The opening angle of the
cone increases with F , reaching 180◦ at F = Fc, beyond
which percolation in the entire space takes place, so that
all sites are eventually wet. If instead of a point, we start
with a planar lead defining the initial surface, the perco-
lation threshold depends on the surface orientation, with
the highest threshold for the untilted one.

Our simulations of lattices of 65536 sites in d = 1 and
of 512×512 and 840×840 sites in d = 2 confirm the expo-
nents for depinning in the hard direction as summarized
in Ref. [21]. For a tilted surface in d = 1 the roughness
exponent determined from the height-height correlation
function is consistent with the predicted value of ζ = 1/2
and different from ζ ≈ 0.63 of the untilted one. The de-
pendence of the depinning threshold on slope is clearly
seen from Fig. 1, where the average velocity is plotted
against the driving force for s = 0 (open) and s = 1/2
(solid). The s = 0 data can be fitted to a power-law
v ∼ (F − Fc)

θ, where Fc ≈ 0.461, θ = 0.63 ± 0.04 for
d = 1, and Fc ≈ 0.201, θ = 0.72±0.04 for d = 2. Data at
s = 1/2 is consistent with Eq.(8) close to the threshold.

We also measured height-height correlation functions
at the depinning transition. For a tilted surface in
d = 2, the height fluctuations and corresponding dy-
namic behaviors are different parallel and transverse to
the tilt. Figure 2 shows a scaling plot of (a) C‖(r‖, t) ≡
〈[h(x‖ + r‖, xt, t) − h(x‖, xt, t)]

2〉 and (b) Ct(rt, t) ≡
〈[h(x‖, xt + rt, t) − h(x‖, xt, t)]

2〉 against the scaled dis-
tances at the depinning threshold of an s = 1/2 interface.
Each curve shows data at a given t = 32, 64, · · ·, 1024,
averaged over 50 realizations of the disorder. The data
collapse is in agreement with the mapping to the KPZ
equation in one less dimension.

In summary, critical behavior at the depinning of an
interface depends on the symmetries of the underlying
medium. Different universality classes can be distin-
guished from the dependence of the threshold force (or
velocity) on the slope, which is reminiscent of similar
dependence in a model of resistor-diode percolation. In
addition to isotropic depinning, we have so far identified
two classes of anisotropic depinning: along a (hard) axis
of inversion symmetry in the plane, and tilted away from
it. We have no analytical results in the former case, but
suggest a number of scaling relations that are validated
by simulations. In the latter (more generic) case we have
obtained exact information from a mapping to moving in-
terfaces, and confirmed them by simulations in d = 1 and
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d = 2. As it is quite common to encounter anisotropy for
flux lines in superconductors, domain walls in magnets,
and interfaces in porous media, we expect our results to
have important experimental ramifications.
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FIG. 1. Average interface velocity v versus the driving
force F , for d = 1, s = 0 (open circles), d = 1, s = 1/2 (solid
circles), d = 2, s = 0 (open squares), and d = 2, s = 1/2
(solid squares).

FIG. 2. Height-height correlation functions (a) along and
(b) transverse to the tilt for an 8402 system at different times
32 ≤ t ≤ 1024. The interface at t = 0 is flat; d = 2, s = 1/2,
and F = 0.144.
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