

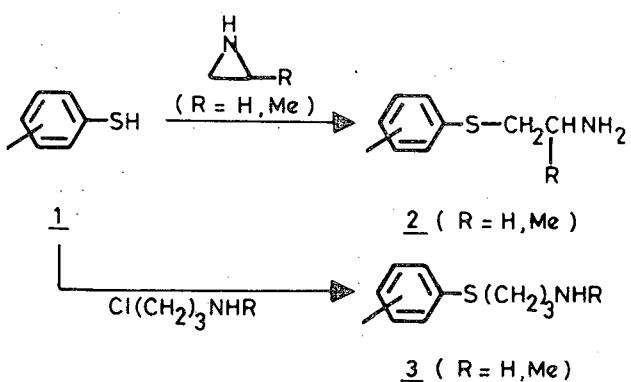
2-(Arylthio)ethanamines & α -(Arylthio)propionamides with Antidepressant Activity†

M D NAIR, J DAVID & K NAGARAJAN*‡

Hindustan CIBA-GEIGY Ltd, Research Centre, Goregaon East, Bombay 400 063

Received 4 March 1985; accepted 25 March 1985

Reaction of aziridine with thiophenols affords 2-arylthioethanamines with 2-methylaziridine, ring opening occurs regiospecifically to provide 1-arylthio-2-propanamines. The structure of one member of this group, 1-(4-chlorophenylthio)-2-propanamine, (7) has been proved by other unambiguous syntheses. 7 and isomer 12 arise from the alkylation of 4-chlorothiophenol with 2-chloropropylamine as well as from the displacement of the tosyl group in 1-(4-chlorophenylthio)-2-tosyloxypropane (13). Alkylation of 4-chlorothiophenol with α -chloropropionamide affords 11 which leads to 12 on LAH reduction. Ethanamines and propanamines are converted into guanidines, amides, ureas and thioureas. Many arylthioethanamines, e.g. 7, 22, 28, 38 and 39 (as HCl salts) and α -arylthiopropionamides, e.g. 11, 86, 91, 93 and 96 exhibit good activity in the DOPA potentiation and reserpine antagonism tests. Among these, 7 HCl [1-(4-chlorophenylthio)-2-propanamine hydrochloride, C 2998-Go] is the most potent and does not inhibit rat brain MAO activity. In clinical trials, C 2998-Go compares favourably with imipramine.


Among the nontricyclic antidepressants, aryl alkyl amines, aryloxy and arylthio alkyl amines and indolylalkyl amines have attracted considerable attention, but their MAO inhibitory activity has limited their clinical usefulness¹. Representatives of the second group of compounds mentioned above consist of N-(2-chloro)- and N-(2,4-dichloro)phenoxyethyl-cyclopropyl amines and their thio analogues². Some years ago we had come across a series of 2-(arylthio)ethanamines and 1-(arylthio)-2-propanamines wherein dissociation of antidepressant and MAO inhibitory activity appeared possible. C 2998-Go (7.HCl) arising from this work was taken up for clinical trials³. This paper describes synthesis and structure-activity relationship in this series.

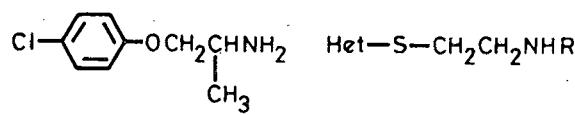
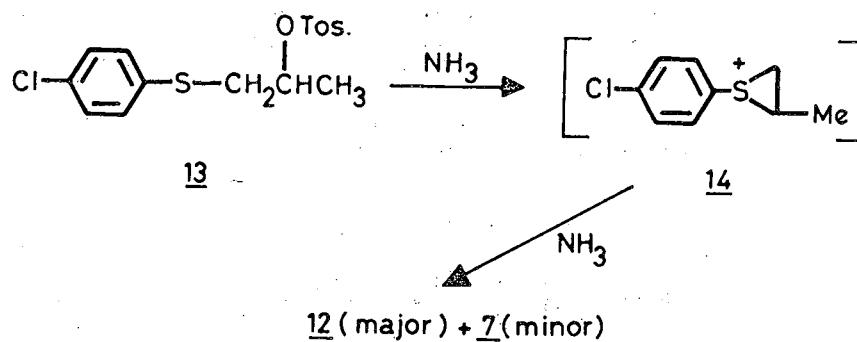
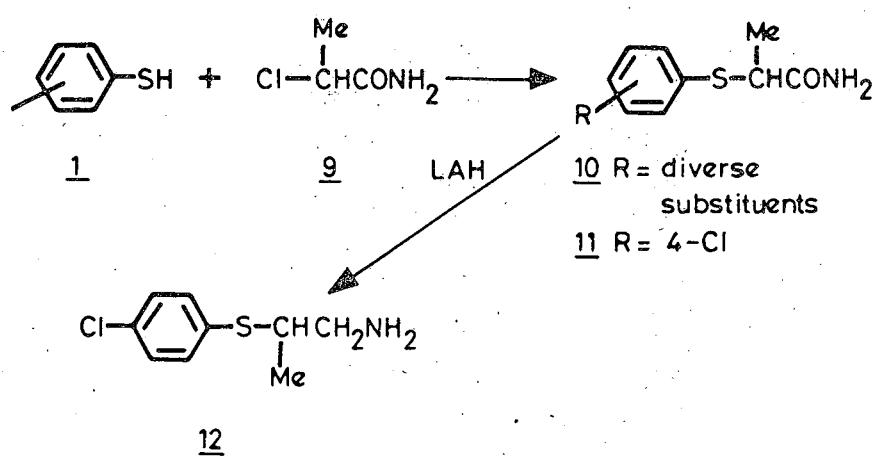
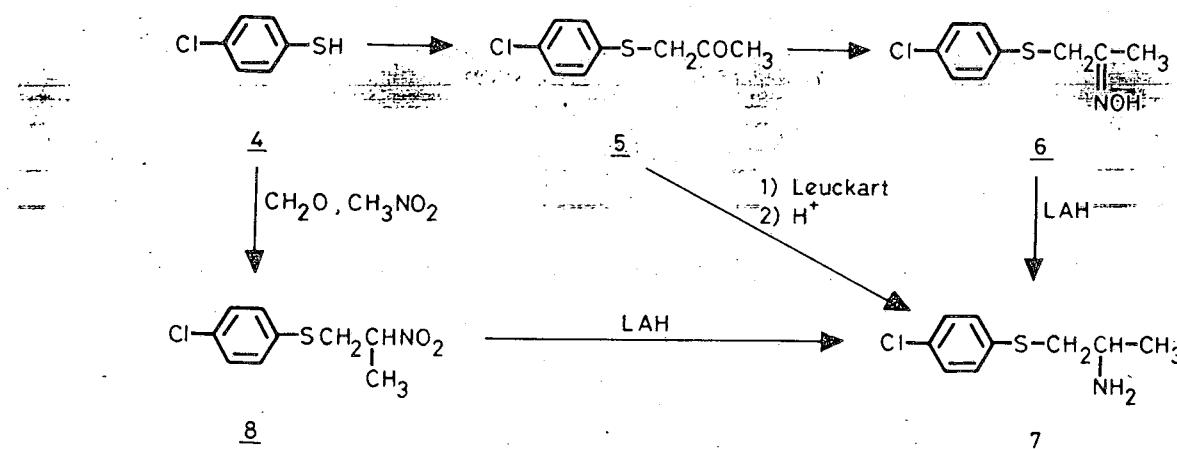
Chemistry

2-(Arylthio)ethanamines and 1-(arylthio)-2-propanamines (2), including 7 were prepared by opening of aziridine ring by thiophenols (method-a), and are reported in Table 1. 3-(Arylthio)propanamines (3) were prepared from thiophenols and aminopropyl halides (method-b) (Table 2).

The former reaction seemed to occur regiospecifically presumably by attack of the aziridine by thiophenol at the less-hindered carbon atom. The structure of 7 was unambiguously established by the following syntheses.

The isomer 12 (Table 3) was prepared by LAH reduction of the amide (11). Ammonolysis of tosylate

(13) afforded 12 as the major and 7 as the minor products. Presumably episulphide (14) is formed as an intermediate and the cleavage occurs with ammonia regioselectively by attack at the less substituted carbon atom.





On the other hand, an attempt to alkylate 4 with 2-chloropropyl amine (method-b) resulted in an approximately 1:1 mixture of 7 and 12, the latter by direct alkylation and the former through the intermediacy of propylenimine formed from the alkylating agent and ammonia.

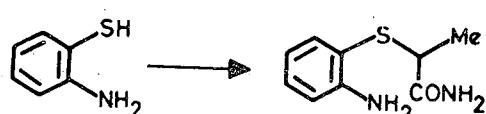
1-(4-Chlorophenoxy)-2-propanamine (15) was made from 4-chlorophenoxyacetone via the oxime, while 1-(heterylthio)-2-propanamines (16 and 18) were made by method-a (Table 3).

Amines were converted into guanidines, amides, ureas and thioureas by standard techniques (Table 4). Some ureas were oxidised by H₂O₂ or KMnO₄ to sulphoxides and sulphones which were also obtained from the amines by oxidation followed by derivatisation.

†Contribution No. 753 from Research Centre.

‡Present address: Director R&D Centre Searle (India) Ltd, Thane 400 601.

16 Het = 2-benzoxazolyl


R = H

17 Het = 2-benzoxazolyl

R = CSNPh

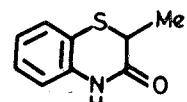
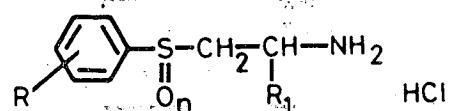
18 Het = 2-benzthiazolyl

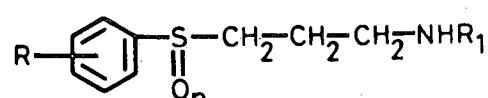
R = H

19

20

→


Table 1—2-Arylmercaptoethyl Amines, Sulphoxides and Sulphones

Compd	<i>n</i>	R	Mol. formula	Crystallised from	m.p. °C	Rating in dopa test (ED ₅₀ mg/kg p.o.)	% Antagonism of reserpine-induced hypothermia (ED ₅₀ mg/kg p.o.)
<i>R</i> ₁ = H							
22 ^a	0	2-NH ₂	C ₈ H ₁₄ Cl ₂ N ₂ S	EtOH-Et ₂ O	232-33	+++	47
23	0	2-CO ₂ H	C ₉ H ₁₂ ClNSO ₂	EtOH-H ₂ O	247-48	++	29
24	0	2-CO ₂ Me	C ₁₀ H ₁₄ ClNSO ₂	EtOH-Et ₂ O	158-59	Nil	24
25 ^b	0	3-Me	C ₁₃ H ₁₇ NSO ₄	EtOH-Et ₂ O	165-67	+	53
26 ^b	0	4-Bu(t)	C ₁₆ H ₂₃ NSO ₄	EtOH-Et ₂ O	149-51	Nil	9
27	0	4-Cl	C ₈ H ₁₁ Cl ₂ NS	EtOH-Et ₂ O	170-72	++	30
28 ^c	0	4-Cl	C ₁₀ H ₁₅ Cl ₂ NS	EtOH	134-35	+++ + (12)	68(15)
29	0	4-Me	C ₉ H ₁₄ CINS	MeOH-Et ₂ O	162-64	++ +	50
30	1	2-CO ₂ Me	C ₁₀ H ₁₄ CINSO ₃	EtOH-Et ₂ O	180-81	Nil	39
31	1	4-Cl	C ₈ H ₁₁ Cl ₂ NOS	EtOH	194-95	Nil	Nil
32 ^d	1	4-Cl	C ₁₀ H ₁₅ Cl ₂ NOS.H ₂ O	EtOH-Et ₂ O	203-5	—	—
33 ^e	2	4-Cl	C ₈ H ₁₁ Cl ₂ NO ₂ S	EtOH-Et ₂ O	275-77	Nil	6
<i>R</i> ₁ = CH ₃							
34	0	H	C ₉ H ₁₄ CINS	EtOH-Et ₂ O	159	+	66
35	0	2-NH ₂	C ₉ H ₁₆ Cl ₂ N ₂ S	EtOH	186-88	+	41
36	0	2-CO ₂ H	C ₁₀ H ₁₄ CINO ₂ S	EtOH-Et ₂ O	216-18°	Nil	50
37	0	2-CO ₂ Me	C ₁₁ H ₁₆ CINO ₂ S	EtOH-Et ₂ O	139-40		
38	0	2-Me	C ₁₀ H ₁₆ CINS	EtOH-Et ₂ O	168-69	+++ + (8)	66(13.5)
39	0	3-Cl	C ₉ H ₁₃ Cl ₂ NS	EtOH-Et ₂ O	122-24	+++ + (10)	47(28.7)
40	0	3-Me	C ₁₀ H ₁₆ CINS	C ₆ H ₆	123-24	+	42
41	0	4-Br	C ₉ H ₁₃ BrCINS	EtOH-Et ₂ O	117-20	++ +	—
42	0	4-Bu(t)	C ₁₃ H ₂₂ CINS	EtOH-Et ₂ O	158-60	++	58
43	0	4-F	C ₉ H ₁₃ CIFNS	EtOH-Et ₂ O	132-33	++	40
44	0	4-Me	C ₁₀ H ₁₆ CINS	C ₆ H ₆ -hexane	114-15	+	66
7	0	4-Cl	C ₉ H ₁₃ Cl ₂ NS	EtOH-Et ₂ O	149-51	+++ + (8.6)	86(2.5)

(a) di-HCl not tested; (b) maleate; (c), (d) N,N-dimethyl- 27 and 31 respectively; and (e) phthalimide, m.p. 160-61° (Found: C, 55.2; H, 3.5. C₁₆H₁₂NO₄S requires C, 54.9; H, 3.5%); (f), not tested; nil, inactive at dose tested.

Table 2—Arylmercaptopropylamines and Derivatives

Compd	<i>n</i>	R	R ₁	Mol. formula	Crystallised from	m.p. °C	Rating in dopa test (ED ₅₀ mg/kg p.o.)	% Antagonism of reserpine-induced hypothermia (ED ₅₀ mg/kg p.o.)
99 ⁺	0	H	H	C ₉ H ₁₄ CINS	EtOH-Et ₂ O	181-82	Nil**	—
100 [*]	0	2-CO ₂ Me	H	C ₁₅ H ₁₉ NO ₆ S	EtOH-Et ₂ O	121-22	Nil	—
101 ⁺	0	4-Cl	H	C ₉ H ₁₃ Cl ₂ NS	EtOH-Et ₂ O	219-20	Nil**	—
102 ⁺	0	4-Cl	Me	C ₁₀ H ₁₅ Cl ₂ NS	EtOH-Et ₂ O	134-35		
103	0	4-Cl	COCH=CHPh	C ₁₈ H ₁₈ CINOS	EtOH	135-36	+	21
104	2	4-Cl	H	C ₉ H ₁₃ Cl ₂ NO ₂ S	EtOH	196-98	Nil	9

⁺HCl.

^{*}maleate

^{**}toxic convulsions.

Table 3—Miscellaneous Thio and Oxypropanamines and Thiazinones

Compd	Mol. formula	Crystallised from	m.p. °C	Rating in dopa test (ED_{50} mg/kg p.o.)	% Antagonism of reserpine-induced hypothermia (ED_{50} mg/kg p.o.)
12.HCl	C ₉ H ₁₃ CINS	EtOH	176-77	+	23
15.HCl	C ₉ H ₁₃ Cl ₂ NO	EtOH-Et ₂ O	183-84	+++	—
16.HCl.½H ₂ O	C ₉ H ₁₁ CIN ₂ OS	EtOH-Et ₂ O	151-52	—	—
16	C ₉ H ₁₀ N ₂ SO	EtOH	199-200	—	—
17	C ₁₆ H ₁₅ N ₃ OS ₂	EtOH	135-38	+	55
18.H ₂ O	C ₁₀ H ₁₃ CIN ₂ S ₂	EtOH-Et ₂ O	163-65	—	—
21	C ₉ H ₉ NOS	Et ₂ O exchange	130-31	—	—

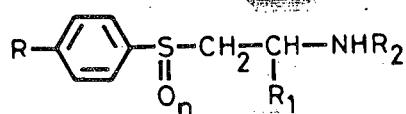
α -Arylthiopropionamides, listed in Table 5 were prepared from thiophenols and α -chloropropionamide. In this reaction 2-aminothiophenol (19) was converted into the thiazinone (21) obviously through the intermediate amide (20).

3-(Arylthio)propanamines made by method-b and some derivatives are listed in Table 2.

Pharmacology

Compounds were administered orally (p.o.) in 0.2% agar suspension to CF male mice. They were tested at a dose of 25 mg/kg p.o. for their activity in the mouse DOPA response potentiation test⁴ and for their ability to antagonise reserpine-induced hypothermia⁵. For highly active compounds, ED_{50} values were determined. Results are entered in Tables 1-5.

Structure-activity relationship


Compounds belonging to 2-(arylthio)ethanamine and 1-(arylthio)-2-propanamine series (Table 1) generally exhibited interesting activity in the two tests. Among the former group, 22 carrying an *ortho*-amino group in the phenyl ring and 29, the 4-methyl analogue were moderately active. The 4-chloroderivative 27 was only weakly active, but the N,N-dimethyl compound 28 was very potent. In the 1-(arylthio)-2-propanamine series, good activity in both tests was seen for the 2-methyl (38), 3-chloro (39) and 4-chloro (7) derivatives. However, 7 (C 2998-Go) scored over all other highly active compounds in terms of ED_{50} values. In the DOPA test, it was significantly superior to 28 and 39, but marginally inferior to 38, however, in the reserpine antagonism test, it surpassed all these in the ED_{50} value. Many functional derivatives of these amines, such as guanidines, amides, ureas and thioureas were devoid of any significant activity (Table 4).

Noteworthy in this respect are aryl ureas 78, 79 and 81 of 7, although the cinnamamide (80) retained some potency. The linear isomer 101 of 7 was totally devoid of activity in the two tests. Patent literature claims bactericidal and fungicidal properties for 101⁶. Substitution of sulphur in 7 by oxygen (as in 15) resulted in fall in activity.

Interestingly 12, the position isomer of 7 was considerably weaker than 7, whereas the precursor, α -(4-chlorophenylthio)propionamide (11) was potent in both tests (Table 5). In fact in this group of compounds, desired activities were fairly widely prevalent in both tests. Thus in addition to the 4-chloro derivative (11), the 3-methyl (86), pentachlorophenyl (91), benzyl (93) and 2-benzoxazolyl (96) analogues were quite potent. All were however inferior to 7 in terms of ED_{50} values in the two tests. Compound 11 was about equal to 7 in efficacy in the DOPA test (ED_{50} , 11 mg) but was only about one-sixth as potent in the reserpine antagonism test (ED_{50} 14 mg).

The best compound of the series, 7.HCl (C 2998-Go) was weaker than tranylcypromine (ED_{50} -DOPA test, 1 mg; reserpine antagonism test, 0.8 mg), but was easily differentiated in that it had no debilitating *in vivo* MAO inhibitory activity⁷. Thus 7.HCl did not inhibit rat brain MAO to any significant extent at 50 mg/kg i.p. 3 hours after pretreatment. Hence it was taken up for further development and its pharmacological properties characterised well⁸. In acute toxicity studies the preparation was found to have LD_{50} value of about 600 mg/kg p.o. in mice and rats and between 100 and 200 mg/kg p.o. in dogs. In a thirty-day study no mortality was observed in rats upto 200 mg/kg/day p.o. and in dogs upto 75 mg/kg/day p.o.⁹. Pharmacokinetics and metabolism studies were carried out with material labelled on the methylene carbon atom¹⁰. C

Table 4—Acyl, Carbamoyl, Thiocarbamoyl and Guanidine Derivatives of Arylmercaptoethyl Amines

Compd	<i>n</i>	R	R ₂	Mol. formula	Crystallised from	m.p. (°C)	Rating in dopa test (ED ₅₀ mg/kg p.o.)	% Antagonism of reserpine-induced hypothermia (ED ₅₀ mg/kg p.o.)
<i>R</i> ₁ = H								
45. ½H ₂ SO ₄	0	H	NH=C—NH ₂	C ₉ H ₁₃ NOS.½H ₂ SO ₄	EtOH-Et ₂ O	170	++	Nil
46	0	H	COCH=CHPh	C ₁₇ H ₁₇ NSO	EtOH-H ₂ O	102-4	Nil	35
47	0	H	CONHPh	C ₁₅ H ₁₆ N ₂ OS	EtOH	121-22	Nil	—
48	0	H	CSNPh	C ₁₅ H ₁₆ N ₂ S ₂	EtOH-H ₂ O	116-17	++	27
49	0	2-NH ₂	CONHPh	C ₁₅ H ₁₇ N ₃ OS	C ₆ H ₆ -hexane	199-200	—	—
50	0	3-Me	CSNPh	C ₁₆ H ₁₈ N ₂ S ₂	C ₆ H ₆ -hexane	110-12	Nil	39
51 ½H ₂ SO ₄	0	4-Cl	HN=C—NH ₂	C ₉ H ₁₂ ClN ₃ S.½H ₂ SO ₄	H ₂ O	190-91	Nil	28
52	0	4-Cl	COPh	C ₁₅ H ₁₄ CINOS	C ₆ H ₆	85-86	Nil	8
53	0	4-Cl	CONH=CHPh	C ₁₇ H ₁₆ CINOS	EtOH-H ₂ O	94-95	++	6
54. 2HCl	0	4-Cl	4-Me-piperazino- acetyl .2HCl	C ₁₅ H ₂₄ Cl ₃ N ₂ OS	EtOH-Et ₂ O	200-205	Nil	Nil
55. 2HCl.	0	4-Cl	2-(4-Me-piperazino- ethyl.2HCl	C ₁₅ H ₂₆ Cl ₃ N ₃ S	EtOH	198-202	Nil	20
56 2H ₂ O	0	4-Cl	C S N H C H ₂ C H =CH ₂	C ₁₂ H ₁₅ CIN ₂ S ₂	Hexane	61-62	—	—
57	0	4-Cl	CONHPh	C ₁₅ H ₁₅ CIN ₂ OS	EtOH-H ₂ O	111-12	—	—
58	1	4-Cl	CSNPh	C ₁₅ H ₁₅ CIN ₂ OS ₂	EtOH	150-53	++	72
59	2	4-Cl	CONHPh	C ₁₅ H ₁₅ CIN ₂ O ₃ S	EtOH	183-85	Nil	Nil
60	2	4-Cl	CONHC ₆ H ₄ CH ₃ (4)	C ₁₆ H ₁₇ CIN ₂ O ₃ S	EtOH-DMF	196-97	—	—
61	2	4-Cl	CONHC ₆ H ₄ Cl(4)	C ₁₅ H ₁₄ Cl ₂ N ₂ O ₃ S	EtOH-DMF	206-7	—	—
62	2	4-Cl	CSNPh	C ₁₅ H ₁₅ CIN ₂ O ₂ S ₂	EtOH-DMF	177-78	—	—
63	2	4-Cl	CONHC ₆ H ₅ CH ₃ (2)	C ₁₆ H ₁₇ CIN ₂ O ₃ S	EtOH-DMF	202-3	—	—
64	2	4-Cl	CSNHBu(n)	C ₁₃ H ₁₉ CIN ₂ O ₂ S ₂	EtOH-H ₂ O	92-93	—	—
65	2	4-Cl	HN=C—NH ₂	C ₉ H ₁₂ ClN ₃ O ₂ S.½H ₂ SO ₄	H ₂ O-EtOH	261-65	—	22
<i>R</i> ₁ = Me								
66	0	H	CONHPh	C ₁₆ H ₁₈ N ₂ OS	C ₆ H ₆ -hexane	109-10	—	—
67	2	H	CONHPh	C ₁₆ H ₁₈ N ₂ O ₃ S	EtOH-H ₂ O	113-15	—	—
68	0	2-	NHCSNH C ₆ H ₄ Cl(4)	CSNHC ₆ H ₄ Cl(4)	C ₂₃ H ₂₂ Cl ₂ N ₄ S ₃	EtOH	160-62	—
69	0	3-Me	CONHC ₆ H ₄ CH ₃ (2)	C ₁₈ H ₂₂ N ₂ OS	C ₆ H ₆ -hexane	117-18	—	—
70	0	3-Me	CONHPh	C ₁₇ H ₂₀ N ₂ OS	C ₆ H ₆ -hexane	106-7	—	—
71	0	3-Me	CONHC ₆ H ₄ Cl(4)	C ₁₇ H ₁₉ CIN ₂ OS	C ₆ H ₆ -hexane	120-22	—	—
72	0	3-Me	CONHC ₆ H ₄ Me(4)	C ₁₈ H ₂₂ N ₂ OS	C ₆ H ₆ -hexane	93-95	—	—
73	2	3-Me	CONHPh	C ₁₇ H ₂₀ N ₂ O ₃ S	EtOH-H ₂ O	142-43	—	—
74	2	3-Me	CONHC ₆ H ₄ Me(2)	C ₁₈ H ₂₂ N ₂ O ₃ S	C ₆ H ₆	127-28	—	—
75	2	3-Me	CONHC ₆ H ₄ Cl(4)	C ₁₇ H ₁₉ CIN ₂ O ₃ S	EtOH	155-58	—	—
76	0	4-Bu(t)	CONHC ₆ H ₄ Me(4)	C ₂₁ H ₂₈ N ₂ OS	EtOH-H ₂ O	98-99	—	—
77	0	4-Bu(t)	CONHC ₆ H ₄ Me(2)	C ₂₁ H ₂₈ N ₂ OS	C ₆ H ₆ -hexane	148-49	—	—
78	0	4-Cl	CONHPh	C ₁₆ H ₁₇ CIN ₂ OS	EtOH-H ₂ O	102-3	+	35
79	0	4-Cl	CONHC ₆ H ₄ Cl(4)	C ₁₆ H ₁₆ Cl ₂ N ₂ OS	EtOH-H ₂ O	140-41	Nil	39
80	0	4-Cl	COCH=CHPh	C ₁₈ H ₁₈ CINOS	C ₆ H ₆ -hexane	126-27	++	55
81	1	4-Cl	CONHPh	C ₁₆ H ₁₇ CIN ₂ O ₂ S	C ₆ H ₆ -hexane	168-70	Nil	49
82	0	4-Me	CONHPh	C ₁₇ H ₂₀ N ₂ OS	EtOH-H ₂ O	99-101	++	45
83	0	4-Me	CSNPh	C ₁₇ H ₂₀ N ₂ S ₂	EtOH-H ₂ O	91-92	—	—

Table 5— α -Mercaptoacetamides

Compd	R	R ¹	Mol. formula	Crystallised from	m.p. (°C)	Rating in dopa test		% Antagonism of reserpine-induced hypothermia (ED ₅₀ mg/kg p.o.)
						(ED ₅₀ mg/kg p.o.)	(ED ₅₀ mg/kg p.o.)	
84	2-Me.C ₆ H ₄ -	Me	C ₁₀ H ₁₃ NOS	EtOH-H ₂ O	103-5	++	—	—
85	2-CO ₂ Et.C ₆ H ₄ -	Me	C ₁₂ H ₁₅ NO ₃ S	THF-Et ₂ O	170-72	—	—	—
86	3-Me.C ₆ H ₄ -	Me	C ₁₀ H ₁₃ NOS	EtOH	112-14	+++(15)	77(18)	—
87	4-Br.C ₆ H ₄ -	Me	C ₉ H ₁₀ BrNOS	EtOH	130-31	++	32	—
11	4-Cl.C ₆ H ₄ -	Me	C ₉ H ₁₀ ClNOS	EtOH-H ₂ O	125-27	+++(11)	75(14)	—
88	4-F.C ₆ H ₄ -	Me	C ₉ H ₁₀ FNOS	EtOH-H ₂ O	121-22	++	—	—
89	4-Me.C ₆ H ₄ -	Me	C ₁₀ H ₁₃ NOS	EtOH-H ₂ O	111-13	++	—	—
90	4-Bu(t).C ₆ H ₄ -	Me	C ₁₃ H ₁₉ NOS	EtOH-H ₂ O	91-93	++	—	—
91	Penta Cl.C ₆ -	Me	C ₉ H ₆ Cl ₅ NOS	THF-EtOH	216-18	+++(19)	62(22)	—
92	4-Cl.C ₆ H ₄ -	Ph	C ₁₄ H ₁₂ CINOS	THF-Et ₂ O	188-90	+++(24)	75(20)	—
93	C ₆ H ₅ OH ₂ -	Me	C ₁₀ H ₁₃ NOS	EtOH	93-95	+++(17)	77(17)	—
94	C ₆ H ₅ CH ₂ CH ₂ -	Me	C ₁₁ H ₁₅ NOS	Acetone-Et ₂ O	106-6	—	—	—
95	2-Furylmethyl	Me	C ₈ H ₁₁ NO ₂ S	CHCl ₃ -hexane	77-78	—	—	—
96	2-Benzoxazolyl	Me	C ₁₀ H ₁₀ N ₂ O ₂ S	EtOH-H ₂ O	125-27	+++(20)	47(28)	—
97	2-Benzthiazolyl	Me	C ₁₀ H ₁₀ N ₂ OS ₂	Acetone-hexane	126-28	++	72	—
98	1-(1-Carbamoylethyl)-benzimidazol-2-yl	Me	C ₁₃ H ₁₈ N ₄ O ₃ S	EtOH	172-76	—	—	—

2998-Go was found to be comparable in effectiveness to imipramine in a limited clinical trial¹¹.

Experimental Procedure

Synthesis of arylthioethanamines and propanamines:
Method-a—Reaction of thiophenols with ethyleneimine (propylénimine)

To a solution of **4** (34.7 g) in ethanol (300 ml) cooled in an ice-bath was added dropwise under stirring, ethyleneimine (11.2 g). After being set aside for 1 hr, the solution was acidified with conc. HCl, when **27.HCl** crystallised out. Addition of ether completed the precipitation. The product was filtered off and recrystallised from aq. ethanol 30 g; m.p. 170-72°.

Method-b: Aminoalkylation of thiophenols

A solution of **4** (5 g) in 95% ethanol (50 ml) was treated with 3-chloropropyl amine hydrochloride (4.5 g) and sodium hydroxide (2.76 g) in water (5 ml). The resultant solution was heated under reflux for 1½ hr and evaporated. The residual gum was treated with water and extracted with ether. The dried ether extract was saturated with HCl gas and the precipitated salt crystallised from ethanol-ether to afford **101.HCl**; 6.4 g; m.p. 219-220° (gelling at 155°).

2-(4-Chlorophenylthio)-N,N-dimethylethanamine (28)

A mixture containing **27.HCl** (5 g) aq formalin (25 ml) and formic acid (25 ml) was heated under reflux

overnight, the solution evaporated to dryness and the residue treated with aq NaHCO₃. The product was extracted into chloroform, the dried chloroform extract evaporated and the residue treated with ethanolic HCl. The gummy product became crystalline on keeping with ether and was crystallised from ethanol to give **28.HCl**; 2 g; m.p. 134-35°.

2-(4-Chlorophenylsulphoxide)ethanamine (31)

A solution containing **27.HCl** (5.2 g), 30% H₂O₂ (4.5 ml) and water (10 ml) was heated on a water-bath for 3½ hr. Water (10 ml) was added and the solution evaporated to dryness. The residue became crystalline and was recrystallised from EtOH to give **31.HCl**; 2.2 g; m.p. 194-95°.

2-(4-Chlorophenylsulphonyl)ethanamine (33)

Amine (**27**, 15 g), 30% H₂O₂ (23 ml) and water (100 ml) were heated together on a water bath for 4½ hr. The solution was evaporated to dryness and the product crystallised from ethanol 6 g of **33.HCl**; m.p. 275-77°.

N-[2-(4-Chlorophenylthio)ethyl]guanidine (51)

Amine (**27**, 5.5 g) and guanidine hemisulphate (5.5 g) in water (15 ml) were heated together under reflux for 20 hr and allowed to cool. The precipitated product was filtered off and crystallised from boiling water, after removing some insoluble material to give **51** $\frac{1}{2}$ H₂SO₄, (2 g); m.p. 190-91°.

N-(Phenylcarbamoyl)-1-(3-methylphenylsulphonyl)-2-propanamine (73)

N-(Phenylcarbamoyl)-1-(3-methylphenylthio)-2-propanamine (70, 2.5 g) was dissolved in acetic acid (20 ml) and treated gradually with a solution of potassium permanganate (1.5 g) in water (5 ml) below 20°. Excess permanganate was destroyed by adding saturated NaHSO_3 solution, the solution brought to pH 6 with sodium carbonate solution and extracted with chloroform. The chloroform layer was evaporated to give an oil which was purified by chromatography over alumina in CHCl_3 . The product 73 was obtained crystalline and recrystallised from aq. ethanol; 0.8 g; m.p. 142-43°.

N-(4-Methyl-1-piperazinyl)acetyl-2-(p-chlorophenylthio)ethanamine (54)

Amine (27, 20 g) in dry acetone (20 ml) containing anhyd. K_2CO_3 (10.8 g) was treated under cooling and stirring with chloroacetyl chloride (13.5 g). The product was worked up after 3 hr by evaporating the solution and washing the residue with water, and recrystallised from ethanol-ether to give the chloroacetyl derivative (20 g), m.p. 188-90°. This was heated with *N*-methylpiperazine (30 ml) at 100° overnight. After washing with water, the product was extracted into chloroform and the extract treated with HCl gas. The dihydrochloride of 54 thus obtained was crystallised from ether-ether; 16 g; m.p. 200-205°.

Alternative syntheses of 7: (a) From ketone 5 by Leuckart reaction

5 (10 g), formamide (30 ml), formic acid (4 ml) and ammonium sulphate (2 g) were heated together under reflux for 3 hr, additional formic acid (4 ml) being added at the end of first and second hour. After 24 hr, water was added and the oily product (11 g) extracted into ether. The product became crystalline with ether to afford *N*-formyl 7; 4.9 g, m.p. 76-77° (Found: C, 53.2; H, 5.4; N, 5.6. $\text{C}_{10}\text{H}_{12}\text{ClNO}_2$ requires C, 52.3; H, 5.3; N, 6.1%). Hydrolysis with 3*N* HCl (100 ml) under reflux for 16 hr, cooling, extraction of neutrals with ether, basification of the aqueous extract and recovery with ether gave the oily base, converted into the HCl salt (4.5 g), m.p. 151-52°, undepressed on admixture with 7.HCl.

(b) From the ketone (5) via the oxime (6)

5 (6 g) and hydroxylamine HCl (2.8 g) were heated together in pyridine (5 ml) at 100° for 2 hr. The solution was poured into 3*N* HCl (100 ml) and the oily oxime extracted with ether to give 6 (6.1 g). This was dissolved in dry ether (30 ml) and the solution added to stirred LAH (2 g) in the same solvent (50 ml). The product was worked up as usual the next day and characterised as 7.HCl (2.9 g), m.p. and m.m.p. 147-49°.

(c) From tosylate 13 on reaction with ammonia

5 was reduced with NaBH_4 to give the alcohol, m.p. 36-37°. Treatment of the alcohol (8.2 g) with *p*-toluenesulphonyl chloride (7.7 g) in pyridine (4.0 g) at 100° for 2 hr and pouring into excess dil. HCl gave the oily tosylate 13 (9 g). The tosylate (7.2 g) was heated with saturated methanolic ammonia (100 ml) in a sealed tube at 100° for 24 hr. The solution was evaporated *in vacuo* and the residue separated into a neutral part and an oily base (0.9 g). This was treated with isopropanolic HCl followed by ether. An oil separated which solidified on keeping. This was recrystallised from ethanol-ether to give 12.HCl (0.4 g), m.p. 135-36°, undepressed on admixture with an authentic sample (see below). The supernatant deposited crystals (0.1 g), which were recrystallised to give 7.HCl, m.p. and m.m.p. 146-48°.

(d) From 4-chlorothiophenol and 2-chloropropylamine

Commercial (\pm)-1-amino-2-propanol (52.5 g) was dissolved in chloroform (140 ml) and the solution saturated with HCl gas. Thionyl chloride (125 g) in chloroform (80 ml) was added slowly at room temperature during 1 hr with stirring. The solution was refluxed for 5 hr and left aside overnight. Excess ether was added to precipitate 2-chloropropylamine hydrochloride (59 g), m.p. 178-83°.

4 (14.5 g) and 2-chloropropylamine hydrochloride (15 g) were stirred together with NaOH (9 g) in water (50 ml) overnight at 30°. The basic product was extracted with ether and converted into HCl salt. Crystallisation from ethanol gave 12.HCl (6.8 g), m.p. and m.m.p. with authentic sample (see below) 176-77°. The solid (4.5 g) obtained from the mother liquor was fractionally crystallised from EtOH-ether to give, after removal of less soluble crop, 7.HCl (0.6 g), m.p. and m.m.p. 145-50°.

(e) From 1-(4-chlorophenylthio)-2-nitropropane (8)

4 (7.3 g), 30% aq formaldehyde (5 ml), nitroethane (3.75 g) and piperidine (5 drops) were heated together under reflux in ethanol (50 ml) for 16 hr. The solution was diluted with water, extracted with ether, the ether layer washed with water, dried and evaporated to give an oil (11.15 g). The oil (6 g) was chromatographed on a column of silica gel (60 g) using benzene-hexane (1:1) for the first 12 fractions of 50 ml each and benzene for the next 16 fractions of 50 ml. Fractions 1 and 2 on evaporation afforded bis-(4-chlorophenyl) disulphide, m.p. 72-74°. Fractions 3-5 gave the desired nitropropane (8, 3.5 g) as an oil, b.p. 135-45 (bath temperature)/0.5 mm; PMR (CDCl_3): δ 7.30 (4 aromatic Hs), 4.54 ($\text{CH} - \text{NO}_2$, sextet, $J = 7.5, 14$ Hz), 3.50 ($\text{C} \text{---} \text{Hs}$, $d \times d$, $J = 7.5, 14$ Hz), 3.10 ($\text{C} \text{---} \text{Hs}$, $d \times d$, J

= 7.5, 14 Hz); 1.59 (CH₃, *d*, *J* = 7.5 Hz). Fractions 6-21 were mixtures and neglected. Fractions 22-24 were evaporated to give 1-(4-chlorophenylthio)-2-hydroxymethyl-2-nitropropane as an oil (1 g), b.p. 155-65° (bath temperature)/0.5 mm; PMR (CDCl₃): 7.30 (4 aromatic Hs); 3.9 (CH₂OH, *s*); 3.5 (CH₂-S, *s*); 3.12 (OH, *bs*), 1.57 (CH₃, *s*).

A solution of **8** (3 g) in ether (15 ml) was stirred with LAH (1.2 g) in ether (20 ml) overnight. The basic product was worked up as usual and characterised as HCl salt, (1.2 g), m.p. and m.m.p. with 7.HCl, 145-47°.

α -Arylthiopropionamides (**10**)

A mixture of 4-chlorothiophenol (11.6 g) α -chloropropionamide (9 g), anhydrous K₂CO₃ (11.2 g) and acetone (50 ml) was heated under reflux for 16 hr and filtered. The filtrate was evaporated to dryness and the product washed with water. Crystallisation from aq ethanol gave **11** (13 g), m.p. 125-27°. Physical data for **11** and analogues are listed in Table 2.

2-(4-Chlorophenylthio)propanamine (**12**)

Amide **11** (8 g) in THF (50 ml) was added to stirred LAH (3 g) in ether (100 ml). The reaction was conducted overnight. The basic product was worked up as usual and is isolated as HCl salt. Crystallisation from ethanol gave **12.HCl** (2.3 g); m.p. 176-80° (Table 3).

1-(4-Chlorophenoxy)-2-propanamine (**15**)

4-Chlorophenoxyacetone (28 g) when heated with

hydroxylamine HCl (16.8 g) in pyridine (25 ml) gave the oxime (29 g), m.p. 60-67°. Reduction of oxime (2.5 g) with LAH (1 g) gave a basic product (0.6 g) affording **15.HCl** (0.25 g), m.p. 183-85° (from EtOH-Et₂O). Alternatively the oxime (8.5 g) was hydrogenated in cyclohexane (150 ml) and ether (10 ml) with hydrogen at 100 atm. pressure and 45°, using Raney nickel (2 g) during 18 hr to give the amine (6.5 g), converted into pure **15.HCl** (4.3 g), m.p. 182-84° (from EtOH-Et₂O).

References

- 1 Kaiser C & Settler S E, *Burger's medicinal chemistry*, (Part III, edited by M O Wolff (John Wiley, New York) 1981.
- 2 Mills S, Katter R, Slater I H & Fuller R W, *J mednl Chem*, **11** (1968) 95.
- 3 Nair M D (to CIBA Ltd, Basel), *Swiss Pat*, 491, 883; July 31, 1970; *Chem Abstr*, **73** (1970) P 109493W; CIBA-GEIGY, *Indian Pat*, 105, 700; May 10, 1975; *Chem Abstr*, **92** (1980) P 110669g.
- 4 Everett G M, *Proceedings of first international symposium on antidepressant drugs*, Milan (Excerpta Medica Foundation, Amsterdam, New York, London) 1966, 164.
- 5 Witkin L B, Heubner C F, Galdi F, O'Keefe E, Spitaletta P & Plummer A J, *J Pharmac*, **133** (1961) 400.
- 6 Wehrmeister H L, (to International Minerals and Chemical Corporation) *bS* 426034, June 18, 1979; *Chem Abstr*, **95** (1981) P 80466f.
- 7 Maller R K, Private communication.
- 8 David J, Private communication.
- 9 Rao R R, Private communication.
- 10 Maller R K, Nair M D & Nagarajan K, *J Radiolabelled Compounds and Radiopharmaceuticals*, In press.
- 11 Varma L P, Srivastava D K & Sahay R N, *Profile of a new antidepressant-Sintamil^R*, edited by A K Gupta and R S Grewal (CIBA of India Ltd, Bombay) 1973, 117.