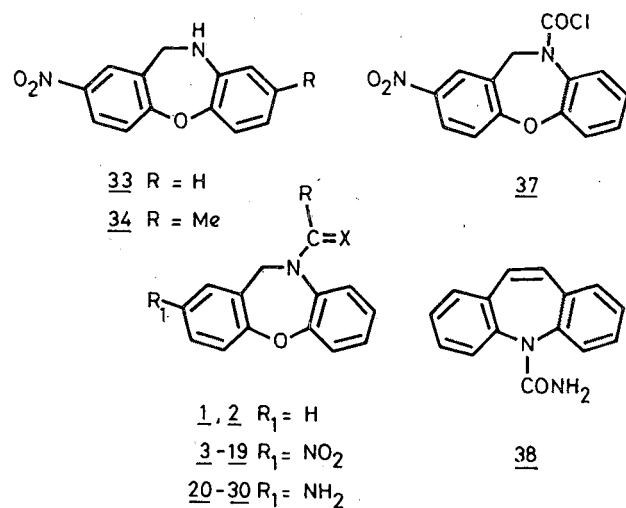


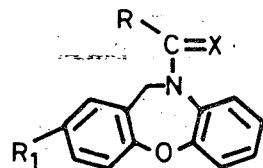
## Synthesis of 10,11-Dihydrodibenz[*b,f*][1,4]oxazepine Derivatives as Potential Anticonvulsant & Psychotropic Agents†

K NAGARAJAN, J DAVID\* & G A BHAT


Hindustan CIBA-GEIGY Ltd, Research Centre, Bombay 400 063

Received 10 December 1984; accepted 31 January 1985

Several acyl, carbamoyl and thiocarbamoyl derivatives of 10,11-dihydrodibenz[*b,f*][1,4]oxazepine, most of them carrying either a nitro or amino group at position-2 have been synthesized as analogues of carbamazepine (38) and evaluated as anticonvulsants associated with potential neuroleptic activity. Among these, 10,11-dihydro-2-nitrodibenz[*b,f*][1,4]oxazepine-10-carboxylic acid hydrazide (11) and 2-amino-10-dimethylcarbamoyldibenz[*b,f*][1,4]oxazepine (04) have moderate activity in the electroshock test but are inactive against chemoshock. 10,11-Dihydro-10-thiocarbamoyldibenz[*b,f*][1,4]oxazepine (2) is active against electroshock as well as against strychnine-induced seizures, has some analgesic activity and also exhibits neuroleptic properties, but the overall profile of 2 does not present any advantages over the well known drug, carbamazepine (38).


The management of behavioural disorders with the anticonvulsant drug, carbamazepine (38)<sup>1</sup> constitutes a new departure in psychoactive pharmacotherapy and its psychotropic properties have been demonstrated in epileptic patients<sup>2</sup>. Improvement in mentation and neurophysiological functioning in epileptic patients, a major reason for selecting carbamazepine over other agents with comparable efficacy, seems to derive at least in part from a pharmacologic factor emanating from the tricyclic molecular configuration of the drug<sup>3,4</sup>. During the course of our extensive studies on condensed heterotricycles that led to the development of the safe and effective nitrodibenz[*b,f*][1,4]oxazepine antidepressant, Sintamil<sup>5-7</sup>, we had available to us an easy method for the synthesis of 10,11-dihydro-2-nitrodibenz[*b,f*][1,4]oxazepine (33)<sup>8</sup>. This prompted us to transform 33 into various acyl, carbamoyl and thiocarbamoyl derivatives for an anticonvulsant screening programme which aimed at discovering molecules with carbamazepine-like properties with better psychotropic effects if possible. It may be pointed out in this context that 10-carbamoyl-10,11-dihydrodibenz[*b,f*][1,4]oxazepine (1) has been reported to have anticonvulsant properties, as also the des-nitro derivative of the acetyl semicarbazide 11 which additionally has prostaglandin antagonistic properties, while the diethylaminoethyl urea of 10,11-dihydrodibenz[*b,f*][1,4]oxazepine has low anti-inflammatory activity. 3-Chloro-10-carbamoyl-10,11-dihydrodibenz[*b,f*][1,4]oxazepine has been tried in the clinic for anticonvulsant activity<sup>7</sup>.

The thiourea (2) was prepared from 10,11-dihydrodibenz[*b,f*][1,4]oxazepine<sup>9</sup> and thiocyanic

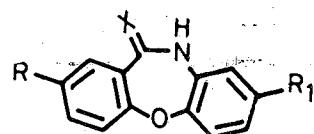


acid, and 1 by the use of cyanic acid. A similar reaction on 33 gave 3. Compounds 4-8 were obtained from 33 and appropriate isocyanates. Transformation of 33 to the chlorocarbonyl derivative (37) and further exposure to dimethylamine and hydrazine gave 9 and 10 respectively, the latter being acetylated to 11. Compound (12) resulted from the action of ethanol on 37. Acylation of 33 with acyl halides/or anhydrides gave 13-15, 15 being further transformed to the aminoacyl derivatives 16-18. The action of methyl isothiocyanate on 33 produced the thiourea (19). Amines 21-29 were obtained by catalytic hydrogenation of the respective nitro derivatives. 33 as well as its 8-methyl derivative (34) (prepared by the procedure used for 33) were catalytically reduced to amines (35) and (36), respectively. The reaction of 35 with cyanic acid afforded both 20 and 30. Compounds 31 and 32 have been reported earlier. Physical data for

†Contribution No. 733 from Research Centre.

Table 1—N-Acyl-, Carbamoyl and Thiocarbamoyl-10,11-dihydrodibenz[*b,f*][1,4]oxazepines[X=S for 2 and 19 and O for the rest, R<sub>1</sub>=H for 1,2; NO<sub>2</sub> for 3-19; NH<sub>2</sub> for 20-29; and NHCONH<sub>2</sub> for 30]

| Compd | R                                | Mol. formula*                                                                    | Crystallised from† | m.p.‡ °C  | Antielectroshock mg/kg p.o. |                       | % protection following    |                             | % inhibition AcOH writhing at 100 mg/kg p.o. |
|-------|----------------------------------|----------------------------------------------------------------------------------|--------------------|-----------|-----------------------------|-----------------------|---------------------------|-----------------------------|----------------------------------------------|
|       |                                  |                                                                                  |                    |           | ED <sub>50</sub>            | ED <sub>100</sub>     | Metrazol at 30 mg/kg i.p. | Strychnine at 30 mg/kg i.p. |                                              |
| 1     | NH <sub>2</sub>                  | C <sub>14</sub> H <sub>12</sub> N <sub>2</sub> O <sub>2</sub>                    | H                  | 162-64    | 70.5±14.4                   | 200 <sup>a,b,c</sup>  | 50                        | 25                          | —                                            |
| 2     | NH <sub>2</sub>                  | C <sub>14</sub> H <sub>12</sub> N <sub>2</sub> OS                                | H                  | 188-90    | 130±22                      | 500 <sup>a,c</sup>    | Ø                         | 50                          | 87<br>(ED <sub>50</sub> ; 47)                |
| 3     | NH <sub>2</sub>                  | C <sub>14</sub> H <sub>11</sub> N <sub>3</sub> O <sub>4</sub>                    | D+B                | 213-15    | —                           | Ø 500                 | Ø                         | Ø                           | 62                                           |
| 4     | NHMe                             | C <sub>15</sub> H <sub>13</sub> N <sub>3</sub> O <sub>4</sub>                    | B                  | 204-5     | >300                        | 500 <sup>a,c</sup>    | 25                        | Ø                           | 69                                           |
| 5     | NHEt                             | C <sub>16</sub> H <sub>15</sub> N <sub>3</sub> O <sub>4</sub>                    | B                  | 145-46    | —                           | >500 <sup>a,c</sup>   | Ø                         | Ø                           | 59                                           |
| 6     | NHPr(n)                          | C <sub>17</sub> H <sub>17</sub> N <sub>3</sub> O <sub>4</sub>                    | B                  | 135-38    | —                           | Ø 500 <sup>c</sup>    | Ø                         | Ø                           | 58                                           |
| 7     | NHC <sub>6</sub> H <sub>11</sub> | C <sub>20</sub> H <sub>21</sub> N <sub>3</sub> O <sub>4</sub>                    | B+G                | 182-83    | —                           | Ø 500                 | 25                        | 25                          | 16                                           |
| 8     | NHPh                             | C <sub>20</sub> H <sub>15</sub> N <sub>3</sub> O <sub>4</sub>                    | B                  | 215-16    | —                           | Ø 500                 | 50                        | Ø                           | 16                                           |
| 9     | NMe <sub>2</sub>                 | C <sub>16</sub> H <sub>15</sub> N <sub>3</sub> O <sub>4</sub>                    | H                  | 145-46    | >100                        | 250 <sup>b</sup>      | Ø                         | Ø                           | —                                            |
| 10    | NHNH <sub>2</sub>                | C <sub>14</sub> H <sub>12</sub> N <sub>4</sub> O <sub>4</sub>                    | C+H                | 201-2     | 81±17                       | 250                   | 50                        | 25                          | —                                            |
| 11    | NHNHAc                           | C <sub>16</sub> H <sub>14</sub> N <sub>4</sub> O <sub>5</sub>                    | F                  | 207-8     | —                           | 50 <sup>b</sup>       | Ø                         | Ø                           | —                                            |
| 12    | OEt                              | C <sub>16</sub> H <sub>14</sub> N <sub>2</sub> O <sub>5</sub>                    | B+G                | 166-67    | —                           | Ø 500 <sup>b</sup>    | 25                        | Ø                           | 47                                           |
| 13    | CH <sub>3</sub>                  | C <sub>15</sub> H <sub>12</sub> N <sub>2</sub> N <sub>4</sub>                    | D                  | 182-83    | —                           | Ø 500 <sup>c</sup>    | 25                        | Ø                           | 38                                           |
| 14    | CF <sub>3</sub>                  | C <sub>15</sub> H <sub>9</sub> F <sub>3</sub> N <sub>2</sub> O <sub>4</sub>      | D                  | 181-82    | —                           | Ø 500                 | Ø                         | Ø                           | —                                            |
| 15    | CH <sub>2</sub> Cl               | C <sub>15</sub> H <sub>11</sub> ClN <sub>2</sub> O <sub>4</sub>                  | D                  | 172-73    | —                           | Ø 500                 | 25                        | Ø                           | 28                                           |
| 16    | morpholino-methyl                | C <sub>19</sub> H <sub>19</sub> N <sub>3</sub> O <sub>5</sub>                    | D                  | 165-66    | —                           | Ø 500 <sup>b,c</sup>  | Ø                         | Ø                           | —                                            |
| 17    | CH <sub>2</sub> NET <sub>2</sub> | C <sub>19</sub> H <sub>21</sub> N <sub>3</sub> O <sub>4</sub>                    | E+G                | 130-31    | —                           | 500                   | —                         | —                           | —                                            |
| 18    | 4-methyl-piperazino-methyl       | C <sub>20</sub> H <sub>22</sub> N <sub>4</sub> O <sub>4</sub>                    | A                  | 166-67    | —                           | Ø 500 <sup>b</sup>    | 25                        | Ø                           | 38                                           |
| 19    | NHMe                             | C <sub>15</sub> H <sub>13</sub> N <sub>3</sub> O <sub>3</sub> S                  | A+B                | 268-69    | —                           | Ø 500                 | —                         | —                           | 63                                           |
| 20    | NH <sub>2</sub>                  | C <sub>14</sub> H <sub>13</sub> N <sub>3</sub> O <sub>2</sub>                    | D                  | 209-10    | —                           | —                     | —                         | —                           | —                                            |
| 21    | NHMe                             | C <sub>15</sub> H <sub>16</sub> ClN <sub>3</sub> O <sub>2</sub>                  | D                  | 245-46(d) | 500                         | >500 <sup>a,b,c</sup> | Ø                         | Ø                           | 73                                           |
| (HCl) |                                  |                                                                                  |                    |           |                             |                       |                           |                             |                                              |
| 22    | NHC <sub>6</sub> H <sub>11</sub> | C <sub>20</sub> H <sub>23</sub> N <sub>3</sub> O <sub>2</sub>                    | B                  | 159-60    | 200                         | 250 <sup>b</sup>      | 25                        | Ø                           | 40                                           |
| 23    | NHPh                             | C <sub>20</sub> H <sub>20</sub> N <sub>3</sub> O <sub>3</sub> Cl                 | D+E                | 180-83(d) | 73±10.9                     | 250 <sup>c</sup>      | 50                        | Ø                           | 71                                           |
| (HCl) |                                  |                                                                                  |                    |           |                             |                       |                           |                             |                                              |
| 24    | NMe <sub>2</sub>                 | C <sub>16</sub> H <sub>17</sub> N <sub>3</sub> O <sub>2</sub>                    | E+G                | 147-48    | 28.5±9.7                    | 100 <sup>a,b,c</sup>  | Ø                         | Ø                           | —                                            |
| 25    | NHNH <sub>2</sub>                | C <sub>14</sub> H <sub>14</sub> N <sub>4</sub> O <sub>2</sub>                    | D                  | 160-61    | —                           | 250 <sup>a,c</sup>    | Ø                         | Ø                           | —                                            |
| 26    | OEt                              | C <sub>16</sub> H <sub>17</sub> ClN <sub>2</sub> O <sub>3</sub>                  | D+E                | 225-28(d) | 53±11.2                     | >100 <sup>a,c</sup>   | Ø                         | Ø                           | 64                                           |
| (HCl) |                                  |                                                                                  |                    |           |                             |                       |                           |                             |                                              |
| 27    | CH <sub>3</sub>                  | C <sub>15</sub> H <sub>14</sub> N <sub>2</sub> O <sub>2</sub>                    | D+E                | 119-20(d) | 48±54                       | 100 <sup>a,c</sup>    | 25                        | Ø                           | 69                                           |
| 28    | CF <sub>3</sub>                  | C <sub>15</sub> H <sub>11</sub> F <sub>3</sub> N <sub>2</sub> O <sub>2</sub>     | E+G                | 146-47    | 68±4.4                      | >250                  | Ø                         | Ø                           | 52                                           |
| 29    | CH <sub>2</sub> NET <sub>2</sub> | C <sub>19</sub> H <sub>23</sub> N <sub>3</sub> O <sub>2</sub> ·½H <sub>2</sub> O | E+G                | 82-83     | <250                        | 500 <sup>b</sup>      | 50                        | 25                          | 85                                           |
| 30    | NH <sub>2</sub>                  | C <sub>15</sub> H <sub>14</sub> N <sub>4</sub> O <sub>3</sub>                    | H                  | 250-51(d) | —                           | Ø 500 <sup>c</sup>    | Ø                         | Ø                           | 71                                           |


\*All new compounds had C, H, N values within ±0.4% of the calculated values.

†Solvents for crystallisation: A-acetone; B-benzene; C-chloroform; D-ethanol; E-ether; F-ethyl acetate; G-hexane; H-methanol.

‡All the melting points are uncorrected.

§(a) Alaxia; (b) Loxic convulsions and tremors; (c) sedation; (Ø) no effect at indicated dose.

Table 2—Some Dibenzoxazepinones and 10,11-Dihydrodibenzoxazepines

[X = O for 31, 32; H<sub>2</sub> for 33-36; R = NH<sub>2</sub> for 31, 32, 35, 36; NO<sub>2</sub> for 33, 34; R<sub>1</sub> = H for 31, 33, 35; Me for 32, 34, 36]

| Compd | Mol. formula*                                                 | Crystallised from† | m.p.‡ °C | Antielectroshock <sup>§</sup> mg/kg p.o. |                       | % Protection following    |                             | % Inhibition AcOH writhing at 100 mg/kg p.o. |
|-------|---------------------------------------------------------------|--------------------|----------|------------------------------------------|-----------------------|---------------------------|-----------------------------|----------------------------------------------|
|       |                                                               |                    |          | ED <sub>50</sub>                         | ED <sub>100</sub>     | Metrazol at 30 mg/kg i.p. | Strychnine at 30 mg/kg i.p. |                                              |
| 31    |                                                               |                    |          | 50                                       | 100                   | —                         | —                           | —                                            |
| 32    |                                                               |                    |          | 100                                      | 250 <sup>e</sup>      | —                         | —                           | ED <sub>50</sub> : 4 p.o.                    |
| 33    |                                                               |                    |          | Ø 500                                    | Ø                     | Ø                         | Ø                           | —                                            |
| 34    | C <sub>14</sub> H <sub>12</sub> N <sub>2</sub> O <sub>3</sub> | B + G              | 137-38   |                                          |                       |                           |                             |                                              |
| 35    | C <sub>13</sub> H <sub>12</sub> N <sub>2</sub> O              | E + G              | 145-46   |                                          | 500*** <sup>a,c</sup> | Ø                         | Ø                           | 59                                           |
| 36    | C <sub>14</sub> H <sub>14</sub> N <sub>2</sub> O              | D                  | 127-28   | Ø 500 <sup>a,c</sup>                     | 25                    | 25                        | 25                          | 63                                           |

\*All the new compounds had C, H, N values within 0.4% of the calculated values.

†Solvents for crystallisation: B-benzene; E-ether; D-ethanol; G-hexane.

‡All melting points are uncorrected.

§(a) Ataxia; (b) toxic convulsions and tremors; (c) sedation; (Ø) no effect at indicated dose.

\*\*At 100mg/kg p.o., 50% mice showed loss of righting reflex and there was marked activity<sup>(++++)</sup> at 5 mg/kg p.o. in the DOPA response potentiation test and antagonism of reserpine induced hypothermia (ED<sub>50</sub> = 4.1 mg/kg p.o.) showing antidepressant type of activity.

compounds 1-30 are given in Table 1 and for 34-36 in Table 2.

#### Biological evaluation

Compounds were administered orally (p.o.) in 0.2% agar suspension or parenterally (i.p.) to CF male mice (n = 6/dose) for evaluation of anticonvulsant activity. Protection against electroshock seizures (Test 1) was routinely done at graded doses upto 500 mg/kg p.o. and 125 mg/kg i.p. ED<sub>100</sub> and/or ED<sub>50</sub> doses were determined one hour post-dose and used for comparison<sup>10</sup>. Protection against chemoshock convulsions induced by pentylenetetrazole (Metrazol), 150 mg/kg i.p. (Test 2) and strychnine, 2.5 mg/kg i.p. (Test 3) was examined after a test dose of 30 mg/kg i.p., and inhibition of acetic acid induced writhing (Test 4) was determined as % inhibition<sup>10</sup>. Selected compounds were also tested in mice for potential psychotropic properties and for evidence of amphetamine antagonism (Test 5) and catatonia (Test 6)<sup>11</sup>, for inhibition of perifornical rage in cats (Test 7)<sup>12</sup> and for DOPA response potentiation in mice (Test 8)<sup>13</sup>. Test 5 to 7 are commonly used for the detection of potential neuroleptic activity and Test 8 for the detection of antidepressant activity<sup>10,13</sup>. Results of Tests 1-4 for compounds (1-30) are recorded in Table 1 and for compounds (31-36) in Table 2. Table 3

Table 3—ED<sub>50</sub> (mg/kg) Values for 2 and 38 in Tests 1-8

| Test                                   |        | 2           | 38         |
|----------------------------------------|--------|-------------|------------|
| Antielectroshock                       | (p.o.) | 130 ± 22    | 11 ± 1.2   |
| Antimetrazol                           | (i.p.) | Ø 30        | 17.3 ± 3.8 |
| Antistrychnine                         | (i.p.) | 30 (approx) | 17 ± 4.1   |
| Inhibition AcOH writhing               | (p.o.) | 47          | 5          |
| Antiamphetamine                        | (i.p.) | < 30        | < 30       |
| Catatonia                              | (p.o.) | 500         | Ø 500      |
| Inhibition of perifornical rage in cat | (p.o.) | 100         | 60         |
| DOPA test                              | (p.o.) | Ø 25        | Ø 25       |

compares compound (2) with carbamazepine in Tests 1-8.

It is seen from Table 1 that acetylsemicarbazide (11) is highly potent against electroshock seizures but is inactive against chemoshock convulsions. Moreover even at 50 mg/kg p.o. it produced dyspnoea. Many of the other 11-substituted-2-nitro-10,11-dihydrodibenz[b,f][1,4]oxazepines have low anticonvulsant activity in Test 1, while the 2-amino derivatives tended to be more active. Table 2 shows that without an acyl substituent at position-10, both 2-nitro and 2-amino derivatives are inactive, whereas two 2-aminodibenzoxazepinones (31) and (32)<sup>14</sup> have moderate antielectroshock activity. The most active compound in this study, 24, was 1/5 as active as

carbamazepine in Test 1, had no appreciable activity in Tests 5-8 and further produced ataxia and toxic convulsions and tremors at 100 mg/kg p.o. Urea (1) was 1/6 as active as 38 in Test 1, but offered some protection against chemoshocks (Tests 2, 3). However, ataxia and toxic convulsions were seen at 200 mg/kg p.o. Only the thiourea (2) showed catatonia and frog-like jumping behaviour in the CNS profile (a property of neuroleptics) and hence it was tested exhaustively. Its performance in Tests 1-8 were compared with that of carbamazepine (38) (Table 3). Compounds (2) and (38) were characterized by activity against seizures induced in mice, activity in some neuroleptic test systems and absence of activity in the DOPA response system. Compound (2) was twelve times weaker in the antielectroshock test; unlike 38, 2 produced catatonia in mice and is  $1\frac{1}{2}$  times weaker in inhibition of electrically induced aggression in cats, a property characterizing neuroleptics. Although 2 was well-tolerated in the mouse ( $LD_{50} > 300$  mg/kg p.o. versus 3600 mg for 38), it was inferior to 38 in the tests designed for our specific objective and was hence not pursued further. The methylthiourea (19) had no antielectroshock activity which was a disincentive to synthesis and evaluation of higher homologues. 35 was characterized by marked activity in the DOPA response potentiation test and antagonism of reserpine-induced hypothermia, tests in which 38 was not active.

### Experimental Procedure

#### 10,11-Dihydro-8-methyl-2-nitrodibenz[*b,f*][1,4]oxazepine (34)

This was prepared by the procedure reported for 33<sup>8</sup> as follows: 2-Chloro-5-nitrobenzaldehyde (37 g, 0.2 mol) was condensed with 2-amino-*p*-cresol (24.6 g, 0.2 mol) in warm ethanol (200 ml) to afford the schiff base (54 g), m.p. 175-76° (from EtOH) (Found: C, 57.7; H, 3.9; N, 9.3.  $C_{14}H_{11}CN_2O_3$  requires C, 57.8; H, 3.9; N, 9.3%).

Schiff base (5.8 g, 20 mmol) and sodium hydride (50% suspension in mineral oil, 1 g, 22 mmol) were heated together in DMF (15 ml) for 15 min. The solution was poured in water and the product recovered by extraction with ethyl acetate to afford 8-methyl-2-nitrodibenz[*b,f*][1,4]oxazepine (2.6 g), m.p. 159-60° (from EtOH) (Found: C, 66.2; H, 4.3; N, 10.6.  $C_{14}H_{10}N_2O_3$  requires C, 66.1; H, 4.0; N, 11.0%).

Reduction of a solution of above (3.2 g) in dioxane (10 ml) and methanol (20 ml) with sodium borohydride (0.9 g) during 1½ hr and dilution with water gave after crystallisation from benzene-hexane, 34 (2.8 g), m.p. 137-38° (Found: C, 65.5; H, 4.7; N, 10.5.  $C_{14}H_{12}N_2O_3$  requires C, 65.6; H, 4.7; N, 10.9%).

#### 10,11-Dihydro-10-thiocarbamoyldibenz[*b,f*][1,4]oxazepine (2)

10,11-Dihydrodibenz[*b,f*][1,4]oxazepine (0.8 g, 4 mmol) was dissolved in dil HCl (4 ml of 1.026 N) and treated with potassium thiocyanate (0.4 g, 4 mmol). The solution was heated overnight. The precipitate was filtered off and crystallised from methanol to give 2 (0.5 g).

#### 10-Carbamoyl-10,11-dihydro-2-nitrodibenz[*b,f*][1,4]oxazepine (3)

A solution of 33 (2.5 g, 10 mmol) in acetic acid (2 ml) was heated with potassium cyanate (0.9 g, 11 mmol) on a water-bath for 3 hr and poured into water to give 3 (1 g) (from EtOH-benzene).

Similar treatment of the dihydrochloride of 35 (6 g) with potassium cyanate (3.4 g) in water (50 ml) gave a precipitate which was filtered off and washed with a little dil. HCl. Crystallisation from methanol gave the bis-carbamoyl derivative (30) (1.8 g). Neutralization of the filtrate with sodium hydroxide gave the monocarbamoyl derivative considered tentatively to be 20 which was purified by crystallisation from ethanol (2.2 g).

#### 10-Alkyl(cycloalkyl, aryl)carbamoyl-10,11-dihydro-2-nitrodibenz[*b,f*][1,4]oxazepines (4-8)

A solution of 33 (0.97 g, 4 mmol) and methyl isocyanate (0.23 g, 4 mmol) in benzene (50 ml) was heated under reflux for 24 hr and then evaporated to give crude methylcarbamoyl derivative (4). Crystallisation from benzene afforded pure 4 (0.8 g). Derivatives 5-8 were made similarly from the appropriate isocyanates.

#### 10,11-Dihydro-2-nitrodibenz[*b,f*][1,4]oxazepine-10-carboxylic acid chloride (37)

To a solution of phosgene (1.5 g, 15 mmol) in toluene (30 ml) at 5-10° was added with stirring, the amine 33 (2.7 g, 11 mmol) and triethylamine (1.1 g) in a mixture of ether (10 ml) and methylene chloride (10 ml). After 1 hr, the product was crystallized from benzene to give 37 (2.5 g), m.p. 185-86° (Found: C, 55.4; H, 3.4; N, 9.6.  $C_{14}H_9ClN_2O_4$  requires C, 55.2; H, 3.0; N, 9.2%).

#### 10,11-Dihydro-10-dimethylcarbamoyl-2-nitrodibenz[*b,f*][1,4]oxazepine (9)

A solution of 37 (0.4 g) in a 1:1 mixture of ether-methylene chloride (50 ml) was stirred at 10° for 1 hr with 40% aq. dimethylamine (0.2 g) and left overnight. Evaporation afforded 9 (0.3 g) which was crystallised from methanol.

#### 10,11-Dihydro-2-nitrodibenz[*b,f*][1,4]oxazepine-10-carboxylic acid hydrazide (10)

37 (1.21 g) was treated with hydrazine hydrate (0.6 g) as above to give 10 (0.8 g), which upon warming with

acetic anhydride (2.5 ml) on the water-bath for 10-15 min afforded the acetyl derivative (11).

**10-Acetyl-10,11-dihydro-2-nitrodibenz[*b,f*]-[1,4]oxazepine (13)**

33 (2 g) and acetic anhydride (2.5 ml) were heated together on a water-bath for 3 hr and poured into water to give 13 (1.9 g). Trifluoracetyl derivative (14) was prepared similarly.

**10-Chloracetyl-10,11-dihydro-2-nitrodibenz[*b,f*]-[1,4]oxazepine (15)**

A solution of 33 (2.9 g, 12 mmol) in benzene (100 ml) containing chloracetyl chloride (1.15 g, 12 mmol) and triethylamine (1.95 g) was heated under reflux for 5 hr, filtered and the filtrate evaporated *in vacuo*. The residue was crystallised from ethanol to give 15 (2.1 g).

Similar reaction of 33 (2.4 g, 10 mmol) with ethyl chloroformate (1.5 g, 14 mmol), but without using triethylamine gave 12 (1.9 g).

**10,11-Dihydro-10-(morpholinoacetyl)-2-nitrodibenz-[*b,f*][1,4]oxazepine (16)**

A solution of 15 (1.9 g, 6 mmol) and morpholine (0.7 g, 8 mmol) in benzene (50 ml) was heated under reflux for 20 hr and filtered. Evaporation of the filtrate and crystallization from ethanol afforded 16 (1.3 g).

Aminoacyl derivatives (17) and (18) were prepared similarly.

**10,11-Dihydro-10-methylthiocarbamoyl-2-nitrodibenz[*b,f*][1,4]oxazepine (19)**

A solution of 33 (1 g, 4 mmol) and methyl isothiocyanate (0.4 g, 5.5 mmol) in benzene (20 ml) was heated under reflux for 48 hr and evaporated. The product was crystallised from acetone-benzene to afford 19 (0.6 g).

**2-Amino-10-alkyl(cycloalkyl, aryl)carbamoyl- and 2-amino-10-acyl(aminoacyl)-10,11-dihydrodibenz-[*b,f*][1,4]oxazepines (21-29)**

The general procedure is exemplified for 21. A solution of 4 (4 g) in methanol (200 ml) was shaken with hydrogen at 1 atmospheric pressure and room temperature in the presence of platinum catalyst (from 100 mg PtO<sub>2</sub>) during 17 hr when uptake of 3 mol of hydrogen was complete. The mixture was filtered and the filtrate evaporated. The residue was converted into the hydrochloride salt which was crystallised from ethanol to afford 21 HCl (2.9 g). 23 and 26 were similarly characterized as hydrochlorides, while 22, 24, 25 and 27-29 were crystalline solids by themselves.

2-Amino-10,11-dihydrodibenz[*b,f*][1,4]oxazepines (35) and (36) carrying no substituent at position-10 were similarly prepared from 33 and 34 respectively.

**References**

- 1 Kuhn R, *Epileptic seizures—Behaviour-pain*, edited by W Birkmayer (Hans Huber, Vienna) 1976 p 268.
- 2 Murray W J & Kier L B, *Medicinal chemistry: Anticonvulsants*, Vol. 15 edited by J A Vida (Academic Press, New York) 1977 p 577.
- 3 Gagneux A R, *Epileptic seizures—Behaviour-pain*, edited by W Birkmayer (Hans Huber, Vienna) 1976 p 120.
- 4 Troupin A S, *Recent advances in epilepsy*, edited by T A Pedley & B S Meldrum (Churchill Livingstone, Edinburgh) 1983 p 47.
- 5 Kaiser C & Setler P E, *Burger's medicinal chemistry*, Part III edited by M E Wolff (Wiley, New York) 1979 p 997.
- 6 von Voigtlander P F, *Annual reports in medicinal chemistry*, Vol. 11, edited by F H Clarke (Academic Press, New York) 1976 p 3.
- 7 Nagarajan K, *Studies in organic chemistry—New trends in heterocyclic chemistry*, edited by R B Mitra, N R Ayyangar, V N Gogte, R M Acheson & N Cromwell (Elsevier, New York) 1974 p 317.
- 8 Nagarajan K, Venkateswarlu A, Kulkarni C L & Shah R K, *Indian J Chem.*, **12** (1974) 227.
- 9 Hunziker F, Kuenzel F, Schindler O & Schmutz J, *Helv Chim Acta*, **47** (1964) 1163.
- 10 David J & Grewal R S, *Indian J exptl Biol.*, **12** (1974) 225.
- 11 Merpуро C, *Arzneimittel Forsch.*, **11** (1971) 1727.
- 12 Koella W P, Levin P & Baltzer V, *Epileptic seizures—Behaviour-pain*, edited by W Birkmayer (Hans Huber, Vienna) 1976 p 32.
- 13 Nagarajan K, David J & Shah R K, *J mednl Chem.*, **19** (1976) 508.
- 14 Nagarajan K, Venkateswarlu A, Kulkarni C L, Goud A N & Shah R K, *Indian J Chem.*, **12** (1974) 236.