

Antiimplantation Agents: Part III—1,2-Diaryl-4,5-polymethylenepyrroles & 1,2-Diaryl-4-oxo- & 1,2-Diaryl-4-hydroxy-4,5,6,7-tetrahydroindoles^{a,b,c}

K NAGARAJAN*^a, P K TALWALKER, R K SHAH, S R MEHTA & G V NAYAK

Hindustan CIBA-GEIGY Ltd., Research Centre, Goregaon East, Bombay 400 063

Received 28 May 1984; accepted 7 November 1984

2-Phenacylcycloalkanones (3) and anilines give rise to polymethylenepyrroles (4). Pyrrolopiperidine (10) is likewise obtained from 2-phenacylpiperidone (9). 2-Phenacylcyclohexane-1,3-diones undergo condensation with anilines to form 1,2-diaryl-4-oxo-4,5,6,7-tetrahydroindoles (15) and with a variety of other amines to give 28, while 2-acetonyldimedone and *p*-fluoroaniline afford 32. Some members of 15, and 28a and 32 are reduced to alcohols 20, 29 and 33 respectively. Attempted dehydration of 20d and acylation of 33 lead to the formation of dimers 21 and 34, while hydrogenolysis of the former transforms it to 22. 15c and 15a are converted into azepinones 24c and 24a via oximes 16c and 16a. 24a is aminoalkylated to 24b and reduced to 27. 4e and 15c undergo Mannich reaction at β -position of the pyrrole ring to form 5 and 18a, while 15n is attacked at a position α to the C=O group giving a mixture of 18b and 19b. Perhydroindoline 36 is obtained from 2-allyldimedone. 1,2-Diaryl-4-acetyl-5-methylpyrroles 38a and 38b made available from triketone 37 are reduced to alcohols 39a and 39b. Several compounds of the study exhibit antiimplantation activity in the rat, among which the ethers 4m, 4n and 4p of 1-(*p*-hydroxyphenyl)-2-phenyl-4,5-polymethylenepyrroles, 1,2-diaryl-4-oxo-4,5,6,7-tetrahydroindoles (15e, 15n, 15w and 15z), 1,2-diaryl-4-hydroxy-4,5,6,7-tetrahydroindoles [20a, 20d (C 6924-Go) and 20e] and the desoxy derivative 22 of 22d are effective at a dose of 10 mg/kg p.o. \times 6 days or less. Compounds 4p (MED₁₀₀ 1 mg), 20d (MED₁₀₀ 2 mg) and 22 (MED₁₀₀ 1 mg) show no dissociation between antiimplantation and estrogenic activities. Detailed studies on C-6924 reveal that it owes its activity to weak estrogenic-antiestrogenic properties.

In the previous paper¹, we presented the antiimplantation properties of a series of 1,2-diaryl-1,2,3,4-tetrahydroisoquinolines. We report in this paper, the structure-activity relationships in a series of 1,2-diaryl-4,5-polymethylenepyrroles and 1,2-diaryl-4-oxo-4,5,6,7-tetrahydroindoles and their derivatives which had similar properties.

Chemistry

Polymethylenepyrroles

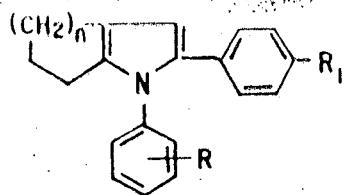
The polymethylenepyrroles 4 (Table 1) and 6 (Table 6) were obtained by heating phenacyl cycloalkanones (3) with amines, especially anilines at 170-180°. Ketones 3 in turn were obtained from the pyrrolidine enamines (2a-2c) of cyclopentanone (1a), cyclohexanone (1b) and cycloheptanone (1c) by treatment with phenacyl bromides by a procedure known for 3b². Some members of 4 are reported to undergo dehydrogenation to 1,2-diaryliindoles³. The aminoalkyl ethers, e.g. 4b, 4h and 4p were prepared from the respective phenols. 7a was obtained from 3b and N-aminopiperidine in refluxing ethanol containing acetic acid. Mannich reaction of 4e with formaldehyde and morpholine afforded 5 which did

not show the pyrrole β -proton signal in the PMR spectrum. This signal was seen at δ 6.25 in the PMR spectrum of 4e. The major product from 7a, formaldehyde and morpholine was an oil, probably 7b. However, a crystalline product obtained in low yield was the methylene-bis-derivative formed by bridging the β -position in 2 moles of 7a by a CH₂ group; its PMR spectrum did not exhibit a signal at δ 5.95 observed for 7a.

Compound 3b and isonicotinic acid hydrazide gave 8, while the 3-phenacyl derivative (9) of N-benzyl-4-piperidone and *p*-fluoroaniline afforded 10. The former reaction could conceivably yield a cinnoline^{4,5}. However, structure 8 was supported by the presence, in the PMR spectrum (DMSO-*d*₆), of a singlet at δ 6.13 ppm (pyrrole β -proton) and another at 11.67 (NH). Further, the base peak in the mass spectrum of 8 was a fragment formed by the loss of isonicotinamide (M⁺ - 122). Pyrrol ethers 11a and 11b included as monocyclic derivatives in this study were prepared from 1-(*p*-hydroxyphenyl)-2,5-dimethylpyrrole⁶.

4-Keto-4,5,6,7-tetrahydroindoles and transformation products

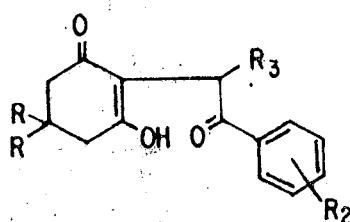
Fusion of the ketones 13 (Table 2) with appropriate anilines at 170-180° gave compounds of the general structure 15 (Table 3) in good yields. For the synthesis of 15ec, refluxing acetic acid was found to be a suitable medium. Derivatives 13 where R = Me were conveniently synthesised in moderate to good yields by


*Contribution No. 724 from Research Centre.

^aPart II: Nagarajan K, Talwalker P K, Kulkarni C L, Shah R K, Shenoy S J & Prabhu S S, *Indian J Chem*, 24B (1985) 83.

^bDedicated to Dr. Nitay Ahand on his 60th birth anniversary.

^cPresent address: R&D Centre, Searec (India) Ltd.,thane 400 601.


Table 1 Diaryl-4,5-polymerized pyrroles

Compd*	<i>n</i>	R	R ₁	Mol. formula	m.p./b.p. (mm) C	Crystallised from†	Anti-implantation activity (rat) MED ₁₀₀ (mg/kg/day p.o. × 6 days)
4a	1	4-OH	H	C ₁₉ H ₁₇ NO	151-52	A+C	>100
4b	1	4-(N-Pyrrolidino)ethoxy	H	C ₂₅ H ₂₈ N ₂ O	93-94	E	50
4c	2	3-Cl	H	C ₂₀ H ₁₈ ClN	99-100	F+B	0
4d	2	3-(N-Pyrrolidino)ethoxy	H	C ₂₆ H ₃₀ N ₂ O	250(5 × 10 ⁻³) (Oil)	100	
4e	2	4-F	H	C ₂₀ H ₁₈ FN	129-30	F+B	0
4f	2	4-OMe	H	C ₂₁ H ₂₁ NO	132-33	F+B	0
4g	2	4-OH	H	C ₂₀ H ₁₉ NO	187-78	B	0
4h	2	4-OCH ₂ CH ₂ NEt ₂	H	C ₂₆ H ₃₂ N ₂ O	220(5 × 10 ⁻³) (Oil)	50	
4i	2	4-(N-Pyrrolidino)ethoxy (maleate)	H	C ₃₀ H ₃₄ N ₂ O ₅	156-57	B+D	25
4j	2	4-(N-Pyrrolidino)ethoxy	Cl	C ₂₆ H ₂₄ ClN ₂ O	113-14	E	25
4k	2	4-(N-Piperidino)ethoxy (maleate)	H	C ₃₁ H ₃₆ N ₂ O ₅	158-59	B+D	25
4l	2	4-(N-Morpholino)ethoxy	H	C ₃₀ H ₃₄ N ₂ O ₆	178-79	A+B	>100
4m	2	4-OCH ₂ CH ₂ CH ₂ NMe ₂	H	C ₂₅ H ₃₀ N ₂ O	92-94	E	10
4n	2	4-(N-Piperidino)propoxy	H	C ₂₈ H ₃₁ N ₂ O	88-90	E	10
4o	3	4-OH	H	C ₂₁ H ₂₁ NO	153-55	B+C	0
4p	3	4-(N-Pyrrolidino)ethoxy	H	C ₂₇ H ₃₂ N ₂ O	115-57	D+E	1
4q	2	3-OH	H	C ₂₀ H ₁₉ NO	Gum		
4r	2	4-OH	Cl	C ₂₀ H ₁₈ ClNO	169-70	B	

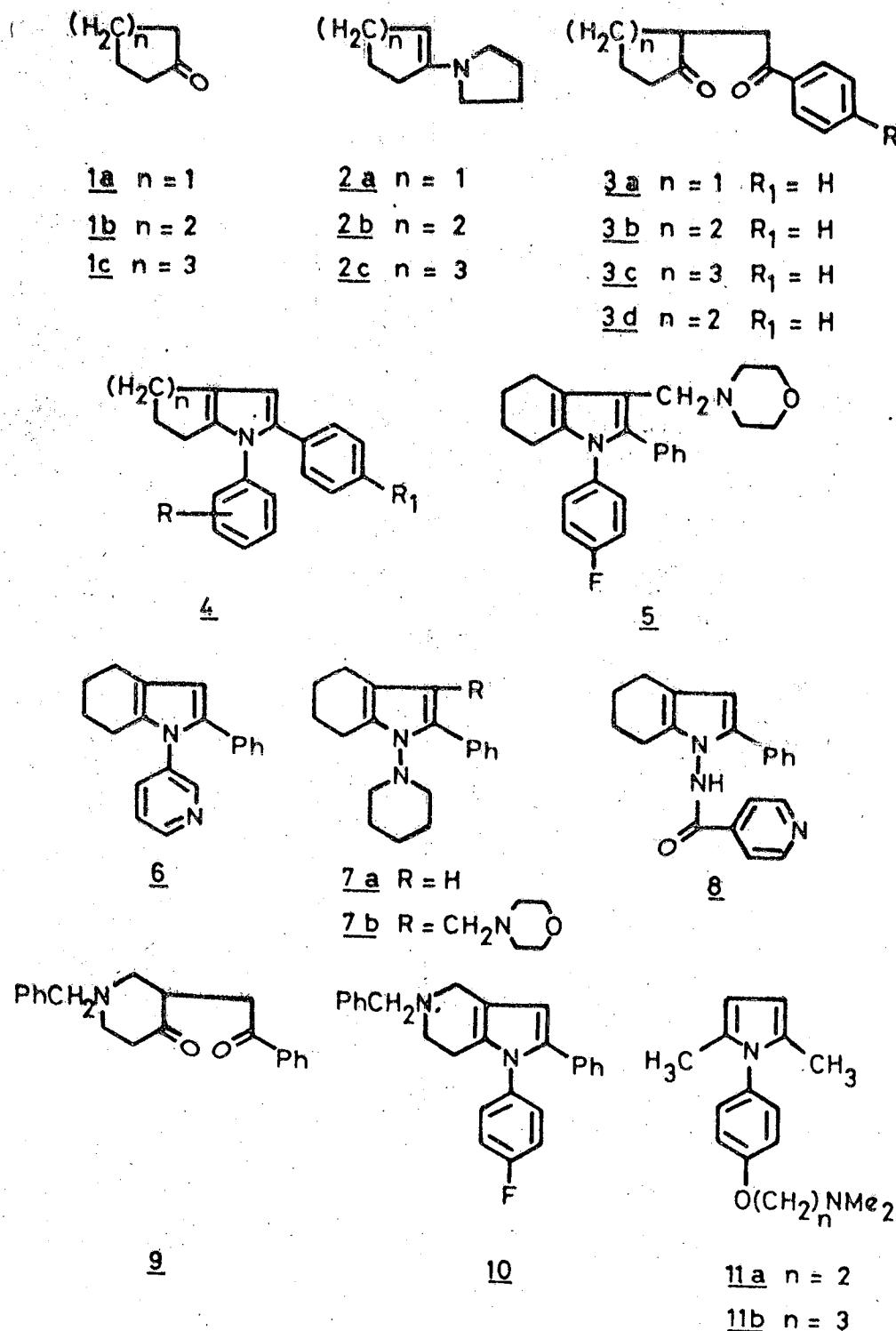
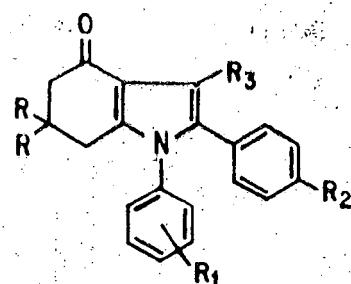

*All the compounds gave satisfactory analyses for C, H and N. The data are available with the authors.
†A = methanol, B = ethanol, C = water, D = ether, E = hexane, F = acetone.

Table 2 2-Phenacylcyclohexane-1,3-diones (13)

Compd*	R	R ₂	R ₃	Mol. formula	m.p. C	Crystallised from†
13a	H	H	H	C ₁₄ H ₁₄ O ₃	148-49	B
13b	Me	H	H	C ₁₆ H ₁₆ O ₃	180-82	B+C
13c	Me	H	Me	C ₁₇ H ₂₀ O ₃	143-45	A
13d	Me	2-NO ₂	H	C ₁₆ H ₁₇ NO ₅	172-74	B
13e	Me	4-Br	H	C ₁₆ H ₁₇ BrO ₃	172-74	B
13f	Me	4-Cl	H	C ₁₆ H ₁₇ ClO ₃	234-38	B
13g	Me	4-NO ₂	H	C ₁₆ H ₁₇ NO ₅	202-4	B
13h	Me	4-OMe	H	C ₁₇ H ₂₀ O ₄	167-68	B+C
13i	Me	4-F	H	C ₁₆ H ₁₇ FO ₃	157-60	B+C


*All the compounds gave satisfactory analyses for C, H and N. The data are available with the authors.
†A = methanol, B = ethanol, C = water.

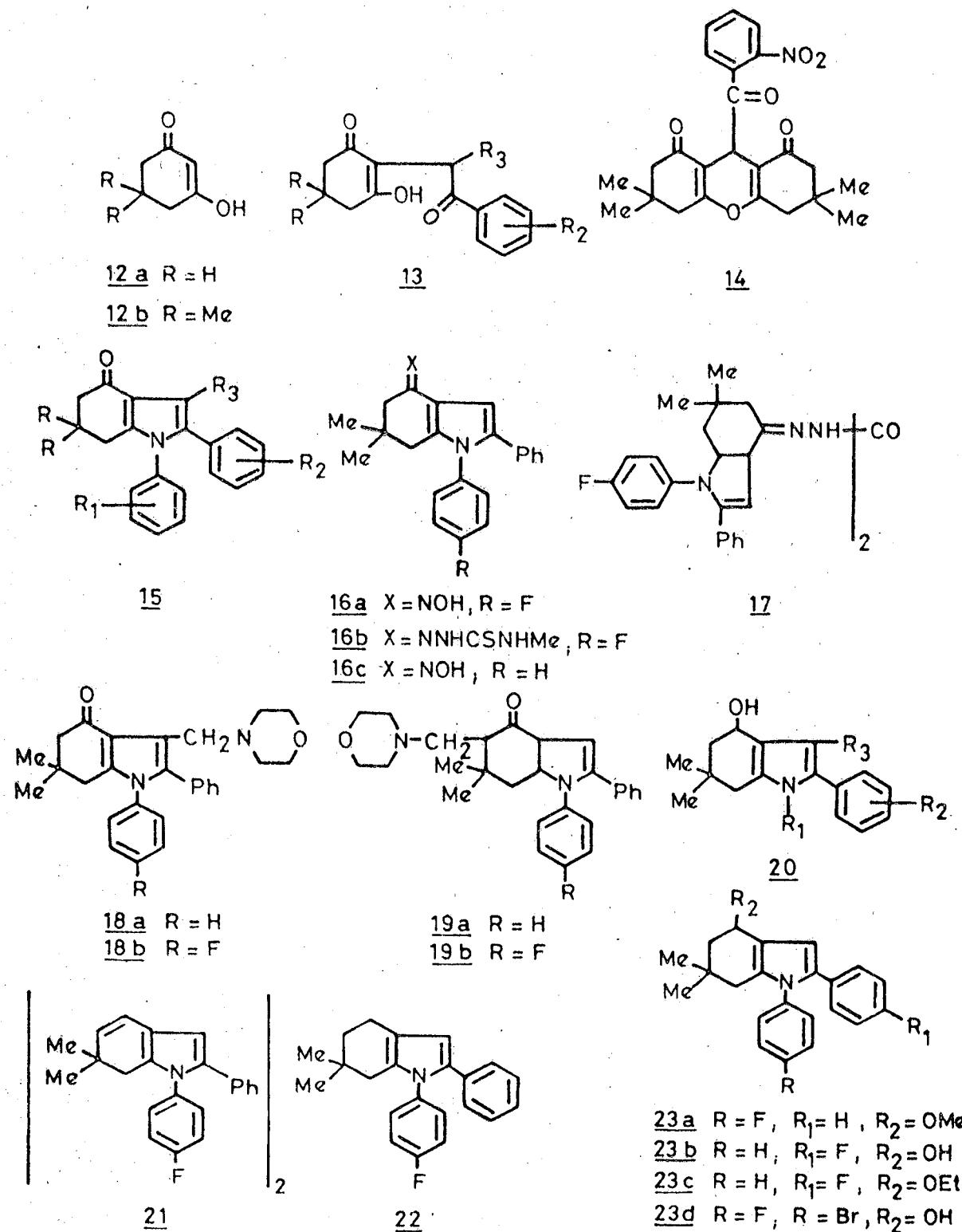
the reaction of dimedone (12b) with phenacyl bromides in chloroform in the presence of potassium carbonate⁵. In some cases neutral products resulting from O-alkylation were obtained⁵. But in the preparation of 13d, the neutral byproduct was the xanthene 14. We rationalise its formation on the basis of the presence of small amounts of ω,ω -dibromo- ω -nitroacetophenone in the alkylating agent. C-

Alkylation of dimedone by this dibromide, followed by cyclodehydration would lead to 14. For the alkylation of 12a, the literature procedure⁷ was found to be better. Phenylacetic acid 15i was the hydrolysis product of 15k which arose from the reaction of 13b and ethyl p -aminophenylacetate. Direct condensation of 13b with p -aminophenylacetic acid was less satisfactory. Amine 15q, the reduction product of 15g

Table 3—1,2-Diaryl-4-keto-4,5,6,7-tetrahydroindoles (15)

Compd*	R	R ₁	R ₂	R ₃	Mol. formula	m.p. °C	Crystallised from†	Antiimplantation activity (rat) MED ₁₀₀ (mg/kg/day) p.o. × 6 days
15a	H	H	H	H	C ₂₀ H ₁₇ NO	199-201	B	φ
15b	H	4-F	H	H	C ₂₀ H ₁₆ FNO	164-65	A	φ
15c	Me	H	H	H	C ₂₂ H ₂₁ NO	209-10	F+A	50
15d	Me	2-Me	H	H	C ₂₃ H ₂₃ NO	170-72	A+C	φ
15e	Me	2-F	H	H	C ₂₂ H ₂₀ FNO	205-6	A+C	10
15f	Me	3-CF ₃	H	H	C ₂₃ H ₂₀ F ₃ NO	145-57	B	φ
15g	Me	3-F	H	H	C ₂₂ H ₂₀ FNO	185-87	B	25
15h	Me	3-OH	H	H	C ₂₂ H ₂₁ NO ₂	199-200	A	φ
15i	Me	4-CF ₃	H	H	C ₂₃ H ₂₀ F ₃ NO	165-67	B	φ (at 50 mg)
15j	Me	4-Me	H	H	C ₂₃ H ₂₃ NO	193-94	B	>100
15k	Me	4-CH ₂ CO ₂ Et	H	H	C ₂₆ H ₂₅ NO ₃	162-65	A	—
15l	Me	4-CH ₂ CO ₂ H	H	H	C ₂₄ H ₂₃ NO ₃	250-51	A	φ
15m	Me	4-Cl	H	H	C ₂₂ H ₂₀ CINO	188-89	F+A	50
15n	Me	4-F	H	H	C ₂₂ H ₂₀ FNO	205-6	F+A	10
15o	Me	4-F	Br	H	C ₂₂ H ₁₉ BrFNO	243-44	F+A	φ
15p	Me	4-F	Cl	H	C ₂₂ H ₁₉ ClFNO	234-35	F+A	φ
15q	Me	4-F	NH ₂	H	C ₂₂ H ₂₁ FN ₂ O	283-85	F+A	φ
15r†	Me	4-F	NHR ₄ H	H	C ₂₆ H ₂₇ FN ₄ OS	207(d)**	F+A	φ
15s	Me	4-F	NO ₂	H	C ₂₂ H ₁₉ FN ₂ O ₃	280-81	F+B	φ
15t	Me	4-F	OMe	H	C ₂₃ H ₂₂ FNO ₂	221-23	F+A	25
15u	Me	4-F	H	Me	C ₂₃ H ₂₂ FNO	193-94	F+A	25
15v	Me	4-OH	H	H	C ₂₂ H ₂₁ NO ₂	296-98	F+A	φ
15w	Me	4-(NPyrrolidinoethoxy) (HCl. 2H ₂ O)	H	H	C ₂₄ H ₃₃ CIN ₂ O ₂ 2H ₂ O	184 (—H ₂ O at 180°)	B+D	3
15x	Me	4-OMe	H	H	C ₂₃ H ₂₃ NO ₂	183-84	B	>100
15y	Me	4-NH ₂	H	H	C ₂₂ H ₂₂ N ₂ O	268-70	A	φ
15z	Me	4-NHNH ₂	H	H	C ₂₂ H ₂₃ N ₃ O	208(d)	H+E	10
15aa	Me	4-NHNHCNSNHMe	H	H	C ₂₄ H ₂₆ N ₄ OS	271(d)	DMF+D	φ
15bb	Me	NMe ₂	H	H	C ₂₄ H ₂₆ N ₂ O	189-90	F+A	>100
15cc	Me	NO ₂	H	H	C ₂₂ H ₂₀ N ₂ O ₃	196-99	A	φ
15dd	Me	H	4-F	H	C ₂₂ H ₂₀ FNO	187-89	F+A	φ

*All the compounds gave satisfactory analyses for C, H and N. The data are available with the authors.


†A = Methanol, B = ethanol, C = water, D = ether, E = hexane, F = acetone.

‡R₄ = NHCSNHCH₂CH = CH₂; from hydrazine, m.p. 230-31°.

**Softening at 170°.

was further converted into the allyl thiosemicarbazide (15r) through the hydrazine formation. Similarly, the amine 15y, prepared from the acetamide (obtained from 13b and *p*-aminoacetanilide), was converted into the hydrazine 15z and thence into the methyl thiosemicarbazide 15aa. The pyrrolidinoethoxy derivative 15w was obtained from phenol 15v by alkylation.

Ketotetrahydroindoles 15n and 15c were transformed into the oximes 16a and 16c respectively (Table 4), and the former into the methyl thiosemicarbazone 16b. Reaction of 15n with semicarbazide took an anomalous turn to afford a dimeric product tentatively formulated as 17 on the basis of C, H and N analyses. The highest peak in its mass spectrum was at *m/z* 662, corresponding to the loss of —NHCONH— unit from

the molecular ion (720). Hydrazine and monosubstituted hydrazines undergo reaction with 13 to give perhydrocinnolines^{1,2}. While 3b and N-amino-piperidine lead to the formation of the expected 1-(N-piperidino)perhydromdoles 7a, 13 and N,N disubstituted hydrazines form 3-aminoindoles by an

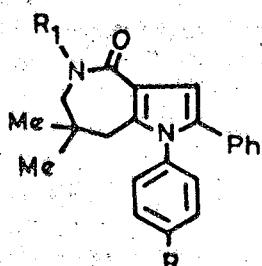
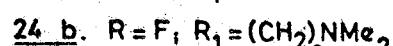
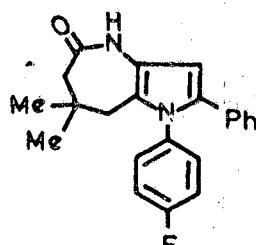
anomalous reaction⁸. Mannich reaction on 15c and 15n proceeded very slowly and partially to afford products in low yields. The reaction can occur either on the pyrrole or on the CH_2 group adjacent to $\text{C} = \text{O}$ group. The product from 15c (M^+ at m/z 414) was homogenous and readily recognized as 18a (one singlet

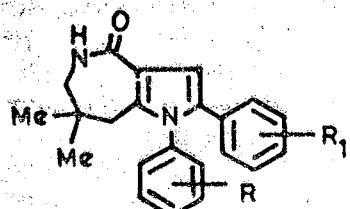

for $2 \times$ Me at δ 1.09, a singlet for N-CH₂ at 3.78; no signal for pyrrole β -proton); on the other hand, the product from **15b** was a mixture (TLC) of **18b** and **19b** (**18b**: one singlet for 2Me at δ 1.09, N-CH₂ singlet at 3.73; **19b**: two Me singlets at δ 1.04 and 1.13, pyrrole β -proton singlet at 6.73) in the ratio of about 3:5.

Reduction of ketones **15** to alcohols **20** (Table 4) proceeded somewhat sluggishly with sodium borohydride but more readily with lithium aluminium hydride. However, these alcohols were fairly reactive and underwent secondary reactions to give byproducts. Thus, during the large scale preparation and crystallisation of **20d** from THF-MeOH, a small amount of a highly soluble product was obtained and identified as the methyl ether **23a** [M⁺ at *m/z* 349; PMR(CDCl₃): δ 6.80-7.44 (*m*, aromatic H), 6.47 (*s*, pyrrole β -H), 4.46 (*t*, CH-OMe), 3.5 (*s*, OMe), 1.33-2.22 (*m*, two CH₂ groups), 1.08 (*s*, Me), 0.99 (*s*, Me)]. Similarly in another case, the alcohol **23b** arising in the incomplete reduction of **15dd** seemed to have formed the ethyl ether **23c** in the process of purifying by crystallization from ethanol [M⁺ at *m/z* 363; NMR/(CDCl₃): -CH₃CH₂, *t* at δ 1.27; CH₂-CH₃, *q* at 3.71; two nonequivalent methyl singlets at 0.98 and 1.07; pyrrole β -proton at 6.4 ppm; multiplets for other protons]. During reduction of ketone **15o**, the bromine atom was lost partially to afford besides the expected alcohol **23d**, **20d** also the extent of **15o** (M⁺ at *m/z* 335

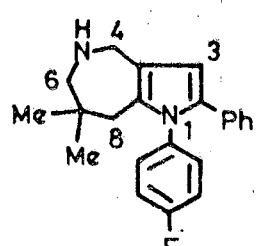
and other fragments observed in the mass spectrum of **20d** (Found: Br, 16.84. Calc.: Br, 16.40%). For the synthesis of **22**, a convenient procedure was the catalytic hydrogenolysis of **20d**. An attempt to dehydrate **20d** under acid catalysis led to a product with the right elemental analysis, but the high melting point and the mass spectrum (M⁺ at *m/z* 634) showed it to be the dimer **21** of undeduced structure. Likewise an attempted acetylation of **20d** led to a product with the right elemental analysis for the expected product. But the high m.p. and mass spectrum require it to be formulated as a dimer; however, the IR spectrum lacking any C=O band was puzzling.

Beckmann rearrangement of the oxime **16a** with PPA afforded an azepinone (**24**) which was further aminoalkylated to **24b** and also reduced to **27**. The ring-enlarged product was formulated as **24a** rather than **25** on the basis of PMR data. Thus, the pyrrole β -protons in **24a** and **24b** appeared as singlets at δ 6.7 and 6.9 respectively, downfield from its 'normal' position because of the effect of an adjacent C=O group (*c.f.* 6.77 ppm for the same proton in **15n**). In the reduction product **27**, this signal moved upto its normal position at δ 6.25 ppm. Further in the spectrum of **27**, the ring methylene groups were seen as singlets at δ 3.88, 2.90 and 2.45 corresponding to the protons at C-4, C-6 and C-8 respectively. Additionally, it was noted that in **24b** the protons at C-6 and C-8 were seen as insulated




Table 4 - Oximino and Hydroxy-perhydroindoles (16, 20 and 22)


Compd*	R	R ₁	R ₂	R ₃	R ₄	Mol. formula	m.p. C	Crystallised from†	Antimplantation activity (rat) MED ₁₀₀ (mg/kg/ day p.o. \times 6 days)
16a	Me	4-F	H	=NOH		C ₂₂ H ₂₁ FN ₂ O	274-77(d)	B	φ
16b	Me	4-F	H	=NNHC ₂ SNHMe		C ₂₄ H ₂₅ FN ₄ S	263-65	E+A	φ
16c	Me	H	H	=NOH		C ₂₂ H ₂₂ N ₂ O	260-61	B	
20a	Me	H	H	H	OH	C ₂₂ H ₂₃ NO	186-88	D	
20b	Me	3-F	H	H	OH	C ₂₂ H ₂₂ FNO	192-96	D	10
20c	H	4-F	H	H	OH	C ₂₀ H ₁₈ FNO	85-85	C	50
20d	Me	4-F	H	H	OH	C ₂₂ H ₂₁ FNO	192-93	THF+A	φ
20e	Me	4-F	Me	H	OH	C ₂₃ H ₂₄ FNO	165-68	A	3
22	Me	4-F	H	H	H	C ₂₂ H ₂₂ FN	138-40	C	3

*All the compounds gave satisfactory analyses for C, H and N. The data are available with the authors.


†A = Methanol, B = ethanol, C = hexane, D = benzene, E = chloroform.

24 a. $R = F, R_1 = H$ 24 c. $R = R_1 = H$

25

26 $R = H, R_1 = SO_3H$

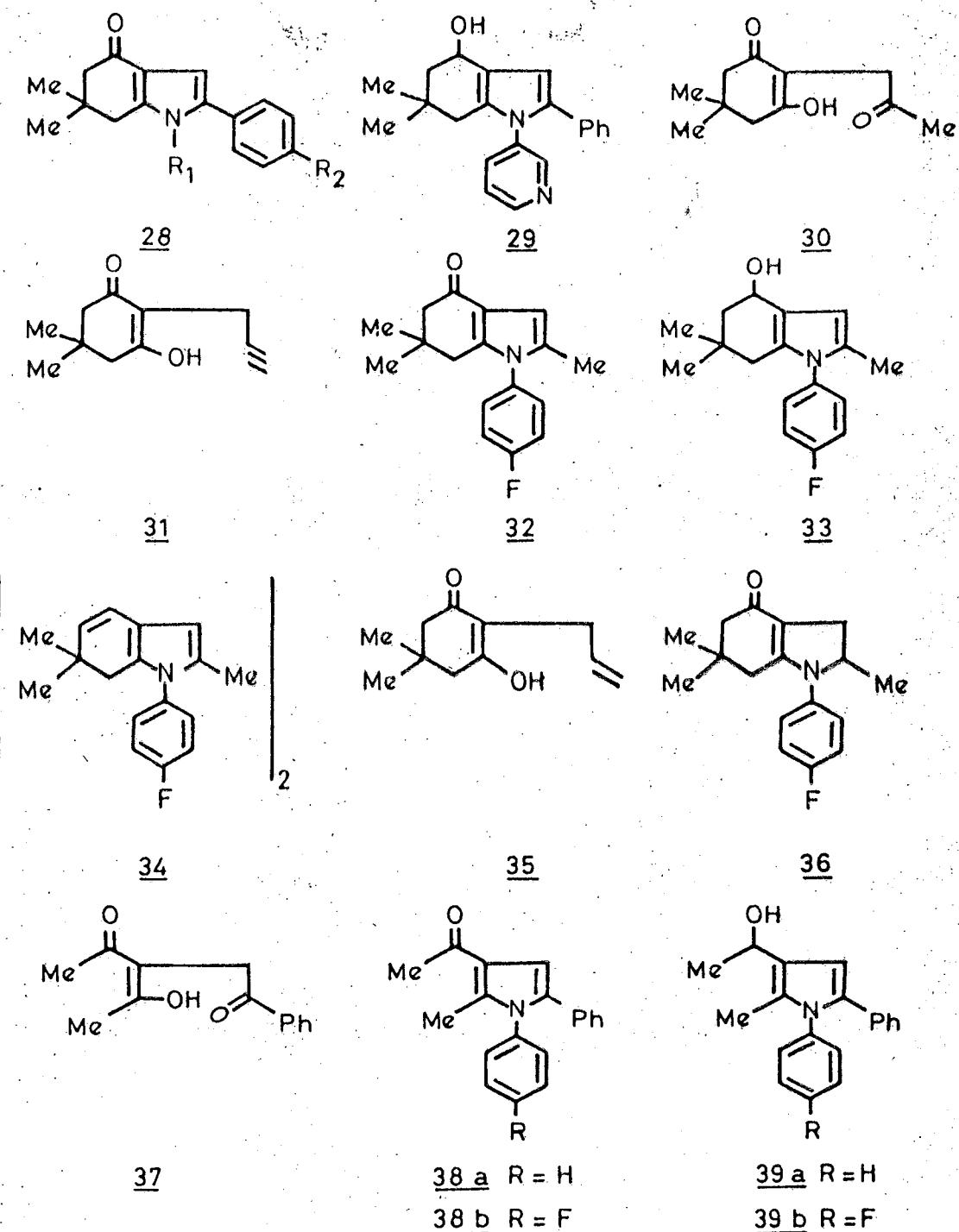
or vice versa

27

singlets at δ 3.05 and 2.38 respectively. Literature precedent⁹ exists to support the direction of ring enlargement of similar molecules. The oxime 16c underwent similar rearrangement to azepinone 24c.

The use of conc. sulphuric acid to effect Beckmann transformation of the oxime 16a resulted in ring

expansion and sulphonation to afford 26, which also arose from 24a under similar conditions. The PMR spectrum in $DMSO-d_6$ showed that one of the two aryl groups (undetermined) had got sulphonated. The pyrrole β -position remained intact (singlet at δ 6.8). The sulphonic acid group was not located on the lactam nitrogen since the signals for protons at C-6 (δ 3) and C-8 (δ 2.4) had not moved appreciably from their locations in 24a (δ 2.93 and 2.38).


Reactions of some ketones (13) with miscellaneous amines like 3-aminopyridine, aminoethanol, morpholinopropylamine, *p*-chlorobenzylamine and cyclohexylamine afforded tetrahydroindoles of the structure 28 (Table 5). Of these, 28a was reduced to the alcohol 29. The 2-methylketotetrahydroindole 32 (Table 6) became available by reaction of acetonyldimedone (30) or 2-propargyldimedone (31) with *p*-fluoroaniline, while 2-allyldimedone (35) and the same aniline gave the dihydroindole derivative (36). Formulation of the product as the perhydroindole (36), rather than as the isomeric perhydroquinoline was supported by PMR data [δ 4.3 (*m*, 1H, $C_2 - H$), 1.2 (*d*, 3H, $C_2 - Me$), 1.07 (*s*, 3H, $C_6 - Me$), 1.00 (*s*, 3H, $C_6 - Me$)]. Reduction of 32 afforded the oily alcohol 33, which under the conditions of benzylation formed dimer the 34 of undeduced structure.

Lastly, some monocyclic analogues of active compounds were prepared from the ketone 37 and aniline or *p*-fluoroaniline. Acetylpyrroles 38a and 38b thus produced were reduced to the alcohols 39a and 39b respectively (Table 6).

Table 5—Miscellaneous 1-Substituted 4-Keto-4,5,6,7-tetrahydroindoles and Related Alcohols

Compd*	R	R ₁	R ₂	R ₃	R ₄	Mol. formula	m.p. °C	Crystallised from†	Antiimplantation activity (rat) MED ₁₀₀ (mg/kg/day) p.o. × 6 days
28a	Me	3-Pyridyl	H	=O		$C_{21}H_{20}N_2O$	198-99	A	25
28b	H	CH_2CH_2OH	H	=O		$C_{16}H_{17}NO_2$	147-49	D	0
28c	H	CH_2CH_2OH	OMe	=O		$C_{17}H_{19}NO_3$	140-42	B	0
28d	Me	CH_2CH_2OH	OMe	=O		$C_{19}H_{21}NO_3$	160-61	B	0
28e	Me	3-(N-Morpholino)propyl	H	=O		$C_{21}H_{20}N_2O_2$	128-30	A	0
28f	Me	4-Chlorobenzyl	H	=O		$C_{21}H_{22}ClNO$	138-40	B	0
28g	Me	Cyclohexyl	H	=O		$C_{22}H_{22}NO$	159-60	B+C	0
29	Me	3-Pyridyl	H	H	OH	$C_{21}H_{21}N_2O$	180-84	E+B	25

*All the compounds gave satisfactory analyses for C, H and N. The data are available with the authors.
†A = Methanol, B = ethanol, C = water, D = benzene, E = acetone.

Biology

Several polymethylenepyrroles, α -ketotetrahydroindoles and derived products were subjected to the basic test for assessing their antiimplantation activity. A very small number of highly active preparations were studied in a few more tests. Compound 20d, one of the most potent members of the series was studied extensively in the following tests, the details of which have been given earlier¹.

Test 1: Inhibition of implantation in mated female rats—MED₁₀₀/kg/day p.o. for 6 days; compounds inactive at screening dose of 100 mg are marked ϕ .

Test 2: Uterotrophic activity in the immature mouse—Dose in mg/kg p.o. \times 3 days causing significant increase in uterine weight, comparable to the effect of 1 μ g/kg/day of s.c. estradiol was determined.

Test 3: Vaginal opening test in the immature mouse—Dose in mg/kg p.o. \times 4 days causing vaginal opening

Table 6—Miscellaneous perhydroindoles, pyrroloazepines and pyrroles

Compd*	Mol. formula	m.p. °C	Crystallised from†	Antiimplantation activity (rat) MED ₁₀₀ (mg/kg/day p.o. × 6 days)
5	C ₂₃ H ₂₂ FN ₂ O	101-3	E	— (as HCl)
6	C ₁₉ H ₁₈ N ₂	100-102	F + A	—
7a	C ₁₉ H ₂₄ N ₂	108-10	B	—
8	C ₂₀ H ₁₉ N ₃ O	230-31	B	—
10	C ₂₆ H ₂₃ FN ₂	187-88	B + G	—
11a	C ₂₃ H ₃₀ N ₂ O ₄ S (tosylate)	195-96	B	—
11b	C ₁₇ H ₂₄ N ₂ O	68-70	B + C	—
24a	C ₂₂ H ₂₁ FN ₂ O (d)	270-72	F + B	100
24b	C ₂₇ H ₃₂ FN ₃ O	127-30	D + E	—
24b	C ₂₇ H ₃₃ ClFN ₃ O.H ₂ O (HCl)	225-27	A + D	—
24c	C ₂₂ H ₂₂ N ₂ O	320	THF + A	—
27	C ₂₂ H ₂₃ FN ₂	154-55	D + E	—
27(HCl)	C ₂₂ H ₂₄ ClFN ₂ .H ₂ O	245-47	A + D	—
32	C ₁₇ H ₁₈ FNO	155-57	A	—
36	C ₁₇ H ₂₀ FNO	108-10	D	—
36	C ₂₄ H ₂₈ FNO ₄ S (tosylate)	160-63	B + D	—
38a	C ₁₉ H ₁₇ NO	99-101	A	—
38b	C ₁₉ H ₁₆ FNO	120-21	A + C	—
39a	C ₁₉ H ₁₉ NO	94-96	E	—
39b	C ₁₉ H ₁₈ FNO	102-3	D + E	—

*All the compounds gave satisfactory analyses for C, H and N. The data are available with the authors.

†A = Methanol, B = ethanol, C = water, D = ether, E = hexane, F = acetone, G = chloroform.

in 100% of the mice was noted (= 3 µg s.c. for 3 days of estradiol).

Test 4: Uterotrophic activity in the immature castrated rat—Dose in mg/kg p.o. × 4 days giving 100% increase in uterine weight was assessed.

Test 5: Vaginal opening test in the immature castrated rat—Dose in mg/kg p.o. × 4 days causing vaginal opening in 100% of rats (= 3 µg s.c. for 3 days of estradiol).

Test 6: Vaginal smears (Allen Doisy test) in the castrated rat—Dose in mg/kg p.o. × 3 days producing positive vaginal smears in 50% of the treated rats (= 2.5 µg s.c. for 3 days of estradiol).

Test 7: Induction of uterine withdrawal bleeding in the immature rhesus monkey—Dose in mg/kg p.o. × 20 days inducing withdrawal bleeding (= 2.5 µg estradiol s.c. × 20 days).

Test 8: Antiuterotrophic activity in the immature mouse—Dose in mg/kg p.o. × 3 days significantly inhibiting uterine weight gain due to 2 µg estradiol s.c. administered concurrently.

Test 9: Antiuterotrophic activity in the immature castrated rat—Dose in mg/kg p.o. × 7 days significantly inhibiting uterine weight gain due to concurrent administration of 0.8 µg s.c. of estradiol.

Test 10: Effect on deciduoma formation in the pregnant and pseudopregnant rat—Minimum inhibitory dose in mg/kg p.o. × 4 days.

Test 11: Effect on ovarian compensatory hypertrophy in the hemicastrated rat—Minimum dose in mg/kg p.o. × 14 days significantly reducing increase in weight of the left ovary.

Test 12: Effect on gonadotropin secretion in the immature male rat—Minimum dose in mg/kg i.v. p.o. × 14 days decreasing significantly the weights of ventral prostate, seminal vesicles and testes.

Activities in test 1 are reported in Table 1 and 3-6

Discussion of results

Among the 1,2-diaryl-4,5-polymethylene pyrroles 4 (Table I), slight antiimplantation activity is seen for 1-(*p*-hydroxyphenyl)cyclopentapyrrole (4a) and the activity is enhanced in the corresponding pyrrolidinoethoxy ether (4b). Among the tetrahydroindoles 4c-4n, activity is seen only for the basic ethers. Of these, aminopropyl ethers 4m and 4n are more active than the aminoethyl ethers 4h-4l. Shifting of the pyrrolidinoethoxy group from position 4 to 3 in the phenyl group at position-1 of pyrrole (4i → 4d) causes a four-fold reduction in activity. The most active preparation among the polymethylene pyrroles is the cycloheptapyrrol ether 4p (MED₁₀₀ 1 mg). At this dose it was estrogenic in the mouse (tests 2 and 3). Since it was also quite toxic, the preparation was not developed further. The Mannich base 5, pyrrolopyridine 10 as well as the monocyclic pyrrole derivative 11b were inactive.

Among the ketotetrahydroindoless **15** (Table 3), activity was fairly widespread when R was a methyl group. Thus cyclohexane-1,3-dione derived products **15a** and **15b** were inactive at 100 mg, while the corresponding derivatives **15c** and **15n** in the dimedone series were active at 50 and 10 mg respectively. The effect of substituting the N-phenyl group in **15c** by a fluorine atom is to enhance the activity in the order 4-F = 2-F > 3-F, while Cl at position-4 (**15m**) does not affect it. A methyl group at position-4 (**15j**) or position 2 (**15d**) reduces or annihilates the activity. CF₃ or OH at position-3 or CF₃, CH₂CO₂H, OH, NH₂ or NO₂ at position-4 causes total loss of the activity in **15c**, while OMe or NMe₂ at position-4 diminishes it. Etherification of inactive **15v** with pyrrolidinoethyl chloride leads to the highly potent preparation **15w** (*MED*₁₀₀ 3 mg). Hydrazine **15z** is quite potent, but the derived methyl thiosemicarbazide **15aa** is inactive. The last compound was inspired by the high antifertility activity of Go. 2696¹⁰.

Substitution studies were carried out on the phenyl group at position-2 in **15n**. Bromine or chlorine atom or amino, thiosemicarbazide or nitro group in the *para*-position (**15o**-**15s**) abolished the activity of **15n**, while a methoxy group diminished it (**15t**). Addition of an extra methyl group in **15n** at position-3 affords **15u** again with somewhat diminished activity, while interchange of the *p*-fluorophenyl and phenyl groups in **15n** leads to inactive **15dd**. Lastly, replacement of the phenyl group in **15c** by a 3-pyridyl moiety (**28a**) (Table 5) improves the activity, while alkyl (**28d**, **28e**), aralkyl (**28f**) and cyclohexyl (**28g**) substitution has the reverse effect. The antifertility activity is likewise absent in 1-(*p*-fluorophenyl)-2-methylindole (**32**) or its dihydro derivative **36** (Table 6). Inactivity extends to **38a** and **38b**, which may be considered to be monocyclic versions of **15n**.

Manipulations were then carried out on the keto group in **15n**. The oxime **16a** and methylthiosemicarbazone **16b** were inactive (Table 4). Compound **24a**, the pyrroloazepinone (Table 6) obtained by the rearrangement of **16a**, was active at 100 mg, but neither its aminoalkyl derivative **24b**, nor its reduction product **27** was implantation inhibiting. Reduction of active ketones of the type **15** to alcohols **20** (Table 4) generally enhanced the antiimplantation potency, although this was not observed in the conversion **15b** → **20c** or **15g** → **20b**. Reduction of **15c** to **20a**, **15n** to **20d** and **15u** to **20e** enhanced the activity by factors of 5, 3.3 and 8.3 respectively. On the other hand, transformation of the 3-pyridyl ketone **28a** to the alcohol **29** (Table 5) left the activity untouched. Among the group of alcohols, again **39a** and **39b** (Table 6) representing the monocyclic analogues of **20a** and **20d** respectively were inactive. The most potent transformation

Table 7 - Biological Properties of **20d** (C 6924-Go)

Test No.	Effective dose (mg)
1	3
2	100
3	> 100
4	< 1
5	3
6	~3.3 ~1
7	> 30
8	30
9	< 10 > 3
10	1
11	< 3.3
12	10

product **22** (Table 4) of **15n** was obtained when the carbonyl group was reduced to a methylene group. Its effective antiimplantation dose (1 mg) was paralleled by estrogenic potency (tests 2 and 3). The very limited availability of **22** precluded further extensive testing. However, the dramatic contrast between the activity of **22** (1 mg) and its des-dimethyl derivative **4e** (inactive at 100 mg/kg) and of the pairs **15n** and **15b** and **20d** and **20e** is worth noting. Our study thus showed that in this perhydroindole series, antiimplantation activity is elicited by 1,2-diaryl or 1-hetaryl-2-aryl compounds only when position-6 is substituted with methyl groups.

From the highly active preparations described above, **20d** (C 6924-Go) was chosen for detailed studies. It inhibited implantation in the rat - *MED*₁₀₀ 3 mg/kg/day p.o. given days 1-3 or 1-6 of pregnancy and 12 mg/kg/day given days 4-6 of pregnancy. The *MED*₁₀₀ for inhibition of implantation in the mouse was 20 mg/kg/day p.o. administered days 1-6 postmaturing, while in the rabbit, it was < 6.25 mg/kg/day p.o. for 6 days. On the other hand, implantation could not be inhibited in the hamster even at a dose of 75 mg/kg/day p.o. for 5 days. Results of other tests are provided in Table 7. Most of the responses elicited by C 6924-Go at least in the rat can be explained on the basis of its weak estrogenic and antiestrogenic activities, the mechanism probably being acceleration of tubal transport of ova. C 6924-Go was not toxic to rat at 1500 mg/kg p.o. and was not dysmorphogenic in this species at 4.5 mg/kg p.o.¹¹

Experimental Procedure

2-Phenacylcycloalkanones **3** and

3-phenacylpiperidone **9**

These were prepared using the procedure reported² for **3b**. Their characterization data are as follows: **3a**: b.p. 152-55°/2 mm; **3b**: b.p. 175-185°/3-4 mm, m.p. 40-43°; **3c**: b.p. 180-190°/4 mm; **3d**: b.p. 200-210°/3-4 mm, m.p.

49-50° (Found: C, 67.3; H, 6.0. $C_{14}H_{15}ClO_2$ requires C, 67.1; H, 6.0); 9: m.p. 105-8° [maleate m.p. 167-69° (from MeOH) (Found: C, 68.0; H, 6.1; N, 3.4. $C_{24}H_{25}NO_6$ requires C, 68.1; H, 6.0; N, 3.3%] accompanied by a little 1-benzyl-3,3-bisphenacyl-4-piperidone, m.p. 136-37° (from MeOH) (Found: C, 79.2; H, 6.7; N, 4.0. $C_{28}H_{27}NO_3$ requires, C, 79.0; H, 6.4; N, 3.3%).

2-Phenacylcyclohexane-1,3-diones 13 (Table 2)

Compounds 13a-c, 13e, 13h and 13i have been reported earlier⁵. Similarly were synthesised 13d, 13f and 13g. 13d was accompanied by a small amount of alkali-insoluble perhydroxanthone 14, m.p. 254-55° (from acetone-ethanol) (Found: C, 67.7; H, 5.59; N, 3.47. $C_{24}H_{25}NO_6$ requires C, 68.1; H, 6.0; N, 3.3%); νC =O at 1700, 1680, 1660 cm⁻¹; PMR(CDCl₃): δ 3.51 (s, 2H, ArCH₂Ar). The desired product 7b was an oil.

(20 ml) was heated under reflux with stirring for 18 hr. Upon concentration and addition of ether, the hydrochloride of 5 separated out (5.8 g), m.p. 245-48° (softening at 210°). The free base 5 was crystallised from hexane, m.p. 101-3° (Table 6).

Similar treatment of 7a (0.42 g) afforded the methylenebis derivative, m.p. 181-82° (from ethanol) (Found: C, 81.7; H, 8.7; N, 9.6; M⁺ at m/z 572. $C_{39}H_{48}N_4$ requires C, 81.8; H, 8.5; N, 9.8%; M, 572); PMR (CDCl₃): δ 3.51 (s, 2H, ArCH₂Ar). The desired product 7b was an oil.

1,2-Diaryl-4-oxo-4,5,6,7-tetrahydroindoles 15 and 28

The method for 15c consisted of heating 13b (2.58 g) and aniline (0.93 g) at 170-180° for 2 hr in N₂ atmosphere and crystallising the product 15c from acetone-methanol, yield 2.5 g, m.p. 209-10°. Other members of 15 are listed in Table 3 and those of 28 in Table 5.

1-(Carboxymethylphenyl)tetrahydroindole 15i

Ester 15k (5 g) in methanol (35 ml) was mixed with potassium hydroxide (5 g) in water (10 ml) and warmed on a water-bath for 2 hr. Addition of 2N HCl (100 ml) precipitated the product which was filtered and crystallised from methanol to give 15i, m.p. 250-51°.

2-(p-Aminophenyl)tetrahydroindole 15q

A solution of the nitro compound 15s (10 g) in THF (400 ml) was shaken with hydrogen at atmospheric pressure and room temperature in the presence of platinum catalyst (from 0.5 g PtO₂) for 17 hr when 3 mol of hydrogen had been absorbed. The mixture was filtered and the filtrate evaporated to dryness. The product 15q was recrystallised twice from acetone-methanol, 7.9 g, m.p. 283-85°.

Allylthiosemicarbazide 15r

The foregoing amine (15q; 7.0 g) was dissolved in conc. HCl (50 ml) and water (50 ml) and diazotised at 0° with sodium nitrite (1.45 g) in water (10 ml). The diazonium solution was treated with stannous chloride (15 g) in conc. HCl (20 ml) and stirred at 0-5° for 2 hr. The mixture was filtered and the insoluble complex made strongly alkaline with conc. aq. sodium hydroxide. The hydrazine was filtered off and recrystallised from chloroform-ethanol, 4.2 g, m.p. 230-31° (d). A solution of the hydrazine (4.0 g) in dioxane (100 ml) was heated with allyl isothiocyanate (1.2 g) for 8 hr. Removal of dioxane and crystallisation of the residue from methanol gave 15r (2 g), m.p. 207° (softening at 170°).

1-(p-Aminophenyl)tetrahydroindole 15y

A mixture of 13b (15.6 g) and p-aminocetanilide (9.0 g) was heated at 180° for 2 hr. The product was

Polymethylenepyrroles 4, 6, 8, and pyrrolopiperidine 10

These were prepared by the following general procedure:

A mixture of 3b (4.3 g) and p-fluoraniline (2.2 g) was heated in a stream of nitrogen at 170-180° for 2 hr. After cooling, the product was crystallised from acetone-ethanol to give 4e (4.9 g), m.p. 129-30°.

Aminoalkyl aryl ethers of Table 1 were prepared from the appropriate phenols as follows:

A mixture of 4a (5 g), N-(2-chloroethyl)pyrrolidine (2.8 g) and sodium hydride (1 g; 50% suspension in mineral oil) in dioxane (30 ml) was stirred at 40° overnight. Ether (100 ml) was then added and the mixture filtered. The filtrate was evaporated and the residue treated with 50 ml 2N HCl and ether. The free base, recovered from the gummy HCl salt, became crystalline with hexane and was recrystallised from the same solvent to afford 4b (1.7 g), m.p. 93-94°. In some cases, the gummy bases were transformed into crystalline maleate salts.

Compounds 11a and 11b (Table 6) were also obtained in a similar manner.

1-Piperidinoperhydroindole 7a

A solution of 3a (2.2 g) and N-aminopiperidine (2.0 g) in ethanol (5 ml) and acetic acid (1 ml) was heated under reflux for 3 hr and left to cool overnight. The crystalline product was collected and recrystallised from ethanol to yield 7a (1.3 g), m.p. 108-10° (Table 6).

Manich reactions of 4e and 7a

A mixture of 4e (4.5 g), paraformaldehyde (0.75 g), morpholine hydrochloride (5.0 g) and isopropanol

triturated with ethanol, filtered and crystallised from methanol to give the acetyl derivative of **15y**, 18.5 g, m.p. 267-68° (Found: C, 75.8; H, 7.2; N, 7.4. $C_{24}H_{24}N_2O_2$ requires C, 75.5; H, 6.6; N, 7.4%).

A mixture of the acetyl derivative (18 g), dioxane (90 ml) and 6*N* HCl (180 ml) was boiled under reflux for 3 hr, cooled and made alkaline to afford **15y** (8.1 g, m.p. 268-70° (from methanol-chloroform).

Hydrazine 15z and methyl thiosemicarbazide 15aa (Table 3)

Amine **15y** (5.0 g) was diazotised and the diazonium complex reduced with stannous chloride to give **15z** (4.3 g), m.p. 208°(d) (from $CHCl_3$ -hexane). Reaction of **15z** (5.2 g) with methyl isothiocyanate (1.2 g) in hot dioxane (100 ml) for 6 hr gave **15aa** (4.5 g).

Pyrrolidinoethoxy derivative 15w (Table 3)

Phenol **15v** (3.3 g) in DMF (25 ml) was stirred with sodium hydride (0.72 g; 50% suspension in mineral oil) at 50° for ½ hr and then treated with N-(2-chloroethyl)pyrrolidine (1.8 g) in DMF (10 ml). The mixture was stirred at 50° overnight and filtered. The filtrate was evaporated *in vacuo* and the residue treated with 2*N* HCl and ether when **15w** hydrochloride separated out as a gum which became crystalline on standing, 2.4 g.

Oximes 16a and 16c thiosemicarbazone 16b (Table 4)

A mixture of **15e** (0.8 g), hydroxylamine hydrochloride (0.3 g) and pyridine (3 ml) was heated at 100° overnight. The product was filtered, washed with water and crystallized from a large excess of ethanol to give **16c** (0.6 g), m.p. 260-61°. Similarly **15n** (6 g) gave **16a** (6 g), m.p. 274-77° (from ethanol).

Likewise **15n** (2 g) and 4-methylthiosemicarbazide (1.4 g) when heated in pyridine (10 ml) for 20 hr gave **16b** (1.2 g), m.p. 263-65° (from chloroform-methanol).

Reaction of 15n with semicarbazide

A mixture of **15n** (1 g), semicarbazide hydrochloride (0.35 g) and pyridine (3 ml) was heated at 100° overnight, water added to it and the resultant precipitate filtered and washed with THF to give **17**, insoluble in usual solvents (0.7 g), m.p. >300° (Found: C, 74.5; H, 6.1; N, 11.7. $C_{45}H_{42}F_2N_6O$ requires C, 75.0; H, 5.9; N, 11.7%).

Mannich reactions of 15n and 15c

15c (3.8 g), morpholine hydrochloride (1.8 g), paraformaldehyde (0.5 g) and methanol (50 ml) were heated under reflux overnight. The mixture was cooled when unreacted **15c** separated out and was filtered off (3.4 g). The filtrate was evaporated to dryness and

treated with water. The aqueous solution was basified and the product **18a** crystallized from $MeOH$; 0.1 g, m.p. 220-1° (Found: C, 78.1; H, 7.3; N, 6.9. $C_{24}H_{24}N_2O_2$ requires C, 78.2; H, 7.3; N, 6.8%).

A similar treatment of **15n** (3.4 g) gave a mixture of **18b** and **19b**, 50 mg, m.p. 160-70° (from ether-hexane) (Found: C, 75.3; H, 6.9; N, 6.3. $C_{27}H_{29}FN_2O_2$ requires C, 75.0; H, 6.8; N, 6.5%).

1,2-Diaryl-4-hydroxy-4,5,6,7-tetrahydro-indoles 20 (Table 4)

To a solution of **15n** (30 g) in dry THF (150 ml) was added LAH (3 g) in THF (50 ml). The mixture was heated under reflux with stirring for 5 hr, set aside overnight, decomposed with water, and resultant product crystallised from THF-MeOH to give **20d** (28 g), m.p. 192-93. Reduction of **15n** with $NaBH_4$ was slow and had to be repeated a few times for completion. **20a** and **20b** were obtained by the latter method while **20c**, **20e** and **29** (Table 5) were prepared using LAH. In a large scale preparation of **20d**, a hexane-soluble byproduct, **23a** was also obtained in a low yield, m.p. 99-101° (from hexane) (Found: C, 80.0; H, 7.3; N, 4.4. $C_{23}H_{24}FNO$ requires C, 79.1; H, 6.9; N, 4.0%).

15dd upon LAH reduction and crystallisation of the product **23b** first from chloroform-ethanol and then from hexane gave **23c**, m.p. 95-96° (Found: C, 79.8; H, 7.5; N, 4.4. $C_{24}H_{26}NFO$ requires C, 79.3; H, 7.2; N, 3.9%). LAH reduction of **15o** (3 g) afforded a crude product (2.8 g), m.p. 165-67°, which after two crystallisations from THF-MeOH rose to 185-87°. This was identified as **23d** containing about 20% of **20d** (Found: C, 66.1; H, 5.7; N, 3.5; Br, 16.8%. 85% $C_{22}H_{21}BrFNO$ + 15% $C_{22}H_{22}FNO$ requires C, 66.0; H, 5.2; N, 3.5; Br, 16.4%).

Dehydration of alcohol 20d:

Formation of dimer 21

A solution of **20d** (1.0 g) in THF (25 ml) and methanol (25 ml) containing a few crystals of μ -toluenesulphonic acid was heated under reflux for 1 hr. The crystals that separated on cooling were filtered off and washed with a little methanol to give **21**, m.p. >300° [Found: C, 83.1; H, 6.5; N, 4.6. ($C_{22}H_{26}FN$)₂ requires C, 83.3; H, 6.4; N, 4.4%].

4,5,6,7-Tetrahydroindole 22

A solution of alcohol **20d** (4.2 g) in THF (200 ml) was shaken with hydrogen at 50° and 50 lbs/sq. inch pressure and 10% palladium-on-charcoal (0.5 g) for 8 hr. Filtration and removal of solvent *in vacuo* gave a syrup which was dissolved in hexane. The solution was concentrated and cooled to give **22** (1.8 g), m.p. 138-40° after a further crystallisation from hexane (Table 4).

Pyrroloazepinones 24a and 24c (Table 6)

The oxime 16a (10 g) was heated with polyphosphoric acid (100 g) for 5 hr at 150°. Treatment of the resultant syrup with excess of water gave 24a which crystallized from acetone-ethanol, 7.0 g, m.p. 270°(d). Compound 16c was similarly transformed to 24c, m.p. 320°.

Treatment of 16a with sulphuric acid:**Formation of sulphonic acid 26**

The oxime 16a (2 g) was dissolved in conc. sulphuric acid (10 g) at 30° and the solution heated at 120° for 15 min. After cooling, ice was added when crystals separated out. These were filtered, washed with warm ethanol and crystallised from aq. methanol to yield 26 (0.3 g), m.p. >300° (Found: C, 61.7; H, 5.3; N, 6.5; S, 7.9. $C_{22}H_{21}FN_2O_4S$ requires C, 61.7; H, 4.9; N, 6.5; S, 7.5%).

Treatment of 24a (0.6 g) with conc. sulphuric acid (4 g) at 120° for 15 min, addition of ice and crystallisation of the resultant gum from ethanol-ether also gave 26, m.p. >300°.

Dimethylaminopropylazepinone 24b

Lactam 24a (4.4 g) was dissolved in dimethylformamide (40 ml), sodium hydride (1 g; 50% suspension in mineral oil) was added and the solution stirred at 50° for 1 hr and treated with 3-dimethylaminopropyl chloride (1 g) in the same solvent (10 ml). The mixture was heated at 50° overnight and filtered. The filtrate was evaporated *in vacuo*, and the residue triturated with 20 ml 3N HCl, when the sparingly soluble hydrochloride salt of 24b was formed. This was filtered and crystallized from methanol-ether, 2.6 g, m.p. 225-27°. The free base 24b was liberated from the salt and crystallised from ether-hexane, m.p. 127-130° (Table 6).

Azepine 27

A solution of 24a (3.7 g) in dry THF (40 ml) and dioxane (35 ml) was added with stirring to a suspension of lithium aluminium hydride (2 g) in THF (50 ml) heated under reflux. After further heating for 6 hr, the reaction mixture was decomposed with water, the product recovered by evaporation of the solvents and treated with 3N HCl to give the sparingly soluble salt of 27, which was crystallised from methanol-ether, 1.5 g, m.p. 245-27°. The free base had m.p. 154-55° (from ether-hexane) (Table 6).

2-Methyltetrahydroindole 32

Dimedone (28 g), chloracetone (18.6 g), anhyd. potassium carbonate (84 g) and chloroform (200 ml) were stirred together overnight and worked-up for the acidic product to give 2-acetonyldimedone 30 (17.5 g),

m.p. 133-35° (from aq. ethanol) (Found: C, 67.5; H, 8.2. $C_{11}H_{16}O_3$ requires C, 67.3; H, 8.2%). *p*-Fluoroaniline (5.6 g) when heated with 30 (9.8 g) for 4 hr at 140° gave 32 (9.5 g), m.p. 155-57° (from methanol). It was also obtained as follows:

A mixture of dimedone (14 g), propargyl bromide (12 g), anhyd. potassium carbonate (42 g) and chloroform (150 ml) was stirred at room temperature for 1 week to give 2-propargyldimedone 31 (2.5 g), m.p. 138-40° (from aq. ethanol) (Found: C, 73.7; H, 8.0. $C_{11}H_{14}O_2$ requires C, 74.1; H, 7.9%). Heating 31 (0.9 g) with *p*-fluoroaniline (0.6 g) at 140-150° for 2 hr gave 32 (0.15 g), m.p. and mixed m.p. 156-57°.

Reduction of 32 to 33 and formation of dimer 34

The foregoing ketone 32 (5 g) was reduced with lithium aluminium hydride (1 g) in refluxing THF (150 ml) to give after the usual work-up, alcohol 33 (5 g) as a liquid. Treatment of 33 (0.55 g) with benzoyl chloride (0.3 g) in ether (20 ml) and saturated aq. sodium bicarbonate (20 ml) gave dimer 34, m.p. 272-73° (from acetone-methanol) [Found: C, 79.7; H, 7.3; N, 5.3; M^+ at *m/z* 510. $(C_{17}H_{18}FN)_2$ requires C, 80.0; H, 7.1; N, 5.5%; M, 510].

2-Methyltetrahydroindoline 36

Dimedone (21 g), allyl bromide (18 g), potassium carbonate (60 g) and chloroform (200 ml) when stirred together for a week gave 2-alkyldimedone 35 (9 g), m.p. 151-53° (from aq. methanol) (Found: C, 73.5; H, 9.0. $C_{11}H_{16}O_2$ requires C, 73.3; H, 9.0%). 35 (5.4 g) and *p*-fluoroaniline (3.3 g) were heated together at 150° for 3 hr, and the acid-soluble part of the product (6.8 g) was crystallised from ether to give 36 (3.5 g), m.p. 108-10°, which formed a crystalline toluenesulphonate salt, m.p. 160-63° (from ethanol-ether) (Table 6).

Acetylpyrroles 38a and 38b (Table 6)

3-Phenacylacetylacetone 37^{1,2} (3.3 g) and aniline (1.4 g) were heated together at 140-150° for 3 hr in nitrogen atmosphere. The cooled product was washed with dil. HCl and water and crystallised from methanol to give 38a (2.8 g), m.p. 99-101°. 38b (m.p. 120-21°) was synthesised likewise.

Reduction of 38a and 38b to alcohols 39c and 39b

Ketone 39a (3 g) was reduced with lithium aluminium hydride (0.7 g) in a mixture of ether (100 ml) and THF (5 ml) overnight. The product was crystallised from ether-hexane to give 39a (2 g), m.p. 94-96°. Compound 38b, prepared likewise, had m.p. 102-3° (Table 6).

References

1. Nagarajan K, Talwalker P.K, Kulkarni C.L, Shah R.K, Shenoy S J & Prabhu S.S, Indian J Chem, 24B (1985) 81.

NAGARAJAN *et al.*: 1,2-DIARYL SUBSTITUTED 4,5-POLYMETHYLENOPYRROLIDS & TETRAHYDROINDOLES

2 Baumgarten H E, Creger P L & Villars C E, *J Am chem Soc*, **80** (1958) 6609.
3 Bell M R, Zalay A W, Oesterlin R, Schane P & Potts G O, *J mednl Chem*, **13** (1970) 664.
4 Nagarajan K & Shah R K, *Chem Commun*, (1970) 926.
5 Nagarajan K, David J & Shah R K, *J mednl Chem*, **19** (1976) 508.
6 Bishop W S, *J Am chem Soc*, **67** (1945) 2261.
7 Stettler H & Sichnhold E, *Chem Ber*, **88** (1955) 271.
8 Nagarajan K & Shah R K, *Tetrahedron Lett*, (1972) 1467.
9 Stoll A P & Troxler F, *Helv chim Acta*, **51** (1968) 1864.
10 Nagarajan K, Talwalker P K, Kulkarni C L, Venkateswarlu A, Prabhu S S & Nayak G V, *Indian J Chem*, **23B** (1984) 1243.
11 Rao R R, personal communication.
12 *Beilstein organische chemie*, VII (1925) 866.