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N-Acetylglucosamine-inducible CaGAP1 encodes
a general amino acid permease which co-ordinates
external nitrogen source response and
morphogenesis in Candida albicans
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Candida albicans is able to grow in a variety of reversible morphological forms (yeast, pseudohyphal
and hyphal) in response to various environmental signals, noteworthy among them being
N-acetylglucosamine (GlcNAc). The gene CaGAP17, homologous to GAP1, which encodes the
general amino acid permease from Saccharomyces cerevisiae, was isolated on the basis of its
induction by GIcNAc through differential screening of a C. albicans genomic library. The gene could
functionally complement an S. cerevisiae gap1 mutant by rendering it susceptible to the toxic
amino acid analogue mimosine in minimal proline media. As in S. cerevisiae, mutation of the
CaGAP1 gene had an effect on citrulline uptake in C. albicans. Northern analysis showed that
GlcNAc-induced expression of CaGAP1 was further enhanced in synthetic minimal media
supplemented with single amino acids (glutamate, proline and glutamine) or urea (without amino
acids) but repressed in minimal ammonium media. Induction of CaGAP7 expression by GlcNAc
was nullified in C. albicans deleted for the transcription factor CPH17 and the hyphal regulator
RAST1, indicating the involvement of Cph1p-dependent Ras1p signalling in CaGAP7 expression.
A homozygous mutant of this gene showed defective hyphal formation in solid hyphal-inducing
media and exhibited less hyphal clumps when induced by GlcNAc. Alteration of morphology and
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short filamentation under nitrogen-starvation conditions in the heterozygous mutant suggested
that CaGAP1 affects morphogenesis in a dose-dependent manner.

INTRODUCTION

The ability to use a variety of nitrogen-containing com-
pounds as the sole source of all cellular nitrogen is a
predominant feature in yeasts. This ability requires
permeases for transport of nitrogenous compounds and
enzymes for the generation of ammonia. In response to
changes in the environment, there is an increase in the
activity of the permeases responsible for uptake of amino
acids for use as nitrogen source. This is true for the
opportunistic yeast Candida albicans, which is the leading
aetiological agent of candidiasis, an infection affecting
severely immunocompromised individuals (Odds, 1988).
Different properties of C. albicans have been considered as
putative virulence factors, prominent among them being
the ability to switch from the yeast to the filamentous form,
although both forms of the organism have been found in
infected tissue (Cutler, 1991). There are several conditions
that promote yeast-to-hyphae morphogenesis in vitro,

Abbreviation: PRE, pheromone responsive element.

The EMBL accession number for the sequence reported in this paper is
AF467941.

including growth at an ambient temperature, serum, neutral
pH and nutrient starvation (Odds, 1988).

This morphological plasticity reflects the interplay of
various signalling pathways which control morphogenesis
in vivo. In C. albicans, Raslp is an important regulator of
hyphal development and likely functions upstream of the
cAMP-dependent protein kinase A (PKA) pathway (Feng
et al, 1999). In this pathway, two catalytic subunits or
isoforms of PKA, Tpklp and Tpk2p, have differential effects
on hyphal morphogenesis under different hyphal-inducing
conditions (Bockmubhl et al., 2001). Efglp, a basic helix—
loop-helix (bHLH) protein, plays a major role in hyphal
morphogenesis (Leng et al., 2001; Stoldt et al., 1997). TPK2
overexpression cannot suppress the efgl/efgl defect in
hyphal development, whereas overexpression of EFGI can
suppress the filamentation defect in tpk2/tpk2, which
implies that the function of EFGI is downstream of TPK2
(Bockmubhl ef al., 2001; Singh et al., 2001; Sonneborn et al.,
2000). Like in Saccharomyces cerevisiae, Cphlp/Acprlp, a
homologue of Stel2p (Liu et al, 1994; Singh et al., 1994,
1997), and a MAP kinase cascade that includes Cst20p
(pZI—activated kinase; PAK) (Leberer et al, 1996, 1997),
Hst7p (MAP kinase kinase; MEK) (Leberer et al., 1996) and
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Ceklp (MAPK) (Csank et al., 1998) are also involved in
filamentation in C. albicans. Most importantly, GIcNAc has
a dual role to play in that it not only induces the synthesis
of its catabolic enzymes, a kinase (Hxklp), a deacetylase
(Daclp) and a deaminase (Naglp) (Kumar et al., 2000), but
also regulates GlcNAc-induced transition from a yeast to
hyphal form (Singh et al., 2001). Filamentation regulated
by the Nag regulon (HXK1/DACI/NAGI) is independent
of Tpk2p and the Cphlp/Acprlp-regulated MAP kinase
pathway but is dependent on the morphological regulator
Efglp (S. Ghosh and others, unpublished data).

In order to identify and characterize the genes that
could be involved in the regulation of morphogenesis and
virulence induced by GIcNAc, we performed differential
screening of a C. albicans genomic library to identify the
genes that are regulated specifically by GIcNAc. Here we
report the identification and characterization of the
GlcNAc-inducible gene CaGAPI, which is homologous to
GAPI, which encodes a general amino acid permease of
S. cerevisiae. In yeast, Gaplp is a low-affinity permease with
low specificity, which is highly regulated in response to the
available nitrogen source (Sophianopoulon & Diallionas,
1995). In the presence of ammonia or glutamine, the amino
acid uptake is low, whereas in media containing a poor
nitrogen source, e.g. proline, the amino acid uptake is high
(Blinder et al., 1996; Courchesne et al., 1983). In S. cerevisiae,
at least five proteins (Ure2p, Dal80p, Gln3p, Nillp and
Nil2p) function co-ordinately to control the transcription
of GAPI (Blinder et al., 1996; Cunningham et al., 1993;
Rowen et al., 1997; Stanbrough et al., 1995). The nitrogen-
dependent regulation of GAPI is complex, occurring not
only at the level of GAPI transcription but also through
Gaplp sorting and degradation by ubiquitin-triggered
internalization (Springael et al., 1998).

In this report, complementation studies by expressing
CaGAPI in a gapl mutant of S. cerevisiae showed the
functional similarity of CaGaplp with the general amino
acid permease (Gaplp) of S. cerevisiae. We observed certain
differential expression of CaGAPI in various nitrogen
sources as well as in mutants defective in morphogenesis
and virulence. We also report some conditions where
filamentation and morphogenesis were altered in heter-
ozygous and homozygous disruptants of CaGAPI.

METHODS

Strains and media. All strains and plasmids used in this study are
listed in Table 1. Escherichia coli cultures were grown at 37 °C in
either TB (1-2 % Bacto tryptone, 2-4 % yeast extract, 0-4 % glycerol)
or LB (1% tryptone, 5% vyeast extract, 5% NaCl, ] mM NaOH).
C. albicans and S. cerevisiae strains were cultured at 30 °C in either
YPD (1% yeast extract, 2% Bacto peptone, 2% glucose) or SD
(0-67 % yeast nitrogen base without amino acids and 2% glucose)
medium. Minimal-Proline medium (MIN-Proline/SPD) contained
0-67 % yeast nitrogen base without (NH,4),SO, and without amino
acids, 2% glucose and 1 g proline 17! (added after autoclaving).
This medium was used to select and score the mutation, which
conferred resistance to the amino acid analogue mimosine

(75 pg ml™"). Min-Glutamate (SED) and Min-Ammonium (SAD)
media contained 1 g glutamate 17 or 2 g ammonia 17%. All solid
media contained 2 g agar 17'. GPK (0-5% glucose, 0-5% peptone
and 0-3% KH,PO,) and NPK (0-5% GIcNAc, 0-5% peptone
and 0-3% KH,PO,) were used for GlcNAc induction studies in
C. albicans. For analysing the induction effect of alternative nitrogen
sources, glutamate, proline, ammonia, urea and glutamine were
used along with 0-67 % yeast nitrogen base without (NH,4),SO, and
without amino acids, and 2% GIcNAc. The respective media were
named SEN, SPN, SAN, SUN and SGN. GIcNAc and the other
nitrogen sources glutamate (1 g17'), proline (1 g1~'), ammonia
(2g 1Y), urea (2 g 17! and glutamine (1 g 1Y) were filter-sterilized
and added after autoclaving. The induction effect of a single amino
acid or urea was shown here with respect to synthetic complete
(SN) GlecNAc medium. In the same way, SED, SPD, SAD, SUD,
SGD and SD were prepared with 2% glucose in place of GlcNAc.
SC medium contains 0-67 % yeast nitrogen base [with (NH,),SO,
and amino acids] and 2 % glucose.

Isolation of CaGAP1. The CaGAPI gene was isolated by differ-
ential screening of a C. albicans genomic library in Yepl3 with
cDNA probes synthesized from poly(A™) RNA of glucose-grown
(uninduced) and GlcNAc-grown (induced) cells (Okayama et al,
1987). The clone was subsequently sequenced. The sequence data
were matched with the C. albicans Genome Sequencing Project,
Stanford, followed by ORF analysis through ORF Finder, NCBI.

Construction of a CaGAP1 expression vector plasmid in
S. cerevisiae. The CaGAPI coding region was PCR-amplified
from genomic DNA of C. albicans SC5314 using the oligonucleotides
5-TGATCCTTTAATCTTGGAGAAGG-3" and 5'-TGTTCAACCTG-
GTCAAAGTCC-3' as primers. The 2:2 kb PCR fragment was cloned
into the pGEMT-Easy vector followed by transformation into E. coli
strain DH50, as per the manufacturer’s instructions (Promega),
generating pGPORF. A 2224 bp gel-purified Nofl fragment con-
taining the CaGAPI ORF and downstream portion of the ORF was
subcloned into pFL61, a yeast expression vector, under the PGK
promoter, generating pFLGP31.

Complementation study of CaGAP1 in S. cerevisiae. Trans-
formation of S. cerevisiae was carried out by the lithium acetate
method as described by Gietz et al. (1992). Five micrograms of
plasmid pFLPF31 along with 50 pg denatured calf thymus DNA was
transformed into the S. cerevisiae gapl strain MS143. The trans-
formation mix was plated on SD-URA medium using URA3 as a
selection marker. The MS143 (Agapl) strain was plated as a control.
The transformants were replica-plated on SD medium containing a
suitable amount of supplements without uridine. Ura-positive trans-
formants (Agapl: CaGAPI) were tested on minimal proline plates
containing 20 pg uridine ml~' and 75 pg mimosine ml~".

Assay of amino acid uptake. S. cerevisiae and C. albicans strains
to be assayed were cultured in SD medium to ODggy ~2-0. Cells
were collected by filtration on 0-45 pm nitrocellulose filters
(Sartorious) and resuspended in SPD medium. [**C]Citrulline was
added to exponentially growing cultures. Samples of 0-5 ml were
removed periodically for 2-5 min, rapidly collected by filtration
through a glass fibre filter (Whatman) and washed with chilled
water. Filters were dried under a heat lamp and placed in 5 ml
toluene-based liquid scintillation cocktail. The counts were taken in
a Wallac DSA-based liquid scintillation counter. The specific activity
of ["*CJcitrulline used was 2-1 GBq mmol ', Labelled citrulline was
obtained from Perkin Elmer Life Sciences.

GlcNAc induction studies of CaGAP1. C. albicans SC5314 cells
were precultured in GPK medium and resuspended in 100 x volume
of fresh GPK. Cultures were grown to ODggy ~2:0. Harvested cells
were washed twice with 0-3% KH,PO,, resuspended in an equal
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Table 1. Strains and plasmids used in this study

Strain/plasmid Genotype/description Source/reference
Strains
E. coli

DH5a F'/endAl hsd R17 (rgmy’) ginV44 thi-4 recAl gyrA (Nal®)

S. cerevisiae

relAl A(lacl1ZYA—-argF) U169 deoR [¢p80dlacA(lacZ)M15]

MS138 MATa ura3-52 leu2-3 GAPI

MS143 MATa ura3-52 leu2-3 Agapl:: LEU2

MSPF31 MATa ura3-52 leu2-3 Agapl:: LEU2 [CaGAPI]
C. albicans

SC5314 (wild-type)
CAF-3-1(wild-type)

URA3/URA3
Aura3::imm434/Aura3:: imm434

GP-5 As CAF3-1, but CaGAP1/ACagapl:: hisG-URA3-hisG
GP-57 As CAF3-1, but CaGAP1/ACagapl:: hisG

GP-573 As CAF3-1, but ACagapl:: hisG-URA3-hisG/ACagap]l :: hisG
GP-5731 As CAF3-1, but ACagapl :: hisG/ACagap]l :: hisG

GP-57315 As CAF3-1, but ACagapl:: hisG/ACagapl:: URA3

N-2-1-6 As CAF3-1, but Adacl-proAAnaglAhxkl1:: hisG/Adacl-proA

N-2-1-6-1+p33

AnaglAhxkl : : hisG-URA3-hisG
As CAF3-1, but Adacl-proAAnaglAhxkl:: hisG/DACI
NAGIAhxk1 :: hisG-URA3-hisG

M. C. Brandriss, NJMS
M. C. Brandriss, NJMS
This work

W. A. Fonzi, Georgetown University,
Washington, DC, USA

This work

This work

This work

This work

This work

Laboratory strain

Laboratory strain

Feng et al. (1999)
Bockmuhl et al. (2001)
Bockmuhl et al. (2001)
Laboratory strain

This work

ATCC

This work

This work

This work

This work

W. A. Fonzi, Georgetown University,

CAN52 Arasl:: hisG/Arasl :: hph Aura3::imm434/Aura3:: imm434
HLC67 Aefgl:: hisG/Aefgl :: hisG Aura3::imm434/Aura3:: imm434
AS1 Atpk2:: hisG/Atpk2:: hisG Aura3:: imm434/Aura3:: imm434
A-11-1-1-4 (cphl™) Aacprl:: hisG/Aacprl:: hisG Aura3:: imm434/Aura3:: imm434
Plasmids
pGPORF CaGAPI ORF cloned in pGEM-T Easy vector
pFL61 URA marked ScARS vector plasmid
pFLGP31 CaGAPI ORF subcloned into pFL61 under PGK promoter
pCaGAP1 3:5 kb CaGAPI fragment cloned in pGEM-T Easy vector
pGP1 Carrying ACagap]l:: hisG-URA3-hisG disruption fragment
pGP2 Carrying CaGAPI:: URA3 reconstruction fragment
pCUB6 Carrying hisG-URA3-hisG disruption cassette
pUC19-CUB hisG-URA3-hisG disruption cassette cloned in pUC19

Washington, DC, USA
This work

volume of NPK, and incubated at 30°C. The treated cells were
harvested at different time points of growth as described in Results
and frozen at —20°C until use. Control cells were resuspended in
GPK instead of NPK.

To see the effect of GIcNAc induction in different nitrogen sources,
strain SC5314 was precultured in SC, washed once with water,
resuspended in SN, SEN, SPN, SAN, SUN and SGN with 2 % GlcNAc
and grown for 2 h at 30 °C. The treated cells were harvested and
frozen at —20 °C until use. Control cells were resuspended in different
media, SD, SED, SPD, SAD, SUD and SGD, with 2% glucose as a
carbon source. For studying the effect of GIcNAc induction in
different mutants of C. albicans strains, N-2-1-6, N-2-1-6+p33,
A-11-1-1-4, CAN52, AS1 and HLC67 were grown similarly in SN
medium with 2% GIcNAc for 2 h at 30°C and control cells were
cultured in SC with 2 % glucose.

RNA extraction and Northern analysis. Total RNA was extracted
from frozen cells (Ausubel et al, 1994). Then 1:5% formaldehyde
agarose gel electrophoresis was carried out with 40 pg RNA per lane,

and subsequent Northern blot analysis was performed as described
by Ausubel et al. (1994) with a *?P-labelled 938 bp EcoRV fragment
of CaGAPI (see Fig. 5a), excised from pCAGAP1.

Construction of mutant strains of C. albicans. Disruption of
the general amino acid permease gene was performed according
to the URA-blaster protocol (Fonzi & Irwin, 1993). The entire
3512 bp CaGAPI fragment was PCR-amplified from genomic DNA
of C. albicans SC5314 using the oligonucleotides 5'-CATTACC-
TGGTGCCACTCC-3" and 5'-GGTTTCGAATCAGTCGATGG-3' as
primers and cloned in the pGEMT-Easy vector followed by trans-
formation into DH5ux to generate pCaGAP1. To obtain ACagapl
mutants, plasmid pGP1 was constructed by replacing a 948 bp
EcoRV-EcoRV fragment of pCaGAP1 containing the CaGAPI ORF
with a 4176 bp blunt-ended Sacl-Pvull fragment of vector pUC19-
CUB containing the hisG-URA3-hisG cassette. To obtain pUC19-
CUB, the 4 kb BamHI-Bglll hisG-URA3-hisG cassette from pCUB6
was integrated into the BamHI site of plasmid pUC19. CAF-3-1 was
transformed by the lithium acetate method (Gietz et al., 1992) with
a 6688 bp Notl fragment derived from the targeting construct pGP1

http://mic.sgmjournals.org
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l Fig. 1. Schematic representation of the
Notl construction of the cassette used to disrupt
CaGAP1 (a) and the cassette CaGAP1-
URA used to reintroduce one wild-type
CaGAP1 allele (b). (c) Corresponding
Southern blot analysis of strains CAF3-1
(wild-type+/+ Ura™), GP-5 (+/ACagap?
Urat), GP57 (+/ACagap! Ura”), GP573
(ACagap1/ACagap1 Ura™), GP5731
(ACagap1/ACagap? Ura™) and revertant
strain  GP57315  (ACagap1/ACagap1 +
CaGAP7 Ura™) obtained during the dis-
ruption process. Genomic DNA from these
strains was Aatll/Sacl-digested and hybrid-
ized with a 3-5 kb Notl fragment of plasmid
pCaGAP1. The exact size and genotype of
the expected hybridizing DNA fragment are
indicated on the right.

(Fig. 1a). Transformants were selected on synthetic minimal media
(SD) to obtain Ura™ transformants. After confirmation of disrup-
tion by Southern analysis, Ura™ transformants (GP5) were screened
for Ura-cured segregants on SD minimal medium containing 1 mg
5'-fluoroorotic acid ml™' and 25 pg uridine ml~'. One Ura-cured
transformant (GP57) was then used to delete the second allele of
CaGAP] using a similar process to generate the homologous gapl1/
gapl mutants GP573 (Ura™) and GP5731 (Ura™).

Construction of CaGAP1 revertant strain GP57315 in
C. albicans. In order to obtain a reconstituted strain with one
CaGAPI allele, we constructed the plasmid pGP2 where a 2:3 kb
EcoRV—-EcoRV fragment from pUC19-CUB containing URA3 was
introduced into the BstXI site of pCaGAP1 located downstream of
the CaGAP1 ORF. The homozygous mutant GP5731 (Ura ) was
then transformed with a 5-8 kb Nofl fragment derived from pGP2
(Fig. 1b). Transformants were selected on SD minimal medium to
obtain a Ura™ strain, which was confirmed by Southern analysis.

Southern analysis. For screening of mutants and revertant strains,
5 pg genomic DNA from each transformant and parent strain was
digested with Aafll and Sacl, electrophoresed and transferred
(Sambrook et al, 1989) to Genescreen Plus membrane (NEN
Research Products). The blots were hybridized with a *?P-labelled
3-5 kb NofI-Notl fragment from pCaGAP1 (Fig. 1¢).

Induction of filamentation by serum and GiIcNAc. Candida
cells were grown to the exponential growth phase in YPD, washed
twice with sterile water and shaken for 10 h in water at 30 °C and
100 r.p.m. (Sonneborn et al., 2000). Cells (ODgyy 0-5) were then
induced for germ tube formation with 2-5 mM GlcNAc in salt base

containing 0-45% NaCl and 0-335% YNB without amino acids
at 37 °C for 4 h or with bovine calf serum (Sigma) in YPD at 37°C
for 2 h.

Morphogenesis studies on solid media. Candida strains were
grown in SD at 30 °C, counted using a haemocytometer, and plated
at a concentration of 80-100 cells per Spider (1% nutrient broth,
1% mannitol, 0-2% K,HPO,, 2% Bacto agar) or SLAD (0-17 %
YNB without amino acids and ammonium sulphate, 2% glucose,
50 uM ammonium sulphate, 2% Bacto agar) plate. Plates were
incubated at both 30 and 37 °C for 7-10 days.

Determination of virulence. Female Swiss mice, 5—6 weeks old,
were intravenously injected with 10° cells of wild-type (SC5314),
heterozygous Cagapl mutant (GP5), homozygous mutant (GP573)
and revertant (GP57315) strains of C. albicans. The number of
surviving mice was scored.

RESULTS

Sequence analysis of the CaGAP1T gene in
C. albicans

Sequencing of the C. albicans CaGAPI gene followed by
a BLAST search revealed that it is homologous to GAPI,
which encodes the general amino acid permease from
S. cerevisiae (Jauniaux & Grenson, 1990). The sequence was
submitted to the EMBL database and assigned accession
number AF467941. The sequence contained a single ORF
of 1746 nucleotides, which encodes a predicted protein of
582 amino acids with an estimated M, of 63 950. Several
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putative TATA box sequences along with a global regulator,
Gcendp, and AP-1 binding site appear at positions —286
and —152, respectively, upstream from the initiation
codon ATG. Interestingly, there is one 5'-GAATAG-3'
sequence (at the —646 position), and several TTGTT/
TGGTT sequences were found upstream of the CaGAPI
promoter. GAATAG/GATA-type sequences which are the
binding target of the transcription factor Gln3p were also
found in the GAPI promoter of S. cerevisiae (Miller &
Magasanik, 1991). TTGGT or TTGTT plays an auxiliary
role in activation of nitrogen-regulated genes by Gln3p
(Stanbrough et al, 1995). Another transcription factor,
Cphlp/Acprp of C. albicans, a homologue of Stel2p of
S. cerevisiae, binds to a heptamer sequence, TGAAACA,
referred to as a pheromone responsive element (PRE).
This sequence is also present at the —989 position of the
CaGAPI promoter (Fig. 2). Comparison of the predicted
CaGaplp amino acid sequence with the S. cerevisiae
genome  database  (http://genome-www.stanford.edu/
Saccharomyces/) using the CLUSTALW program (http://
www.ebi.ac.uk/) revealed that CaGAPI bears a marked
resemblance to some previously sequenced yeast permease
genes, such as HIPI (histidine permease), TAT2 (trypto-
phan permease), AGPI (arginine/glutamate permease), etc.,
with an overall sequence similarity of 40-50 %. See the
supplementary figure at http://mic.sgmjournals.org.

Hydropathy profile

The protein product (AAL76065.1) that was deduced from
the CaGAPI gene sequence is considerably hydrophobic,

containing 46 % non-polar residues. A hydropathy profile
generated with the Kyte & Doolittle (1982) algorithm
showed that there are 10-12 transmembrane regions within
the protein (Fig. 3a). Hydrophobic segments of at least
20 amino acids were revealed with a mean hydropathy
value lower than 1-3, suggesting the formation of
membrane-spanning o helices by these segments (Lodish,
1988). These transmembrane regions are interconnected
with hydrophilic regions that frequently contain a cluster
of positively or negatively charged amino acids (Fig. 3b).
The N-terminus of the CaGaplp polypeptide is hydro-
philic, like those of many integral membrane proteins,
and does not present the feature of a cleavable signal
peptide sequence predicted by the ExPASy (Expert
Protein Analysis System) proteomics (http://www.expasy.
ch/proteomics_def.html) server of the Swiss Institute of
Bioinformatics (http://www.isb-sib.ch/).

C. albicans CaGAP1 is a functional homologue
of S. cerevisiae GAP1

The general amino acid permease Gaplp of S. cerevisiae is
responsible for the transport of all the natural amino acids
and related compounds, such as ornithine and citrulline,
and several D-amino acids and toxic amino acid analogues
such as mimosine (Rytka, 1975). Therefore, a gapI mutant
of S. cerevisiae is able to survive in the presence of D-amino
acids and mimosine (McCusker et al., 1990). In the course
of this study, we found that the haploid ancestor strain
(MS138) of the gapl mutant (MS143) of S. cerevisiae and
the transformants (Agapl:: CaGAPI) failed to grow on

-1078 TAAAATCGTTTCTGAAACTTCCAGTTAAAAAACTAACGGAGACTCATTCACAAGTC CAACTTTATAAAGATA -1004
ATTTTAGCAAAGACTTTGAAGGTCAATTTTTTGATTGCCTCTGAGTAAGTGTTCAGTTTGTTGAAATATTTCTAT

-1003 TTCTGGATACAATTAA‘IGAGACCAACCAAATTGTTP GAAGAGTTGTTAG TT.

TTCAT -929

AAGACCTAAACTTTGTCTGTTAATTACTCTG
PRE binding site
-928 TTTTGAACAACCAAGAGCAATTTAACCTCCAAATCCAAGA!

TAACAATTTCTTCTCAACAATCTCTAATTTTTAAGTA

TCGAATCAGTCGATGGTTCTAGAAAGCA -854

AAAAQTTCTTGETICTCGTTAAATTGGAGGTTTAGGTTC TGAACCAAAGC TTAGTCAGCTACCAAGATCTTTCGT

-853 GGTTTCTGGAACAAACAAACTACGTTCTGGAAATTATTGGGAAGGAGCGCCAATTATTTGAGACTTCACAACAAC -779
CCAAAGACCTTGTTTGTTTGATGCAAGACCTTTAATAACCCTTCCTCGCGGTTAATAAACTCTGAAGTGTTGTTG

-778  AATGCCAQUATAACTTACAAGAAAAAATAAATCAACAGTCCATAGAATACAACAAATTGACAACTCARATCGAAG ~704
TTACGETCATATTGAATGTTCTTTTTTATTTAGTTGTCAGGTATC TTATGTTGT T AACTGTTGAGTTTAGCTTC

-703 GACAAAATAAAGACATACAAGAAATCAARACAATTTTTAAAATT
CTGTTTTATTTCTGTATGTTCTTTAG

lccerabanTagrocaatceancear -629
AATTTTAATAACCAGGGATCTTATCAACCTTAGCTTCGTA
GATA binding site

AC -554

-628 CC@AGTACTTTCAACTGAAAATCCGATAA‘TGGAAAGCCAAC C: GACCAATAAA

GGATATTTCATGAAAGTTGACTTTTAGGCTATTACCTTTCGHITGTT I TGGT{IC TGGTTATTTTGCCTTTTTTG

-553 AAAGCTAGAGCTCCTTGCCTTTTCGGGAATGTGAAAGCGATTTTAAGTTTCTGCCTTTGCTCACATGACGGAATC -479
TTTCGATCTCGAGGAACGGAAAAGCCCTTACACTTTCGCTAAAATTCAARAGACGGAAACGAGTGTACTGCCTTAG

-478 TARAATTTGTGTGTTGCAGATTTAATTTCTTTTTTTTTTTTTTTTGCGTCCTTAACGGCARATAACCTTAACGCA -404
ATTTTAAACACACAACGTCTAAATTAAAGAAAAAAAAAAAAAAAACGCAGGAATTGCCGTTTATTGGAATTGCGT

~403  AGGCATTTTTAGTTACTCGGCAAGAGATGACCAAGTTTTGTCCATAACTCTCTTGCTTTATTGTTITACAAGARA ~329
TCCGTAAAAATCAATGAGCCGTTCTCTACTGGTTCARAACAGGTATTGAGAGAACGAAATAACAACATGTTCTTT

-328 AGTTTTTATGTTCAACCTGGTCAAAGTCCTCACAAGATTATGACTCATTTATCAAGTTGCCTTTTGARAACTTAT -254

TCAAAAATACAAGTTGGACCAGTTTCAGGAGTGTTCTAATACTGAGTAAATAGTTCAACGGAAAACTTTTGAATA

GCN4 binding site
-253  AAAAATIGCIGGGLLTCTITIIATGACTATG IAAAAAGCAARAAT: ue

TTTTTAACGACCCAAAGGAAAATACTGATACATTTTTCGTTTTTATTTTATTTCAAGAAAAAGAAAAGAATCGAA

-178 TGACAATATTATAATGTGE:

AP-1 binding site
-103 TCTTTGTAAACATTTTTCAAAAAATAGAATCTTATTTGTA!

-28 TCTTCTTTGCTCAATACCAATCATCATCATGCTACATAAAAAACAAACTAACGATACATTTGTTCAATTAARATAG 46

rararararal
AGCAATGACTTCTT CTACTCATCATCAGCATCTT -104
ACTGTTATACATATTACACCACACTCATICGTTACTGAAGARATATATATAT TTTGATGAGTAGTAGTCGTAGAA

AGTTTTTCCTTTTATCTTACATCAAGAC -29
AGAAACATTTGTAAAAAGTTTTTTATC TTAGAATAAACATCAACAAATCAAAAAGGAAAATAGAATGTAGTTCTG

+ =179

Fig. 2. CaGAP1 promoter sequence. Nucleo-
tides are numbered on the right from the
ATG initiation codon of the CaGAP1 ORF
(position +1). The GAATAG, PRE-binding,
TTGTT and TTGGT sites are boxed. The
Gcn4p-binding and the AP-1-binding sites

AGAAGAAACGAGTTATGGTTAGTAGTAGTACGATGTATTTTTTCTTTGATTGCTATGTAAACAAGTTAATTTATC

M L H K K

are underlined.
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(b) Distribution of non-polar and positively
and negatively charged residues.

minimal proline media (SPD) containing mimosine
whereas the gapl mutant MS143 was not sensitive to
mimosine (Fig. 4a, ¢), indicating the functional similarity
of CaGaplp with Gaplp of S. cerevisige. The failure of
the transformants (Agapl:: CaGAPI) to grow on minimal
proline medium containing mimosine is probably the
result of mimosine uptake by CaGaplp. The growth rate
of a Cagapl null mutant of C. albicans (GP573) is higher in
comparison to the wild-type strain SC5314 and a revertant
strain, GP57315, in glucose-containing minimal proline
media, SPD (Fig. 4e), and GlcNAc-containing minimal
proline media, SPN (Fig. 4f), when mimosine was added.
However, the effect of mimosine in C. albicans persists only
up to a maximum of 10-15 h, as a result of which we found
no significant difference in growth on solid plates after
2 days (Fig. 4g, h). This may be due to a higher growth rate
of C. albicans as compared to S. cerevisiae.

To explore whether CaGaplp of C. albicans allows uptake
of amino acids and related compounds, a citrulline uptake
assay was performed in minimal proline medium (SPD) to
demonstrate the general amino acid permease activity in
S. cerevisiae as well as in C. albicans. In the Cagapl null
mutant (GP573), the citrulline uptake rate was two times
lower than in the wild-type strain (SC5314) and a rever-
tant strain (GP57315) in C. albicans (data not shown).
Interestingly, the citrulline uptake of transformants
(Agapl:: CaGAPI) was increased 2-5-fold over that of the
gapl mutant of S. cerevisiae. That indicates the functional
similarity of the general amino acid permease of the two
micro-organisms.

Effect of nitrogen source on the amino acid
analogue resistant phenotypes

Amino acids are transported into S. cerevisiae by both
specific and non-specific transport systems. The general
amino acid permease system is strongly repressed when
growth medium contains (NH,),SO, and glutamate
(Springael & Andre, 1998). To investigate such an effect

on the regulation of CaGaplp we did growth kinetics
as well as replica plating of wild-type strain MS138, the
mutant MS143 (Agapl) and transformants (Agapl: CaGAPI)
of S. cerevisiae on media containing ammonia (SAD) and
glutamate (SED) as nitrogen source in the presence of
mimosine. Interestingly, the wild-type strain and the
transformants were found to be resistant to mimosine in
SAD (Fig. 4b, d) and SED (data not shown). These results
suggested that in ammonia- and glutamate-containing
medium, mimosine uptake is lowered due to the inactive
general amino acid permease system. Moreover, we
observed a similar effect when we did growth kinetics as
well as 2 days incubation on solid plates of the C. albicans
wild-type strain SC5314 and the null mutant GP573 in
ammonia- and glutamate-containing media using both
glucose and GIcNAc as a carbon source (data not shown).

Effect of different nitrogen sources on GicNAc
induction of CaGAP1

The CaGAPI gene was isolated as a result of its differ-
ential expression in glucose- and GlcNAc-grown cells.
Northern analysis was used to investigate the expression
of CaGAPI in glucose-grown and GlcNAc-grown cultures
at various intervals. A significant induction was observed
in GlcNAc-grown cells at 2 h growth (Fig. 5b).

Northern blot analysis was also used to investigate the
effect of different nitrogen sources upon GlcNAc induction
of CaGAPI (Fig. 5¢). The intensity of the individual bands
was quantified by densitometry of the autoradiogram, and
the fold induction has been represented graphically in
Fig. 5(d). It was observed that in SEN (glutamate), SPN
(proline), SUN (urea) or SGN (glutamine) media, the level
of CaGAPI mRNA was about 1-4-fold higher than that of
control cells grown in only GlcNAc-containing medium
(SN), whereas the CaGAPI mRNA level was very low in
ammonium-containing SAN medium. There was no change
in the level of expression in histidine-containing SHN
medium (data not shown). The same experiment was
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Fig. 4. Phenotype of a general amino acid mutant strain of S. cerevisiae and C. albicans. S. cerevisiae strains MS138 (wild-
type), MS143 (Agap1/A) and MSPF31 (Agap1/A:: CaGAPT) were incubated in liquid glucose-containing minimal proline
medium, SPD (a), and glucose-containing minimal ammonium medium, SAD (b), at 30 °C for the indicated time period. (c, d)

S. cerevisiae strains MS138, MS143 and MSPF31 grown on solid

SPD (c) and SAD (d) at 30 °C for 2 days. (e, ) C. albicans

strains SC5314 (wild-type), GP573 (ACagap1/A) and GP57315 (ACagap1/A+CaGAP17) incubated in SPD (e) and
GlcNAc-containing minimal proline medium, SPN (f), at 30 °C for the indicated time period. (g, h) C. albicans strains SC5314,

GP573 and GP57315 grown on solid SPD (g) and SPN (h) at

30°C for 2 days.

carried out using SED, SPD, SAD, SUD, SGD and SHD
media where glucose was supplied as carbon source, but
no induction or repression was observed (data not shown).

Expression of CaGAP1 is regulated by
Cph1p-mediated Ras1p signalling but is
independent of Efg1p

To investigate the effect of different mutations on the
expression of GlcNAc-inducible CaGAPI, strains N-2-1-6

(AdaclAnaglAhxkl/AdaclAnaglAhxkl),  N-2-1-6+p33
(AdaclAnaglAhxk1/ DACINAGIAhxkI), A-11-1-1-4 (Aacprl/
Aacprl), CANS52 (Arasl/Arasl), HLC67 (Aefgl/Aefgl) and
AS1 (Atpk2/Atpk2) were used. Northern blots showed that
transcript levels of CaGAPI mRNA declined in the case
of the Aras/Aras and Aacprl/Aacpr]l null mutants and
remained unaffected in the N-2-1-6, N-2-1-6 4+ p33, HLC67
and AS1 strains (Fig. 5e). This implies that Acprlp/Cphlp-
mediated Raslp signalling regulates CaGAP1 whereas the
cAMP-dependent protein kinase A and Efglp-mediated
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Fig. 5. Differential expression of CaGAP7. (a) A 938 bp EcoRV fragment from pCaGAP1 used as probe. (b) Induction of
CaGAP1 by GlcNAc. Total RNA was isolated from strain SC5314 grown in GPK or NPK for 2 h at 30 °C. A Northern blot of
the sample was hybridized with the 938 bp EcoRV fragment of pCaGAP1. Each lane contains 40 pg RNA. (c) Effect
of GlcNAc induction in different nitrogen sources. Total RNA was isolated from SC5314 cells in the presence of GlcNAc
(2%) in different synthetic media, SN, SEN, SPN, SAN, SUN and SGN, as described in Methods and examined by Northern
blot analysis. The same gene probe was used here, and each lane contained 40 ng RNA. (d) CaGAP1 expression levels in
media containing alternative nitrogen sources at the 2 h time point were quantified by densitometry of the autoradiogram and
fold induction was represented graphically with respect to synthetic complete GIcNAc medium (SN). (e) Effect of GlcNAc
induction in different mutants of C. albicans. Total RNA was isolated from different strains of C. albicans, SC5314, N-2-1-6,
N-2-1-6+p33, CAN52, HLC67, AS1 and A-11-1-1-4, in SC medium in the presence of GIcNAc (2%) as described in

Methods and examined by Northern blot analysis.

Raslp signalling pathway is not involved in CaGAPI
expression. Although DACI, NAGI and HXKI are induced
by GlcNAg, these GIcNAc catabolic pathway genes are not
involved in CaGAPI expression.

Physiological effect of disruption of the
CaGAP1 gene

To determine the role of CaGAPI in the physiology of
C. albicans, we disrupted both chromosomal copies of the
gene sequentially by the URA-blaster technique (Fonzi &
Irwin, 1993). Growth rates of the wild-type (SC5314),
heterozygous mutant (GP5), homozygous mutant (GP573)
and heterozygous revertant (GP57315) were similar at 30 °C
in glucose-containing media (data not shown). In a murine
mouse model, no change in virulence was observed with
the mutant strains (data not shown). When GIcNAc was
used as a carbon source, the growth rate was higher but no

striking difference was found among the wild-type and
mutant strains. All the strains used for growth kinetics
and morphological studies were Ura™. C. albicans can shift
from a yeast to a hyphal form when it is cultured at 37 °C
in the presence of serum and GlcNAc. This transition was
not impaired or affected in a Cagapl/Cagapl mutant
(GP573) in both serum (Fig. 6a, b, ¢, d) and GlcNAc
(Fig. 6e, f, g, h) induction media. However, we observed
less hyphal clump formation by GlcNAc in the Cagapl/
Cagapl mutant in a shake flask (Fig. 6g). No difference
was found in a heterozygous mutant and a heterozygous
revertant with respect to this behaviour (Fig. 6f, h). We
then assessed the filamentous growth from mature colony
borders on solid Spider agar in which mannitol, but not
glucose, is used as a carbon source at 30 °C. Only the Cagap1
null mutant (GP573) showed less hyphal formation and
altered colony morphology which was different from the
wild-type strain and the heterozygous mutant (Fig. 6i, j, k).
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Fig. 6. Morphology of CaGAP7 mutant strains under different hypha-inducing conditions. Wild-type SC5314 (CaGAP1/
CaGAP1), heterozygous mutant GP5 (ACagap1/CaGAP1), homozygous mutant GP573 (ACagap1/ACagap1) and a
heterozygous revertant (ACagap1/ACagap1 strain in which CaGAP7 :: URA3 has been recombined back at the CaGAP1
locus, ACagap1/CaGAPT ::URA3) were induced for filamentation under different conditions. Cagap1/Cagapi could not
block the induction of filaments by serum response (a, b, ¢, d; bar, 20 um) but shows less hyphal clump formation in GlcNAc-
inducing conditions (e, f, g, h; bar, 100 pm) and defective filamentation on solid Spider and SLAD media (j, j, k, I; bar, 2 mm).
Nitrogen starvation (SLAD medium) (m, n, o, p; bar, 1 mm) also affects filamentation in the case of the heterozygous mutant

and revertant strains of CaGAP1.

This phenotype was reversed by reconstituting a single
functional copy of the gene (Fig. 61). An interesting
feature of our analysis was the finding that both the
heterozygous and homozygous mutants had an obvious
defect in filamentation and drastic abnormal colony
morphology on nitrogen-starvation solid SLAD plates at
37 °C (Fig. 6n, o). Furthermore, the defect in filamentation
and colony morphology is not fully suppressed by intro-
duction of a single copy of a functional gene (Fig. 6p).
However, Cagapl/Cagapl homozygous disruptants were
more homogeneous than the heterozygous strain and
showed a greater reduction in peripheral hyphal growth,

indicating that gene dosage is important for morphogenesis
of C. albicans under certain conditions.

DISCUSSION

We have isolated the general amino acid permease gene
CaGAPI from C. albicans, on the basis of its induction
by GlcNAc. This is the first report of the isolation of
a functional general amino acid permease gene from
C. albicans. The results presented here are in agreement
with three essential points: first, the activity of a general
amino acid permease was regained when a gapl mutant
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strain of S. cerevisine was transformed with the CaGAPI
gene in minimal proline media, indicating the functional
similarity of CaGaplp with Gaplp; second, transcription
of CaGAPI is regulated by the external nitrogen source
and is dependent on Cphlp-mediated Raslp signalling;
and finally defective filamentation or abnormal colony
morphology in homozygous and heterozygous CaGAPI
disruptants was found under certain conditions.

CaGAPI (AF467941) is not only homologous to GAPI
(CAA82113) of S. cerevisiae but also shows similarity to
other yeast permease genes such as HIP1, TAT2, AGPI and
GPNI (Jauniaux & Grenson, 1990). The deduced gene
product is highly hydrophobic with 10-12 transmembrane
regions. CaGAP1 was induced by GIcNAc at 2 h growth but
was expressed only at a basal level in glucose-containing
complete medium. The GlcNAc induction of CaGAPI was
enhanced in synthetic minimal media supplemented with
a single amino acid such as glutamate, proline, glutamine
or urea but was inhibited by ammonia. The regulation of
CaGAP] at the level of transcription is comparable to GAPI
regulation in yeast, where the transcription factors Gln3p
(in the presence of glutamate) and Nillp (in the presence
of urea or proline) are activators (Stanbrough et al., 1995),
while Dal80p (Cunningham & Cooper, 1993) and Nil2p
(Lodish, 1988; Rowen et al., 1997) are inhibitors. In the
presence of ammonium, Ure2p, another transcriptional
repressor, sterically hinders GIn3p from activating GAPI
(Blinder et al., 1996). These factors bind to an upstream
regulatory sequence containing a motif surrounding a
core GATA sequence (Springael & Andre, 1998). An obvious
similarity between the CaGAPI promoter and a nitrogen-
regulated gene promoter like GAPI, GLNI, GDH?2, etc.,
of S. cerevisize is the presence of a GAATAG sequence
(Cunningham & Cooper, 1993). Another feature common
to the CaGAP1 and GAPI promoters is the presence of
TTGGT or TTGTT, which plays an auxiliary note in
activation by GIn3p (Miller & Magasanik, 1991). Five
GATA-type transcription factors and one gene homologous
to URE2 have been reported from the C. albicans Genome
Sequencing Project, Stanford. One can therefore presume
that the regulation of CaGAPI might be brought about by
all of them.

In our induction studies we also saw that CaGAPI is
GlcNAc-inducible, but in the GIcNAc catabolic path-
way mutants AdaclAnaglAhxkl/AdaclAnaglAhxkl (Nag
regulon mutated) and AdaclAnaglAhxkl/DACINAGIAhxkI
(hexokinase mutant), which are incapable of utilizing
GlcNAc (Singh et al, 2001), there was no change in
induction of CaGAPI when GlcNAc was added to the
media. This fact implies that catabolism of GIcNAc is not
required for expression of CaGAPI, but whether GlcNAc
directly enhances the expression of CaGAPI or whether it
binds to some surface receptor which transmits the signals
via some other intermediate proteins is still unknown.
However, GIcNAc induction of the CaGAPI gene is less
in ¢phl/cphl and rasl/rasl null mutants while no striking

change of expression was found in efgl/efgl and tpk2/tpk2
mutant strains. It was also reported that the N-terminal
region of Acprp/Cphlp can recognize and bind PREs
in vitro like Stel2p of S. cerevisiae (Malathi et al., 1994).
Interestingly, one PRE sequence, TGAAACA, is also present
in the CaGAPI promoter. This clearly showed the role of
Cphlp-dependent Raslp signalling in GlcNAc-induced
CaGAPI expression.

Gaplp of S. cerevisiae is not only regulated transcriptionally
but its activity also depends on the external nitrogen source.
Addition of ammonium ions (Springael & Andre, 1998;
Bernard & Andre, 2001) or glutamate (Roberg et al., 1997)
inhibits the activity of Gaplp in S. cerevisiae. We found in
our study that mimosine inhibited the growth of a wild-
type strain and transformants (Agapl:: CaGAPI) of
S. cerevisiae on minimal proline media but was unable
to do so in ammonium- or glutamate-containing media.
This indicates that CaGaplp is probably not functional
in ammonia- or glutamate-grown cells. Similarly in
C. albicans, mimosine affected the growth of wild-type
strain SC5314 and the revertant strain (GP57315) while a
Cagap1 null mutant (GP573) could resist the drug effect in
minimal proline medium. In Candida strains, the effect of
mimosine persists for a maximum of 10-15 h, which may
be because of the higher growth rate of this micro-organism.

Yeast possesses many amino acid permeases with over-
lapping substrate specificities. The general amino acid
permease Gaplp, which can transport most amino acids,
can be specifically assayed by uptake of ['* Clcitrulline
(Grenson et al., 1970). To demonstrate the import of amino
acids by CaGaplp, a citrulline uptake assay was performed
in minimal proline medium. General amino acid activity
was increased 2-5-fold when the CaGAPI gene was
expressed in the gapl mutant strain (Agapl:: CaGAPI) of
S. cerevisiae. On the other hand, the Cagap mutant (GP573)
of C. albicans showed 50 % less citrulline uptake than the
wild-type strain (SC5314) and the permease activity was
regained when the CaGAPI gene was recombined back in
the CaGAPI locus of the Cagapl mutant strain (GP57315).
Therefore, we could not exclude the possibility that the
transport pattern of the general amino acid permease is
the same in both S. cerevisiae and C. albicans.

We have also shown here that Cagap1/Cagapl has defects
in filamentation on solid Spider and SLAD medium,
forming only a few short hyphae instead of the florid
filaments that emanate from the wild-type strain. Despite
this defect, Cagapl/Cagapl could not block the induction
of filaments by serum response, but we found less hyphal
clump formation in GlcNAc inducing conditions. Defec-
tive morphology and less filamentation of both the
heterozygous and homozygous mutants during nitrogen
starvation strongly suggest that the GlcNAc-inducible
CaGAPI is regulated by the external nitrogen source.
Thus one interpretation of these data is that GIcNAc-
induced hyphal formation is sensitive to the dosage of the
CaGAPI gene under nitrogen source control. Herein lies
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the importance of GlcNAc, which not only acts as an
inducer of hyphal formation (Mattia et al., 1982; Simonitti
et al., 1974) but also regulates the expression of a number
of genes within the cell. Through the induction of CaGAP]I,
GlcNAc might indirectly alter the nutritional status of the
cell, by causing an increased uptake of amino acids. Again,
depending on the source of nitrogen in the extracellular
medium, CaGAPI is induced or repressed. In a poor
nitrogen source like minimal proline medium or under
nitrogen starvation conditions, CaGAPI is induced by
GlcNAc through the Cphlp-mediated Raslp signalling
pathway, which leads to a morphological change. This
interplay between GIcNAc and different nitrogen sources
probably brings about a co-ordinated regulation of
CaGAPI expression and morphogenesis.
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