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An Exactly Solvable Anisotropic Directed Percolation Model in Three Dimensions
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We solve exactly a special case of the anisotropic directed-bond percolation problem in three
dimensions, in which the occupation probability is 1 along two spatial directions, by mapping it
to a five-vertex model. We determine the asymptotic shape of the infinite cluster and hence the
direction dependent critical probability. The exponents characterizing the fluctuations of the boundary
of the wetted cluster ind dimensions are related to those of thesd 2 2d-dimensional KPZ equation.
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It is well known that the critical behavior of a very
large class of reaction-diffusion systems is describab
in terms of the critical exponents of directed percolatio
(DP) [1]. Examples include heterogeneous catalysis [
contact processes and epidemic models, self-organi
criticality [3], and the driven depinning transition [4].
Although rather precise estimates of critical paramete
are known from various numerical techniques such
series expansions and Monte Carlo simulations [5],
exact solution has not been possible so far, even in
simple case of1 1 1 dimensions. The only analytically
tractable case known is the anisotropic bond percolati
on a square lattice, solved by Domany and Kinzel (DK
They addressed the problem in which horizontal an
vertical bonds are present with different concentratio
and solved exactly the special case when one of thes
set equal to1 [6]. In this case, the wetted cluster has n
holes, and this fact helps in reducing the problem to th
of a simple random walk in one dimension [7].

In this paper, we solve the three-dimensional gener
ization of the DK model. We consider the DP on a thre
dimensional simple cubic lattice with bond concentratio
in the three directions beingpx , py , andpz, and solve the
casepx ­ py ­ 1, pz arbitrary. We study the properties
of the infinite cluster and obtain the macroscopic shape
the cluster and the scaling form for the fluctuations of i
boundary. By universality, the behavior of fluctuations o
the outer boundary of the infinite cluster at large leng
scales in this special soluble case is expected to be
same as in the more general case above the percola
threshold withpx , py , andpz arbitrary.

In addition to the usual critical exponents of the D
problem, which are defined in terms of the power-law b
havior of various quantitiesnear the critical point, there
are universal power-law prefactors to the exponential d
cay of correlation functions away from the critical poin
For example, forp , pc, the probability of a finite clus-
ter havings sites varies ass2u exps2Asd ass ! `. For
p . pc, the probability varies ass2u0

exps2Bssd21dydd
for larges. The exponentsu andu0 are examples ofoff-
critical exponents [8]. We find that the fluctuations of th
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boundary of the infinite cluster ind dimensions are in the
same universality class as those of asd 2 2d-dimensional
interface moving in asd 2 1d-dimensional space. The
latter is described by the well-known Karder-Parisi-Zhan
(KPZ) equation [9]. Thus we identify the critical expo
nents of the KPZ equation as belonging to the class
off-critical exponents of DP.

Our solution falls in the general class of disorde
solutions of statistical mechanical models [10]. The
often show the phenomena of dimensional reductio
Thus a three-dimensional problem at a disorder point c
be thought of as a two-dimensional system evolving
time, and correlation functions in its steady state wou
show large distance tails characteristic of two-dimension
systems. In our case, the choicepx ­ py ­ 1 allows
a further reduction of dimension by 1, and we sho
that the system is equivalent to describing the Markovi
evolution of a system of hard core particles on a on
dimensional ring, where the particles are able to move
only one direction [11]. Our solution is also of interes
as an exact solution of a nontrivial three-dimension
statistical mechanics problem with positive weights,
which not many are known [12].

Consider the general DP problem on a simple cub
lattice with nearest neighbor bonds, all directed in th
direction of increasing coordinates. The concentrati
of bonds ispx , py , and pz along thex, y, and z axes.
We imagine a source of fluid at the origin, which ca
spread along the occupied directed bonds. The s
wetted by this fluid form a cluster which we sha
call the wetted cluster for brevity. One would like to
calculate the probability,Ps $Rd, that a site $R belongs
to the wetted cluster. Whenpx , py, and pz are small,
the wetted cluster is finite. As the probabilities ar
increased, an infinite connected path appears. We s
call the special direction along which an infinite pat
first appears as the preferred direction. As the bo
concentrations are further increased, percolation occur
a narrow cone centered around the preferred directi
Following DK, we look at the angular dependence
Ps $Rd. Its exponential decay for largej $Rj defines an
© 1998 The American Physical Society
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angle dependent correlation length,jV, in the direc-
tion V.

The correlation lengthjV diverges asf pcsVd 2 pg2n ,
wherepcsVd is theV dependent critical probability. The
value of the exponentn depends on the directionV. We
show below that in most directionsn takes the same value
3y2. n is different if V is the preferred direction (when
n ­ n

3d
k , the DP exponent), or when it lies in one o

the coordinate planes (xy, yz, and zx). For percolation
in these planes, clearly all perpendicular bonds can
ignored, and the problem reduces to the known two
dimensional case. Consider, for simplicity, the isotropi
case (px ­ py ­ pz). Then the easy direction is (111),
and along this directionn3d

k ø 1.29. Along s110d, s011d,
ands101d directionsn

2d
k ø 1.733. Other directions in the

xy, yz, andzx planes haven ­ 2. The x, y, andz axes
haven ­ 1.

Consider a coordinate system in whichx and y axes
are in the plane of the paper with thez axis pointing out
of it (see Fig. 1). Sincepx ­ py ­ 1, all of the bonds
aligned along thex axis andy axis are present. Hence,
if a point sx, y, zd is wetted, then so are all of the points
sx0, y0, zd with x0 $ x, y0 $ y. It is easy to see that, if
sx, y, zd is wet, so are all the points directly below it
in the z direction. Therefore, we can define an intege
height functionhsx, yd such that all pointssx, y, zd with
z . hsx, yd are dry while the points withz # hsx, yd are
wet. The wetted cluster has no holes and can be specifi
completely by its bounding surface,hsx, yd.

We first determinehsx, yd, the mean value ofhsx, yd.
We do so by mapping the problem to a five-vertex mod
[13]. Consider the orthogonal projection of the wette
cluster onto thexy plane [see Fig. 2(a)]. It consists of
paths running from they axis to thex axis via steps in
the right and down directions obeying the constraint th
paths do not cross each other. Thekth path separates the
sites withhsx, yd , k from those sites withhsx, yd $ k.
We now slide each point in thekth path bysk, kd [see
Fig. 2(b)], thereby mapping the pointsx, yd to the point

FIG. 1. A typical wetted cluster shown up toz ­ 6 (for p ­
0.3). The cluster extends infinitely in thex andy directions.
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sz , hd given by

z ­ x 1 hsx, yd ,

h ­ y 1 hsx, yd .
(1)

This ensures that two paths will not have common edg
Now, every site has either zero or two bonds connectin
to its neighbors. Thus a given configuration of shifte
paths will be made up of five kinds of vertices. It i
easy to check that the correct weights of each of th
vertices are shown in Fig. 3, whereq ­ 1 2 p. Under
this mapping, it is an elementary exercise to show that
gradients are related through

hz ­ hxy
°
1 1 hx 1 hy

¢
,

hh ­ hyy
°
1 1 hx 1 hy

¢
,

(2)

wherehz stands for≠h
≠z , keeping the second coordinateh

fixed, and similarly for other partial derivatives.
Consider a pointsz , hd with z , h ¿ 1. In the five-

vertex problem,hz and hh are the mean densities o
lines in the horizontal and vertical directions, respective
They are, however, not independent and knowledge of
determines the other. The relation betweenhz and hh

is a local relation and is most easily determined using
different set of boundary conditions whenhz andhh are
uniform everywhere. Thus we consider the five-vert
model on an open cylinder of lengthN in the y direction
and infinite in thex direction.

The five-vertex model can be solved via the trans
matrix technique. We transfer from column to colum
along the x axis. Consider the sector in which ther
are n lines in a column. The ice rule plus periodi
boundary conditions ensure that there aren lines in each
column [14]. The transfer matrix,T sh y0j; h yjd, which
is the weight of going from configurationh yj to h y0j
(see Fig. 4, where the labeling is self-explanatory) is t
product of the weights of each vertex and can be writt
as

T sh y0j; h yjd ­
nY

i­1

s p
12dy0

i ,yi qy0
i2yi2121d . (3)

x					          x

yy

(a) (b)


FIG. 2. (a) The projection of the wetted cluster onto th
x-y plane. Overlapping edges have been shown separated
clarity. (b) The shifted paths.
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FIG. 3. The vertex weights.

It is easy to verify that
P

h y0j T sh y0j; h yjd ­ 1, where the
summation is over all allowed configurations. Therefo
T sh y0j; h yjd is a properly normalized transition probability
of sh yj ! h y0jd.

One can visualize this process as a system ofn hard
core particles, each hopping only to the right on a rin
of size N . If the particle on the right is at a distance
m then the particle can hop up tom 2 1 steps during
one time step, with the probability fork steps being
Psk j md ­ p12dk0 qm2k21. For large times, the above,
being a Markov process, will evolve into its steady stat
The steady state will be one in which all states are equa
likely. To see this, we note that

P
h yj T sh y0j; h yjd ­ 1.

Therefore Tt, the transpose ofT , is also a stochastic
matrix. Hence it has the states1, . . . , 1d as the left
eigenvector with an eigenvalue of1. Taking transpose,
s1, . . . , 1dt , is a right eigenvector with an eigenvalue of1.

Knowing the steady state, we can determine the avera
number of steps,d, of a particle in they direction for each
transfer in thex direction. Simple algebra gives

dr ­
ps1 2 rd

rs p 1 qrd
, (4)

wherer ­ nyN . Making the identificationdr ­ hz yhh

andr ­ hh in Eq. (4), we get

p
°
1 2 hz 2 hh

¢
­ qhz hh . (5)

Equation (5) can be rewritten inx, y coordinates with the
help of Eq. (2) to give

p
°
1 1 hx 1 hy

¢
­ qhxhy . (6)

For largex, y, Eq. (6) has the scaling solution

hsx, yd ­
1
L

hsLx, Lyd . (7)

Putting the ansatzhsx, yd ­ Asx 1 yd 1 B
p

xy, we find
that it satisfies the equation withA ­ pyq and B ­

y y2 y3 y4 y5 y6

1yy5y4y3y2

1

6 y

FIG. 4. Two typical arrangements of lines in the adjace
column (for n ­ 6). The position of linesh yij in the up-
per column must interlace with the positionh y0

ij in the lower
column.
1648
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pyq. Thus the asymptotic shape of the surface is give
by

hsx, y, pd ­
°

px 1 py 1 2
p

pxy
¢
yq, for x, y ¿ 1 .

(8)

The expression is symmetric inx and y. If y ­ 0,
then h ­ pxyq as expected. For givenp, and given
the azimuthal angle,f, there is a critical polar angle
uc such that all points withu . uc are wetted. The
critical angle is determined through the relation cotsucd ­
hy

p
x2 1 y2. Equation (8) can then be inverted to derive

the direction dependent critical probability, the smalles
probability for whichsu, fd is wetted, as

pcsu, fd ­

√p
sa 1 1d sb 1 1d 2

p
ab

a 1 b 1 1

!2

, (9)

wherea ­ tansud cossfd andb ­ tansud sinsfd.
The problem can also be viewed as a one-dimension

cellular automaton evolving in time. Consider the coord
nate transformationt ­ x 1 y, u ­ x 2 y. Then from
the definition of the model it is easy to check that fo
t $ 0, hsu, td follows the rule,

hsu, t 1 1d ­ maxfhsu 2 1, td, hsu 1 1, tdg 1 hsu, td ,
(10)

where hsu, td’s are independent identically distributed
random variables taking non-negative integer values wi
Probsh ­ kd ­ s1 2 pdpk . The rules of evolution are
local and we expect the fluctuations to be governed by t
KPZ equation [9].

We now look at the correlations in the system. Ther
are two correlation lengths of interest.jksVd has been
defined through the exponentially decaying probabilit
of wetting. jksVd diverges asf pcsVd 2 pg2n. We
denote byj' the correlation length along equal heigh
contours but along the wetted surface. We can stu
the fluctuations by looking at the scaling propertie
of the five-vertex model. The transfer matrix can b
diagonalized via the Bethe ansatz [15]. From this analys
it is known that the dynamic exponentz ­ 3y2, and the
roughening exponentx ­ 1y2 [16]. These exponents are
the well-known exponents of the KPZ equation.

The height fluctuations at a point are linearly relate
to the fluctuations in the trajectories in the five-verte
problem. In the KPZ problem, it is known that the
magnitude of the fluctuations of height varies ash1y3.
Thus we get

p
ksdhd2l , h1y3. jk is the correlation length

at an angleuc 1 du. Clearly jkdu , h1y3 , j
1y3
k or

jk , sdud23y2. From Eq. (8), we note that, forp fi

0, du , dp. Thus we getn ­ 3y2, to be compared
with the valuen ­ 2 for the two-dimensional DK. The
behavior ofj' can be obtained from the relationj' ,
j

1yz
k . Thus we getj' , x

2y3
k , wherexk is the distance of

the height contour from the origin.



VOLUME 81, NUMBER 8 P H Y S I C A L R E V I E W L E T T E R S 24 AUGUST 1998

,

a

.

.

,

.

-

,
.

–
n

Other three-dimensional lattices can be treated sim
larly. We consider lattices made up of two-dimension
layers stacked on top of each other with vertical bond
connecting a site to the one vertically above it. If eac
layer is a triangular lattice, then it may be described as
square lattice with one set of diagonal bonds. Howeve
the diagonal bonds provide no additional connections
px ­ py ­ 1 and can be neglected. Thus the problem r
duces to the square lattice. If each layer is a honeycom
lattice, there are two types of sites: those having only tw
or three outgoing bonds. If we integrate over the forme
the problem again reduces to a simple cubic lattice, wi
a renormalized probabilitypz.

In higher dimensions,d . 3, the exponents are re-
lated to the higher-dimensional KPZ equation. Th
d-dimensional DK model is equivalent to asd 2 2d-
dimensional interface growing in time. As in the case o
a depinning transition of a driven tilted interface [17], th
height-height correlation function ind dimensions will
have the scaling form

kdhsxddhsx0dl ­ jxk 2 x0
kj

s2xd22dyszd22dF

3

√
jx' 2 x0

'jzd22

jxk 2 x0
kj

!
, (11)

where xk is measured along the radial direction,x' is
measured along the equal height contour, andzd and xd

are KPZ exponents of a growingd-dimensional interface.
In summary, we have been able to exactly solve th

three-dimensional anisotropic directed percolation pro
lem for the special casepx ­ py ­ 1. We used the fact
that in this case the wetted cluster has no holes with
This reduces the problem to studying the two-dimension
surface of the cluster. The weights of different surface
were shown to be the same as those of different config
rations of a five-vertex model. From the already know
exact solution of the latter, we obtained an exact expre
sion for the average height profilehsx, yd and determined
the asymptotic correlations of the surface fluctuations
the wetted cluster for large separations.

We thank Mustansir Barma and Satya Majumdar fo
critical reading of the manuscript.
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