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An Exactly Solvable Anisotropic Directed Percolation Model in Three Dimensions
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We solve exactly a special case of the anisotropic directed-bond percolation problem in three
dimensions, in which the occupation probability is 1 along two spatial directions, by mapping it
to a five-vertex model. We determine the asymptotic shape of the infinite cluster and hence the
direction dependent critical probability. The exponents characterizing the fluctuations of the boundary
of the wetted cluster in/ dimensions are related to those of the — 2)-dimensional KPZ equation.
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It is well known that the critical behavior of a very boundary of the infinite cluster id dimensions are in the
large class of reaction-diffusion systems is describablsame universality class as those dila— 2)-dimensional
in terms of the critical exponents of directed percolationinterface moving in ad — 1)-dimensional space. The
(DP) [1]. Examples include heterogeneous catalysis [2]latter is described by the well-known Karder-Parisi-Zhang
contact processes and epidemic models, self-organizd&PZ) equation [9]. Thus we identify the critical expo-
criticality [3], and the driven depinning transition [4]. nents of the KPZ equation as belonging to the class of
Although rather precise estimates of critical parametersff-critical exponents of DP.
are known from various numerical techniques such as Our solution falls in the general class of disorder
series expansions and Monte Carlo simulations [5], arsolutions of statistical mechanical models [10]. These
exact solution has not been possible so far, even in theften show the phenomena of dimensional reduction.
simple case offt + 1 dimensions. The only analytically Thus a three-dimensional problem at a disorder point can
tractable case known is the anisotropic bond percolatiobe thought of as a two-dimensional system evolving in
on a square lattice, solved by Domany and Kinzel (DK).time, and correlation functions in its steady state would
They addressed the problem in which horizontal andshow large distance tails characteristic of two-dimensional
vertical bonds are present with different concentrationsystems. In our case, the choigg = p, =1 allows
and solved exactly the special case when one of these & further reduction of dimension by 1, and we show
set equal tal [6]. In this case, the wetted cluster has nothat the system is equivalent to describing the Markovian
holes, and this fact helps in reducing the problem to thaevolution of a system of hard core particles on a one-
of a simple random walk in one dimension [7]. dimensional ring, where the particles are able to move in

In this paper, we solve the three-dimensional generalenly one direction [11]. Our solution is also of interest
ization of the DK model. We consider the DP on a three-as an exact solution of a nontrivial three-dimensional
dimensional simple cubic lattice with bond concentrationstatistical mechanics problem with positive weights, of
in the three directions being,, p,, andp., and solve the which not many are known [12].
casep, = p, = 1, p, arbitrary. We study the properties  Consider the general DP problem on a simple cubic
of the infinite cIuster and obtain the macroscopic shape dfattice with nearest neighbor bonds, all directed in the
the cluster and the scaling form for the fluctuations of itsdirection of increasing coordinates. The concentration
boundary. By universality, the behavior of fluctuations ofof bonds isp,, p,, and p, along thex, y, andz axes.
the outer boundary of the infinite cluster at large lengthWe imagine a source of fluid at the origin, which can
scales in this special soluble case is expected to be ttepread along the occupied directed bonds. The sites
same as in the more general case above the percolatiovetted by this fluid form a cluster which we shall
threshold withp,, p,, andp. arbitrary. call the wetted cluster for brevity. One would like to

In addition to the usual critical exponents of the DPcalculate the probablllty,P(R) that a siteR belongs
problem, which are defined in terms of the power-law beto the wetted cluster. Whep,, p,, and p, are small,
havior of various quantitiegear the critical point, there the wetted cluster is finite. As the probabilities are
are universal power-law prefactors to the exponential deincreased, an infinite connected path appears. We shall
cay of correlation functions away from the critical point. call the special direction along which an infinite path
For example, fop < p., the probability of a finite clus- first appears as the preferred direction. As the bond
ter havings sites varies as~? exp(—As) ass — «. For  concentrations are further increased, percolation occurs in
p > p., the probability varies as~? exp(—Bs“~V/4)  a narrow cone centered around the preferred direction.
for larges. The exponent$ and¢’ are examples offf-  Following DK, we look at the angular_dependence of
critical exponents [8]. We find that the fluctuations of the P(R). Its exponential decay for largeR| defines an
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angle dependent correlation lengthg, in the direc- (Z, n) given by
tion Q. .

The correlation lengtldo diverges a§ p.(Q) — p]~*, {=x+ hx.y),
wherep.(Q) is the) dependent critical probability. The n=y+ hxy).
value of the exponent depends on the directionl. We
show below that in most directionstakes the same value
3/2. v is different if () is the preferred direction (when

(1)

This ensures that two paths will not have common edges.
Now, every site has either zero or two bonds connecting it
— 3 o to its neighbors. Thus a given configuration of shifted
v = »j", the DP exponent), or when it lies in one of paths will be made up of five kinds of vertices. It is

the coordinate planescy, yz, andzx). For percolation easy to check that the correct weights of each of these
in these planes, clearly all perpendicular bonds can bg " C -
. Vertices are shown in Fig. 3, whetge= 1 — p. Under
ignored, and the problem reduces to the known two-, : LT .
4 . : S . . this mapping, it is an elementary exercise to show that the
dimensional case. Consider, for simplicity, the isotropic .
gradients are related through

case p, = p, = p;). Then the easy direction is (111),

and along this directiomﬁ’d ~ 1.29. Along (110), (011), h¢ = he/(1 + by + hy),
and(101) directions»j’ =~ 1.733. Other directions in the B =R/ + h, + 1) (2)
n y X y/o»
xy,yz, andzx planes haver = 2. Thex, y, andz axes _
haver = 1. _ ' _ whereh, stands for%, keeping the second coordinate
Consider a coordinate system in whighandy axes fixed, and similarly for other partial derivatives.
are in the plane of the paper with theaxis pointing out Consider a point{,n) with £, > 1. In the five-

of it (see Fig. 1). Since, = py = 1, all of the bonds  vertex problem,i; and %, are the mean densities of
aligned along ther axis andy axis are present. Hence, lines in the horizontal and vertical directions, respectively.
if a point (x,y, z) is wetted, then so are all of the points They are, however, not independent and knowledge of one
(x,y",z) with x’ = x,y’ = y. Itis easy to see that, if determines the other. The relation betwegnand 7,
(x,y,z) is wet, so are all the points directly below it is a local relation and is most easily determined using a
in the z direction. Therefore, we can define an integerdifferent set of boundary conditions whép and#,, are
height functioni(x, y) such that all pointgx,y,z) with  uniform everywhere. Thus we consider the five-vertex
z > h(x,y) are dry while the points with = &(x,y) are  model on an open cylinder of lengff in the y direction
wet. The wetted cluster has no holes and can be specifieghd infinite in thex direction.
completely by its bounding surfack(x, y). The five-vertex model can be solved via the transfer
We first determinéi(x, y), the mean value ok(x,y).  matrix technique. We transfer from column to column
We do so by mapping the problem to a five-vertex modehklong thex axis. Consider the sector in which there
[13]. Consider the orthogonal projection of the wettedare » lines in a column. The ice rule plus periodic
cluster onto thexy plane [see Fig. 2(a)]. It consists of boundary conditions ensure that there arénes in each
paths running from the axis to thex axis via steps in  column [14]. The transfer matrix7 ({y'};{y}), which
the right and down directions obeying the constraint thais the weight of going from configuratiofiy} to {y'}
paths do not cross each other. Tith path separates the (see Fig. 4, where the labeling is self-explanatory) is the

sites withi(x,y) < k from those sites witth(x,y) = k. product of the weights of each vertex and can be written
We now slide each point in théth path by(k,k) [see as

Fig. 2(b)], thereby mapping the poifit, y) to the point n
Ty h{h) =[J(p g, 3
i=1

X X
(@ (b)

FIG. 2. (a) The projection of the wetted cluster onto the
FIG. 1. A typical wetted cluster shown up to= 6 (for p = x-y plane. Overlapping edges have been shown separated for
0.3). The cluster extends infinitely in theandy directions. clarity. (b) The shifted paths.
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J 2,/p/q. Thus the asymptotic shape of the surface is given
i ﬁ by
0 q 1 1 p 1 h(x,y,p) = (px + py + 2/pxy)/q, forx,y > 1.
FIG. 3. The vertex weights. (8)

The expression is symmetric im and y. If y =0,

. . then h = px/q as expected. For givep, and given
n. —

It Is easfy to verify thﬁgl{IY’}T(;y },{f_y}) _t'l’ Wh?rrﬁ th? the azimuthal angleg, there is a critical polar angle
summation is over all allowed configurations. erefore, "¢ ich that all points withd > 6, are wetted. The

T({y"};;{y}) is a properly normalized transition probability ..’ angle is determined through the relation(6gt =

— !/ — . . .
of ({y} — {¥}. h/\/xZ + y2. Equation (8) can then be inverted to derive

One can visualize this process as a system deard_ the direction dependent critical probability, the smallest
core particles, each hopping only to the right on a ”ngprobability for which(6, ¢) is wetted, as

of size N. If the particle on the right is at a distance )
Ja+ DB +1) - \/_aﬁ) ©

m then the particle can hop up t@ — 1 steps during

one time step, with the probability fok steps being pe(0,¢) =< a+ B+
P(k|m) = p'~%0gm=k=1_ For large times, the above,
being a Markov process, will evolve into its steady statewherea = tan(f) cog¢) andg = tan(@) sin(¢).

The steady state will be one in which all states are equally The problem can also be viewed as a one-dimensional
likely. To see this, we note that;,, T({y'};{y}) = 1.  cellular automaton evolving in time. Consider the coordi-
Therefore 7, the transpose of’, is also a stochastic nate transformatiom = x + y,u = x — y. Then from

matrix. Hence it has the statél,...,1) as the left the definition of the model it is easy to check that for
eigenvector with an eigenvalue of Taking transpose, ¢ = 0, h(u, t) follows the rule,
(1,...,1)", is aright eigenvector with an eigenvaluelof _ B

Knowing the steady state, we can determine the averagd(e:t T 1) = ma{h(u — 1.1),h(u + 1,01 + n(u.1),
number of steps], of a particle in they direction for each (10)

transfer in ther direction. Simple algebra gives where n(u,t)'s are independent identically distributed

7 = p(1 — p) ) random variables taking non-negative integer values with
P p(p +qp)’ Prob(n = k) = (1 — p)p*. The rules of evolution are
) ) o _ local and we expect the fluctuations to be governed by the
wherep = n/N. Making the identificationi, = h;/h,  Kpz equation [9].
andp = hy in Eq. (4), we get We now look at the correlations in the system. There
p(1 = by — hy) = qhshy . (5) are two correlation lengths of interesg((2) has been
] ) . ) ] defined through the exponentially decaying probability
Equation (5) can be rewritten in y coordinates with the ¢ wetting. £;(Q) diverges as[ p.(Q) — p]™*. We

help of Eq. (2) to give denote by¢, the correlation length along equal height
p(1 + hy + hy) = qhyh,. (6) contours but along the wetted surface. We can study
) i the fluctuations by looking at the scaling properties
For largex, y, Eg. (6) has the scaling solution of the five-vertex model. The transfer matrix can be
_ 1 - diagonalized via the Bethe ansatz [15]. From this analysis
h(x,y) = A h(Ax, Ay). (") it is known that the dynamic exponent= 3/2, and the

) _ ) roughening exponent = 1/2 [16]. These exponents are
Putting the ansata(x,y) = A(x + y) + B/xy, we find  the well-known exponents of the KPZ equation.
that it satisfies the equation with = p/q and B = The height fluctuations at a point are linearly related
to the fluctuations in the trajectories in the five-vertex
problem. In the KPZ problem, it is known that the
A Yo Vs Yoo Ys Yo magnitude of the fluctuations of height varies /a4’
Thus we get/((6h)%) ~ h'/3. & is the correlation length
at an angleg, + 86. Clearly &80 ~ h'/? ~ §|1|/3 or
& ~ (80)73/2. From Eq. (8), we note that, fop #
A A A ARA A 0, 60 ~ 8p. Thus we getr = 3/2, to be compared
with the valuer = 2 for the two-dimensional DK. The

FIG. 4. Two typical arrangements of lines in the adjacent ; ; ; -
column (for n = 6). The position of lines{y} in the up- behavior of¢, can be obtained from the relatigh,

1/ 2/3 . .
per column must interlace with the positigiy!} in the lower & °. Thus we get, ~ x;’”, wherex is the distance of
column. the height contour from the origin.
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