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We study the persistence in a class of continuous stochastic processes that are stationary only
under integer shifts of time. We show that under certain conditions, the persistence of such a
continuous process reduces to the persistence of a corresponding discrete sequence obtained from
the measurement of the process only at integer times. We then construct a specific sequence for
which the persistence can be computed even though the sequence is non-Markovian. We show that
this may be considered as a limiting case of persistence in the diffusion process on a hierarchical
lattice.
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I. INTRODUCTION

In recent years, there has been a lot of interest in the
study of persistence of fluctuations in different physical
systems [1,2]. Persistence P (t) is simply the probability
that the deviation of the value of a fluctuating field from
its mean value does not change sign up to time t. Persis-
tence has been studied in many nonequilibrium systems
[1] and also in diverse fields ranging from ecology [3] to
seismology [4]. Theoretical studies include various mod-
els of phase ordering kinetics [5], diffusion equation [6,7],
reaction diffusion systems in pure [8] as well as disordered
environments [9], fluctuating interfaces [10], and various
theoretical models [11]. Persistence or first passage prop-
erties find simple applications in various chemical [12],
biological [13] and granular systems [14]. In laboratory
experiments, persistence has been measured in various
experimental systems including breath figures [15], liq-
uid crystals [16], soap bubbles [17] and laser-polarized
Xe gas using NMR techniques [18].

In many of the nonequilibrium systems discussed
above, the underlying stochastic process ψ(t) is nonsta-
tionary. For example, the two time correlation function
C(t1, t2) = 〈ψ(t1)ψ(t2)〉 for the diffusion equation de-
pends on the ratio of the two times t1 and t2, and not
on their difference [6]. Persistence in such systems typ-
ically decays as a power law P (t) ∼ t−θ at late times
t. The exponent θ, called the persistence exponent, is
believed to be a new exponent and is apparently un-
related to the usual dynamical exponents that charac-
terize the decay of n-point correlation functions with fi-
nite n. Persistence has also been studied for station-
ary processes [19,20] such as a stationary Gaussian pro-
cess characterized by its two time correlation C(t1, t2)
which is invariant under arbitrary time translation, i.e.,
C(t1 + t0, t2 + t0) = C(t1, t2) for all t0. In the stationary
case, persistence between times t1 and t2 typically de-
cays exponentially, P (t1, t2) ∼ exp[−θs|t2 − t1|] for large
time difference [20]. For some processes such as the diffu-
sion equation the nonstationary problem can be mapped

onto a corresponding stationary one [6] and the exponent
θ of the nonstationary process becomes identical to the
inverse decay rate θs of the corresponding stationary pro-
cess [1]. Despite many theoretical studies of either θ or
θs, exact results are known only in relatively few cases
[21]. The basic difficulty in computing either of them can
be traced back to the fact that the underlying stochastic
processes in both cases are usually non-Markovian [1].

In this paper we study the persistence in stochastic
processes that are stationary under translations in time
only by an integer multiple of a basic period (without
loss of generality, this period may be chosen to be 1).
Throughout this paper we will refer to such processes
as SIS (stationary under integer shifts). For example,
a Gaussian stochastic process will have the SIS prop-
erty if its two-time correlation function C(t1, t2) satisfies
C(t1 + n, t2 + n) = C(t1, t2) for all integer n. Such pro-
cesses appear in many physical situations. For example,
in weather records, there is an underlying non-random
periodic forcing ( the motion of earth round the sun),
which makes the stochastic process not truly stationary
in time. In nonlinear systems, even if one can filter out
the periodic component, the properties of the filtered sig-
nal (say variance) would still be expected to show a pe-
riodic variation with time. It seems worthwhile to study
in more detail persistence in such SIS processes.

When one wants to study the persistence of SIS pro-
cesses, the following question arises naturally: Is the
probability P (t) that the process remains positive over
the interval [0, t] is same as the probability Pn that the
process is positive only at all the n intermediate integer
times between 0 and t? In other words, is the persistence
of a ‘continuous’ SIS process is the same as the persis-
tence of the corresponding ‘discrete’ sequence obtained
by measuring the process only at integer times?

The question regarding the difference between
‘continuous-time’ and ‘discrete-time’ persistence was first
raised in Ref. [22] for strictly stationary Gaussian pro-
cesses, motivated from the observation that in experi-
ment [18] as well as numerical simulation [23] of persis-
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tence in diffusion equation, the measurements (whether
the process is positive) are done only at discrete points
(separated by a fixed time window of size ∆) even though
the actual process is continuous. In Ref. [22] it was shown
that for general stationary Gaussian processes, the con-
tinuous persistence decays as P (t) ∼ exp[−θct] for large
t, where as the corresponding ‘discrete-time’ persistence
(obtained from measuring the data only at the inter-
mediate time points separated by a fixed ∆) decays as
Pn ∼ exp[−θdn] where T = n∆. In general, one would
expect that the exponent θc is strictly greater than θd for
such a process since the process can change sign between
two successive integer points. The exponent θd was com-
puted analytically in Ref. [22] for a Gaussian stationary
Markov process and was shown to depend continuously
on the window size ∆.

In this paper we study the ‘continuous-time’ versus
‘discrete-time’ persistence for SIS processes. We restrict
ourselves to the study of discrete-time persistence only
when the measurement points in time are integers. This
is a natural choice since the process is stationary only
under integer shifts in time. We show that unlike strictly
stationary processes, in this case, the two exponents θc

and θd can be equal under certain conditions. This
discrete-time persistence Pn of a sequence is also rather
interesting from a purely mathematical point of view, es-
pecially when the underlying process ψ(t) is Gaussian.
In that case, calculating Pn becomes the problem of cal-
culating the probability that a set of n Gaussian random
variables with a specified joint probability distribution
are all positive. This ‘one-sided barrier’ problem has re-
mained popular in the applied mathematics literature for
many decades [19,20,24]. But the number of cases where
this probability can be explicitly calculated for large n
remains rather small [24].

In this paper, we study a specially simple case of
a continuous-time stochastic process ψ(t) which is ob-
tained as a local smearing of a sequence of independent
identically distributed random variables via a smearing
function f(t). This process becomes, by construction, a
stochastic process whose probability distribution is in-
variant under time translations by integers, i.e. a SIS
process. We construct examples where θd < θc, and also
construct a family of smearing functions f(t) for which
θd = θc. We provide a physical example namely the diffu-
sion equation on a hierarchical lattice where the diffusion
field is a Gaussian stochastic process with the SIS prop-
erty and we compute the corresponding smearing func-
tion exactly. We then determine exactly the exponent θd

for a specific case when the correlations in the discrete se-
quence are nonzero only for consecutive values. We find
that in this case, the exponent θd depends continuously
on the value of the correlation.

The paper is organized as follows. In section II, we
give some examples of continuous SIS processes where
θc is strictly greater than θd, and also construct a class

of processes for which θc = θd. In section III, we pro-
vide a physical example namely diffusion equation on
a hierarchical lattice where the diffusion process shows
log-periodic oscillations. After rescaling, and a change of
variables from time t to log(t), we get a stochastic process
that has the SIS property. In section-III, we introduce
a special sequence for which the persistence exponent θd

can be computed exactly. Section IV contains a summary
of our results.

II. CONTINUOUS-TIME VERSUS

DISCRETE-TIME PERSISTENCE

In this section we discuss the conditions under which
the continuous-time persistence of a SIS process is the
same as the discrete-time persistence of a correspond-
ing sequence obtained by measuring the process only at
the integer points. As noted earlier, in general, we expect
that θc > θd. Consider a stochastic process ψ(t), which is
known to be positive at the integer points t = 1, 2, . . .N .
Now consider the conditional distribution of ψ(t1) at
some non-integer point t1 lying within the interval [1, N ].
This conditional distribution is a gaussian whose width
is independent of the values of ψ(t) at the known inte-
ger points. If this variance is finite, even in the limit
when N is large, clearly, there will be finite probability
of ψ(t1) becoming negative. Thus one would expect to
get θc = θd only if the conditional variance of ψ(t1) tends
to zero for large N . In such a process, one should be able
to determine ψ(t) for all real t, if one knows its value at
all integer points.

This suggests the following construction of ψ(t) : we
consider a sequence of independent random variables
{φ(n)} having zero mean, where n ∈ {−∞,+∞}, and
define a stochastic process ψ(t) by the convolution

ψ(t) =
+∞
∑

n=−∞

f(t− n)φ(n). (1)

Knowing ψ(t) at all integer points, one can expect to
determine uniquely the constants {φ(n)} by solving cou-
pled linear equations, which then determines ψ(t) for all
real values of t.

The behavior of this process depends only on the
smearing function f(t). In the following, we shall assume
that f(t) has some good properties, i.e. is a non-negative
unimodal function of t, which decreases sufficiently fast
for large |t|. By a shift of the origin of time t, and rescal-
ing ψ(t), we can assume that the maximum of f(t) occurs
at t = 0 and f(0) = 1.

What is the class of functions f(t) such that θc equals
θd? This class is not easy to characterize directly. A
simple example illustrates this point clearly. Consider
the simple case of triangular function
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f(t) = 1 − |t|/a, for |t| < a (2)

= 0, otherwise. (3)

In this case, ψ(t) is a piece-wise linear function of t.
If a < 1/2, we have intervals in which ψ(t) is identi-
cally zero. If, however, we define persistence probabil-
ity as the probability that the function does not change

sign upto time t, it is clear that for all a < 1, we have
θc = θd = log2.

We now show that θc 6= θd if a > 1. For this purpose,
it is sufficient to show that there are sequences {φn} such
that the corresponding ψ-process is positive at all inte-
ger points, but takes negative value for non-integer t. As
such events would occur with non-zero probability along
the sequence, θc > θd.

Let n be the integer just below a. We consider a peri-
odic sequence of φn with

φi = 1, if i = 0 mod(2n+ 1);

= −c, if i = n or n+ 1 mod (2n+ 1);

= 0 otherwise. (4)

Then it is easy to see that if we choose c such that
(a − n) > (2a − 1)c > (a − n − 1/2), then ψ(t = i) is
positive for all integers i, but ψ(t = n + 1/2) is nega-
tive. Clearly, these signs are not changed if all φ’s devi-
ate from these values by sufficiently small amount. Then
such sequences ( of finite length) will occur with non-zero
frequency, and hence for any a > 1, θc is strictly greater
than θd.

However, there are functions f(t) for which θc = θd.
The simplest example of this class is f(t) = exp(−|t|/a).
In this case, it is easy to see from Eq. (1) that ψ(t) at
any non-integer point t can be expressed as a positive
linear combination of its value at the two nearest integer
points, so that for all t = n+ δt with 0 ≤ δt ≤ 1 we have

ψ(n+ δt) = [sinh
δt

a
ψ(n+ 1) (5)

+ sinh
(1 − δt)

a
ψ(n)]/ [sinh(1/a)] (6)

Thus, if ψ(n) and ψ(n + 1) are positive, Eq. (5) implies
that ψ(t) is positive for all n ≤ t ≤ n + 1. Hence one
gets, θc = θd.

The example above can be generalized. For example,
one can introduce a two parameter family of functions,
f(t) = exp(κ1t) for t < 0, and f(t) = exp(−κ2t) for t > 0
with κ1 > 0 and κ2 > 0 and are not equal in general. In
fact, one can even introduce two arbitrary periodic func-
tions g1(t) and g2(t) ( with period 1), and take

f(t) = exp(κ1t− g1(t)), for t < 0, (7)

= exp(−κ2t− g2(t)), for t > 0 (8)

without destroying the equality of θc and θd. One
only has to impose some conditions on g1(t) and g2(t)

to ensure that f(t) is unimodal. Effectively, we can
take any unimodal function f(t) defined in the interval
−1 ≤ t ≤ 1, and extend it to all real t using the conditions
f(t − 1) = e−κ1f(t), for t < 0, and f(t + 1) = e−κ2f(t)
for t > 0, to get a function f(t) for which θd and θc are
equal.

III. PERSISTENCE IN DIFFUSION EQUATION

ON A HIERARCHICAL LATTICE

A simple example of a physics problem where functions
of the type given by Eq.(1) show up is the persistence of
a diffusion field on a hierarchical lattice. The lattice may
be thought of as a line having N = 2n sites labelled by
an n-bit binary integer i, 0 ≤ i ≤ N − 1 [25,26]. We
define the ultrametric distance between two sites i and
j as d, if the binary integers denoting i and j differ at
the n − d + 1 bit counting from the left. Thus we have
d = 1 between sites 2 and 3, but d = 4 between sites 7
and 8. , At each site i, we have a real variable ψ(i). At
time t = 0, the fields at different sites are assumed to
be independent identically distributed random variables
(say gaussians of mean zero, and variance 1). The fields
ψ(i) are assumed to evolve in time by the deterministic
equation

d

dt
ψ(i) =

N−1
∑

j=0

Ki,j [ψ(j) − ψ(i)] (9)

Here the spring constants Ki,j are assumed to be func-
tions of the distance di,j between the two points. In the
following, we shall assume that Ki,j = a−di,j , where a is
a constant > 1.

The integration of the equations of evolution is made
particularly simple by the hierarchical nature of the
spring couplings. It is easily verified that we have 2n−r

independent eigenmodes of relaxation rate (a−1)−1a−r+1

(r = 1, 2, . . .N − 1) satisfying

d

dt
S

(r)
j = (a− 1)−1a−r+1S

(r)
j (10)

where

S
(r)
j =

2r−1
−1

∑

k=0

φ(j2r − 2r−1 − k) − φ(j2r − k) (11)

where j = 1 to 2n−r.
Expanding any particular ψ(i), say for i = 1, in terms

of these eigenvectors, and we get,

ψ1(t) =

n−1
∑

r=1

2−r/2 exp
[

−(a− 1)−1a−r+1t
]

φ(r), (12)

where φ(r)’s are i.i.d. Gaussian variables of zero mean
and unit variance that characterize the initial condition.
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This formula for the hierarchical model may be compared
with the corresponding formula one writes in the Eu-
clidean space in d−dimensions

ψ(~r = 0) =

∫

∞

0

dk exp(−k2t)η(k) (13)

where η(k) are white-noise process with variance

< η(k)η(k′) >= δk,k′kd−1 (14)

We eliminate the time variable t in terms a logarith-
mic time variable τ using the identification aτ = t, and
change ψ(t) by a change of scale, ψ(τ) = [aτ/2]ψ(t =
(a− 1)aτ ). Then we have

ψ(τ) =
∞
∑

r=0

ξ(r) exp
[

−aτ−r
]

a(τ−r)/2. (15)

For large τ , the summation over r can be extended from
−∞ to +∞, and the process ψ(τ) then becomes a Gaus-
sian process with the SIS property, i.e., is stationary
only under integer shifts in time and is obtained by local
smearing of the discrete white noises φ(r)’s,

ψ(τ) =
+∞
∑

r=−∞

f(τ − r)φ(r), (16)

where the convolution function f(r) clearly goes to zero
when r tends to ±∞. Thus, the problem of calculating
the persistence exponent reduces that of calculating the
exponents θc and θd for a process defined by given con-
volution function f(t) = exp(−at)at/2. The origin of the
SIS property here comes from the discrete scale invari-
ance of the original model, which gives rise to log-periodic
oscillations in the relaxation processes [27].

We have not been able to determine whether this func-
tion f(t), the exponents θc and θd coincide, or are differ-
ent. However, in a simple Monte Carlo realization of a
sequence of 105 Gaussian variables {φi}’s of zero mean
and unit variance, we did not find any instance where
the function ψ(t) changed sign twice between two con-
secutive integers. This indicates that these exponents, if
not equal, are likely to be quite close to each other.

IV. EXACT RESULTS FOR A SPECIAL CASE

For a smearing function f(t) for which θc = θd, the
computation of the persistence exponent simplifies con-
siderably, and reduces to its determination for a discrete
sequence rather than a continuous process. But even
then, the exponent θd is quite nontrivial for an arbi-
trary smearing function f(t). For calculating θd, only
the values of f(t) at integer points are relevant. In the
following, we shall consider in detail the calculation of
θd when only f(0) and f(−1) are non-zero. This can be

thought of a crude approximation to the smearing func-
tion f(t) = exp(−at)at/2, as in the diffusion equation
on a hierarchical lattice, which decreases superexponen-
tially for t > 0 and only exponentially for t < 0 for a > 1.
We will show below that the exact computation of θd is
nontrivial even for this toy smearing function since the
resulting sequence is non-Markovian.

In this special case, Eq. (16) becomes

ψi = φi + ǫ φi+1, i =1,2,. . . ,n (17)

where we shall assume that {φi} are independent identi-
cally distributed random variables, not necessarily Gaus-
sian, each drawn from the same distribution ρ(φ). Here
ǫ is a mixing parameter. For convenience, we relabel the
φ’s without any loss of generality to consider the follow-
ing sequence,

ψi = φi + ǫ φi−1, i =1,2,. . . ,n. (18)

For simplicity, we will assume that ρ(φ) is symmetric
about the origin. The mean value of φ is then zero. We
now ask: what is the probability Pn(ǫ) that ψ1, ψ2, . . . ψn

are all positive for a given ǫ?
We note that the variables ψi’s are now correlated.

The two point correlation function, Ci,j = 〈ψiψj〉 can be
easily computed from Eq. (18),

Ci,j = σ2
[

(1 + ǫ2)δi,j + ǫ(δi−1,j + δi,j−1)
]

, (19)

where δi,j is the Kronecker delta function and σ2 =
∫

∞

−∞
φ2ρ(φ)dφ. Thus the parameter ǫ serves as a measure

of the correlation and it is this correlation that makes the
calculation of Pn(ǫ) nontrivial for nonzero ǫ.

The sequence {ψn} defined by Eq. (18) is non-
Markovian in the sense that if only {ψn} are observed,
and not the φn’s, ψn depends not just on the previous
member of the sequence ψn−1, but rather on the whole
history of the sequence. For example, from Eq. (18) one
can express ψn as,

ψn =

n−1
∑

k=0

(−1)k−1ǫkψn−k + φn − ǫnφ0 (20)

which demonstrates explicitly the history dependence of
the sequence. For non-Markovian sequences, it is gen-
erally hard to compute the persistence exponent. For-
tunately progress can be made for this special sequence
even though it is non-Markovian.

In order to calculate Pn(ǫ), it is first useful to define
the following probabilities,

Q1(x) =

∫

∞

x

dφ0ρ(φ0),

Qn(x) =

∫

∞

x

dφ0ρ(φ0)

∫

∞

−ǫφ0

dφ1ρ(φ1)

∫

∞

−ǫφ1

dφ2ρ(φ2) . . .

. . .

∫

∞

−ǫφn−2

dφn−1ρ(φn−1), n ≥ 2. (21)
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Using the definitions in Eq. (18), it is then easy to see
that the persistence Pn(ǫ) = Qn+1(−∞). This is due to
the fact that for all the ψi’s in Eq. (18) to be positive,
while φ0 is free to take any value, φ1 must be bigger than
−ǫφ0, φ2 must be bigger than −ǫφ1 and so on. Differen-
tiating Eq. (21) with respect to x, we get the recursion
relation

dQn(x)

dx
= −ρ(x)Qn−1(−ǫx), n ≥ 1, (22)

with Q0(x) = 1 and the boundary condition, Qn(∞) = 0
for all n ≥ 1. Let us define the generating function

F (x, z) =
∞
∑

n=1

Qn(x)zn. (23)

¿From Eq. (22), it follows that F (x, z) satisfies a first
order non-local differential equation,

∂F (x, z)

∂x
= −ρ(x)z [1 + F (−ǫx, z)] , (24)

with the boundary condition, F (∞, z) = 0 for any z.
Once we know the function F (x, z), Pn(ǫ) can be ob-
tained by evaluating the Cauchy integral,

Pn(ǫ) = Qn+1(−∞) =
1

2πi

∫

C0

F (−∞, z)

zn+2
dz, (25)

over a contour C0 encircling the origin in the complex z
plane.

Before proceeding to solve Eq. (24), we make the sim-
ple observation that,

Pn(ǫ) = Pn

(

1

ǫ

)

, (26)

true for any ǫ. To see this, we first rescale the ψi vari-
ables, ψi

′ = ψi/ǫ. Clearly the persistence of ψi
′’s is the

same as that of the ψi’s. Dividing Eq. (18) by ǫ, we
see that in order for the ψi

′’s to be positive, we need to
satisfy the conditions: φ0 > −φ1/ǫ, φ1 > −φ2/ǫ, . . .,
φn−1 > −φn/ǫ where φn can be arbitrary. Eq. (26) then
follows once we relabel φi → φn−i for all 0 ≤ i ≤ n. Thus
it is sufficient to compute Pn(ǫ) for ǫ only in the range,
−1 ≤ ǫ ≤ 1. Once we know this, Pn(ǫ) for |ǫ| > 1 can be
obtained from Eq. (26).

Let us summarize our main results. We show that for
−1 < ǫ ≤ 1, Pn(ǫ) ∼ exp(−θ(ǫ)n) for large n, where
θ(ǫ) depends continuously on ǫ and also depends on the
distribution ρ(φ). In contrast, at ǫ = 1, the exponent
θ(1) = log(π

2 ) is independent of the distribution ρ(φ).
The exponent θ(ǫ) diverges as ǫ→ −1, indicating a faster
than exponential decay of Pn for large n. We show that
Pn(−1) = 1/(n + 1)! exactly for all n ≥ 1, again inde-
pendent of the distribution ρ(φ).

A. The case when ǫ = −1

Let us first consider the case ǫ = −1. In this case, the
Eq. (24) becomes local and can be easily solved by inte-
gration. For symmetric ρ(φ) with zero mean, the exact
solution is given by

F (x, z) = −1 + exp

[

z

(

1

2
−

∫ x

0

ρ(x′)dx′
)]

, (27)

which satisfies the boundary condition F (∞, z) = 0
for all z. Expanding the exponential in Eq. (27) in
powers of z and using the definition in Eq. (23), we
find, Qn(x) = (1

2 −
∫ x

0 ρ(x
′)dx′)n/n!. Using the rela-

tion Pn = Qn+1(−∞) and the normalization condition
∫

∞

−∞
ρ(x′)dx′ = 1, we get

Pn(−1) =
1

(n+ 1)!
, (28)

for all n ≥ 1. Remarkably Pn(−1) is independent of the
distribution ρ(φ) for all n ≥ 0.

B. The case when ǫ = 1

Next we consider the case ǫ = 1. We first make a
change of variable, u(x) =

∫ x

0 ρ(φ)dφ. Let F (x, z) =

F̃ (u, z). Since ρ(φ) is symmetric about zero, u(−x) =
−u(x) and hence F (−x, z) = F̃ (−u, z). Using this in Eq.
(24) with ǫ = 1, we find

∂F̃ (u, z)

∂u
= −z

[

1 + F̃ (−u, z)
]

, (29)

where u varies from −1/2 to 1/2 and the boundary con-
dition is, F̃ (1/2, z) = 0 for all z. Differentiating Eq. (29)
with respect to u we get a local second order differential
equation

∂2F̃ (u, z)

∂u2
= −z2

[

1 + F̃ (u, z)
]

, (30)

whose general solution is given by

F̃ (u, z) = −1 + [A(z) cos(zu) +B(z) sin(zu)] . (31)

If this solution also has to satisfy Eq. (29), we have
additionally B(z) = −A(z). The boundary condition
F̃ (1/2, z) = 0 determines A(z) and we finally get

F (x, z) = −1 +
cos (u(x)z) − sin (u(x)z)

cos(z/2)− sin(z/2)
. (32)

Thus, F (−∞, z) = 2/[cot(z/2) − 1]. This function has
poles at z = π/2 + 2mπ, where m is an integer. One can
then easily evaluate the contour integration in Eq. (25)
and we get the exact expression,
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Pn(1) = 2

∞
∑

−∞

1
(

π
2 + 2mπ

)n+2 , (33)

valid for any n ≥ 0. For example, by summing the series
in Eq. (33) we find, P0(1) = 1, P1(1) = 1/2, P2(1) = 1/3,
P3(1) = 5/24, etc. which can also be verified by per-
forming the direct integration in Eq. (21). The remark-
able fact is Pn(1) is universal for all n ≥ 0 in the sense
that it is independent of the distribution ρ(φ), as in the
ǫ = −1 case. Clearly the leading asymptotic behavior is
governed by the m = 0 term in Eq. (33) and we get,
Pn(1) ∼ exp(−θn) for large n, with θ(1) = log(π/2).
Clearly the exponent θ(1) is also universal.

Interestingly, Pn(1) is related to the fraction of
metastable states in an Ising spin glass on a 1-
dimensional lattice of n sites at zero temperature [28].
Consider the spin glass Hamiltonian on a chain, H =
−

∑

i Ji,i+1sisi+1 where si = ±1 are Ising variables and
the bonds Ji,i+1’s are independent and identically dis-
tributed variables each drawn from the same symmetric
distribution with zero mean. Out of the 2n number of to-
tal configurations, how many are metastable with respect
to single spin flip Glauber dynamics at zero temperature?
A configuration is metastable at zero temperature if the
energy change ∆Ei = 2si[Ji−1,isi−1 + Ji,i+1si+1] ≥ 0
due to the flip of every spin si. Defining the new variable
φi = 2Ji,i+1sisi+1, we see that the variables φi’s are also
independent and identically distributed and the proba-
bility that a configuration is metastable is precisely the
probability that the variables, ψi = φi + φi−1 are posi-
tive for each i. This is precisely Pn(1) as computed in the
previous paragraph. We note that the average number of
metastable configurations 〈Ns〉 for the 1-d spin glass was
computed exactly by Derrida and Gardner [29] by a dif-
ferent method and they found 〈Ns〉 ∼ (4/π)n for large n.
Thus the fraction of metastable configurations scales as
〈Ns〉/2

n ∼ (π/2)−n, in agreement with our exact result
for Pn(1).

C. The case −1 < ǫ < 1

We now turn to the range, −1 < ǫ < 1. In this range,
we were unable to calculate Pn(ǫ) exactly for arbitrary
distribution ρ(φ). However progress can be made for the
uniform distribution,

ρ(φ) =
1

2
, for − 1 ≤ φ ≤ 1

= 0, otherwise. (34)

For this case, it follows from Eq. (24) that F (x, z) is
independent of x for x < −1 and hence, F (−∞, z) =
F (−1, z). Similarly, F (x, z) = 0 for all x ≥ 1. In the
range, −1 ≤ x ≤ 1, we expand F (x, z) =

∑

∞

0 bm(z)xm

in a power series in x. Subsituting this series in Eq. (24),

we get the recursion relation, bm = −bm−1z(−ǫ)
m−1/2m

for allm ≥ 1. Thus the function F (x, z) can be expressed
completely in terms of only b0(z) which is then deter-
mined from the boundary condition, F (1, z) = 0. This
determines F (x, z) completely in the range −1 ≤ x ≤ 1

and we find, F (x, z) = −1 + f(xz)
f(z) , where

f(z) =
∞
∑

m=0

(−1)m(m+1)/2

m!

(z

2

)m

ǫm(m−1)/2. (35)

Using F (−∞, z) = F (−1, z), we finally get

F (−∞, z) = −1 +
f(−z)

f(z)
, (36)

where f(z) is given by Eq. (35). We note that the series
in Eq. (35) and hence in Eq. (36) is convergent for all
z as long as −1 < ǫ ≤ 1. In fact, for ǫ = 1, it is easy to
see that Eq. (36) gives F (−∞, z) = 2/[cot(z/2) − 1] as
before.

Substituting Eq. (36) in the expression of Pn(ǫ) in Eq.
(25), we find that the leading asymptotic decay of Pn for
large n is governed by the pole of F (−∞, z) that is closest
to the origin. From Eq. (36), the poles of F (−∞, z) in
the z plane are precisely the zeroes of the function f(z)
in Eq. (35) in the z plane. In particular, Pn(ǫ) ∼ z+

−n

for large n where z+ is the zero of f(z) in Eq. (35) closest
to the origin. The persistence exponent is then simply,
θ = log(z+). Let us first consider a few special cases. For
ǫ = 1, we find from Eq. (35), f(z) = cos(z/2)− sin(z/2)
indicating z+ = π/2, a result we already obtained. For
ǫ = 0, we find from Eq. (35), f(z) = 1 − z/2, indicating
z+ = 2, as expected for the persistence of uncorrelated
variables. As ǫ→ −1+, the function f(z) is Eq. (35) ap-
proaches to, f(z) → exp(−z) indicating z+ → ∞. Indeed
putting ǫ = −1 + δ in Eq. (35), it is easy to see that,
z+ ≈

√

8/δ as δ → 0. Thus the persistence exponent

diverges as, θ ≈ log[
√

8/(1 + ǫ)] as ǫ→ −1.

For other values of ǫ in the range −1 < ǫ < 1, it is easy
to evaluate z+ to any arbitrary accuracy from Eq. (35)
using Mathematica. The exponent θ = log(z+) for some
representative values of ǫ in the range −1 < ǫ ≤ 1 are
listed in Table 1. The exponent θ(ǫ) increases monotoni-
cally as ǫ decreases from +1 to −1, diverging as ǫ→ −1.
For |ǫ| > 1, the exponent is determined from the relation,
θ(ǫ) = θ(1/ǫ). Thus in the whole range, −∞ < ǫ < ∞,
the exponent θ(ǫ) is a nonmonotonic function of ǫ. As
ǫ varies from −∞ to ∞, θ(ǫ) increases monotonically
in the range [−∞,−1], then decreases monotonically in
[−1, 1] followed by a further monotonic increase in the
range [1,∞]. The slowest decay of Pn occurs at ǫ = 1,
where θ(ǫ) is minimum and given by the universal value,
θ(1) = log(π/2).
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ǫ θ
1.0 log(π/2) = 0.4515 . . .
3/4 0.4690 . . .
1/2 0.5155 . . .
1/4 0.5882 . . .
0 log(2) = 0.6931 . . .
-1/4 0.8465 . . .
-1/2 1.0906 . . .
-3/4 1.5686 . . .

Table 1. The exponent θ(ǫ) for some representative val-
ues of ǫ in the range, −1 < ǫ ≤ 1 in the case of the
uniform distribution in Eq. (34).

Except at ǫ = 0, 1 and −1, the exponent θ(ǫ) is nonuni-
versal in the sense that its value depends on the details
of the distribution ρ(φ). To see this explicitly, we now
compute θ(ǫ) perturbatively for small ǫ. We expand the
right hand side of Eq. (24) upto order ǫ and then solve
the resulting local differential equation exactly to deter-
mine F (x, z) upto O(ǫ). Taking x → −∞ limit in the
expression of F (x, z), we find

F (−∞, z) =
2z

[2 − z − 2cρ(0)ǫz2]
, (37)

where c =
∫

∞

0
φρ(φ)dφ. From Eq. (37), the pole closest

to the origin is given by,

z+ = 2
[

1 − 4cρ(0)ǫ+O(ǫ2)
]

. (38)

From Eq. (25), it then follows that Pn(ǫ) ∼ z+
−n for

large n. Hence θ(ǫ) = log(z+) = log(2)− 4cρ(0)ǫ+O(ǫ2)
and is clearly nonuniversal, as seen from the nonuniver-
sality of the O(ǫ) term in the previous equation. For
example, for the uniform distribution in Eq. (34), we get
θ(ǫ) = log(2) − ǫ/2 + O(ǫ2). On the other hand for the
Gaussian distribution, ρ(φ) = (2π)−1/2 exp(−φ2/2), we
get θ(ǫ) = log(2) − 2ǫ/π +O(ǫ2).

V. CONCLUSION

In summary, we have discussed persistence in stochas-
tic processes that are stationary only integer translations
of time. Such a process can be explicitly constructed by
smearing independent noises with a convolution function
f(t). A physical example of such a process is provided by
the diffusion field on a hierarchical lattice for which we
have computed the smearing function f(t) exactly. How-
ever, we could not compute the persistence exponents θc

or θd in this case. We showed that under certain condi-
tions, the continuous-time persistence of such a process
reduces to the persistence of a discrete sequence obtained
by measuring the process only at integer times. We have
constructed a specific non-Markovian sequence where the
smearing function is nonzero only at two consecutive in-
teger points leading to nonzero correlations only between

consecutive values of the sequence and computed the per-
sistence exponent θd exactly for this sequence. The ex-
ponent θd depends continuously on the strength ǫ of the
correlation. Remarkably for ǫ = 1 and ǫ = −1, the per-
sistence becomes universal. For ǫ = 1, we have shown
an interesting connection between the persistence of this
sequence to the average fraction of metastable states in
a one dimensional spin glass.

The class of functions f(t) for which we could show
that θc = θd is perhaps not the most general. A pre-
cise characterization of this class seems like an interest-
ing problem. Calculation of the persistence for SIS pro-
cesses, or sequences, with correlations extending beyond
nearest neighbors may be possible in some special cases,
and would help understand the general question about
the dependence of the persistence exponent on the cor-
relations in the sequence.

We thank A. Lefèvre, D.S. Dean, V. S. Borkar and A.J.
Bray for useful discussions, and M. barma for a critical
reading of the manuscript.
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