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ABSTRACT

This paper reports the methods of obtaining the components of the
fourth rank axial plezo-rotatory tensor in different crystal classes. The
me.thods of recovering the two piezo-rotatory coefficients R, and R
of isotropic optically active glasses, the three coefficients R,;, R,, and Ry,
of cubic crystals belonging to the point group 432 and the four coeffici-
ents Ry;, Ry, Ry; and Ry, of crystals like NaClO; (point group 23) have
been described in detail. The non-centrosymmetric class 43 m. which is
not optically active has one non-vanishing piezo-rotatory coefficient,
showing that stress induces optical activity in it. A method of retrieving
this coefficient has also been described. In most of the other point
groups, the difficulty of measuring optical activity in directions other than
those of the optic axes severely limits the number of coefficients that can
be extracted. The paper also touches upon some interesting methods
of obtaining the components of the gyration temsor in non-enantio-
morphic optically active crystals.

1. INTRODUCTION

THE present authors have, of late, been investigating the eflect of stress
on the optical rotatory power of crystals (Ramaseshan and Ranganath, 1969).
Optical activity can be represented by the second rank symmetric axial gy-
ration tensor (g) while stress (X) and strain (x) by second rank symmetric
polar tensors. The effect of stress or strain on the optical rotatory power
would therefore be represented, in a first-order theory, by fourth rank axial
tensors; (R) being the stress-rotatory tensor and (S) the strain-rotatory
tensor. The number of independent non-vanishing coefficients and the nature
of the piezo-rotatory matrix for the various point groups have also been
worked out by the present authors (Ranganath and Ramaseshan, 1969 a).

This paper mainly concerns itself with the methods of recovering the
piezo-rotatory coefficients for some of the point groups. The problem in
this case is different from that in other stress-optic phenomena where the
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directions of stress and light propagation may be chosen arbitrarily. In
the case of piezo-rotatory effects it is very difficult to measure the rotatory
power or its change along directions other than that of the optic axis. This
constraint limits the number of coefficients that may be recovered and also
demands special strategy for making the measurements.

2. THE GYRATION, PIEZO-ROTATORY AND PIEZ0O-OPTIC TENSORS

In a crystal if p is the optical rotatory power along any direction
(515 52, S3)

p = 8ijSiS;
ie.,
p = guSi® + g252% + £3353% + 28125155 + 2853583 + 28315351

and when referred to the principal axes the optical rotation and the tensor
surface are given by

P = gu151®  8225:% + 233553
and
guXx? 4+ gp¥? + ga22 = 1

where there is no @ priori restriction on the signs of gij- The matrices
representing the gyration tensor for the various non-centrosymmetric
point groups are given in Table I. It may be noted that of the 21 non-
centrosymmetric point groups only 15 are optically active (Tables I and II)
and 6 are optically inactive (Table III). Further just as a liquid may show

optical activity an isotropic solid may also exhibit optical activity. These
are usually glasses or stereo-specific plastics. ’

In the first-order phenomenological theory of piezo-rotation, changes
1n gjj, L.e., A gij are assumed to be linear functions of stress Xy or strain xg;

ie.,
A gi5 = — RijraXyg
or
A 8ij = SijkiXki.

When the non-vanishing coefficients are

evaluated (Ramaseshan dnd
Ranganath, 1969) one finds that ' A N
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TABLE 1

The form of the piezo-rotatory (R) and piezo-optic (g) matrices.
and the gyration matrix (g) in the enantiomorphic optically
active point groups. (R) and (q) have the same form
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(a) piezo-rotatory coefficients exist only for the 21 non-centrosymmetric
point groups;

(b) in the 11 enantiomorphic optically active point groups the piezo-
rotatory and piezo-optic matrices have the same form (Table I);

(¢) in the 4 non-enantiomorphic optically active point groups the photo-
elastic and piezo-rotatory matrices are of different forms (Table II);

TABLE 11

The piezo-optic (q), piezo-rotatory (R) and the gyration matrix (g)
of the non-enantiomorphic optically active point groups
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(d) in the remaining 6 non-enantiomorphic, optically inactive classes
the piezo-rotatory coefficients do not vanish, i.e., stress actually induces
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optical activity in these crystals, The piezo-rotatory and piezo-optic matri-
ces are given in Table IIL

TasBLE III

The piezo-optic (q) and the piezo-rotatory (R) matrices of the
non-enantiomorphic non-optically active point groups (i.e., gi; = 0)
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It has been mentioned that optical activity may be most conveniently
measured along the optic axes. In the uniaxial crystals of trigonal, tetragonal
and haxagonal classes the optic axis coincides with the 3-fold, 4-fold and
6-fold axes respectively. In biaxial crystals the optic axial angle is given by

. sy — a
Slnav="—2"———1 a, > s > Ay
43—
where
a-——!— a 1 a—-—1—~
1 n12» 2 nsna 3 naz’
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ny, Ny, ny being the principal refractive indices. The optic axés lie in the
plane containing n; and 7, :

We shall now summarise the effect of stress on the optical ellipsoid
(Ramaseshan and Vedam, 1958; Ramachandran and Ramaseshan, 1961).

When. a crystal is uniaxially stressed along a 3-fold, 4-fold or 6-fol.d
axis of symmetry, the crystal becomes or remains uniaxial with the optic
axis along the stress direction. But if the same uniaxial stress acts along
a 2-fold, or a 1-fold axis, the crystal becomes biaxial even if it be a cubic
crystal. However, in the latter case the optic axial angle is dependent only
on the stress direction and is independent of the magnitude of the stress.
In the case of uniaxial and biaxial crystals it also depends on the magni-
tude of stress.

When a crystal is hydrostatically stressed the symmetry does not alter.
An isotropic crystal remains isotropic, a uniaxial crystal remains uniaxial.
In the case of biaxial crystals, however, although the symmetry remains
the same, there may be a change in the position of the optic axes as the
changes in the refractive indices for the 3 principal axes may be different.

3. ISOTROPIC SUBSTANCES

The photoelastic and the peizo-rotatory matrices (which have the same
form) are given in Table I (No. 12). There are only two independent peizo-
rotatory coefficients namely R;; and R,,. For a unidirectional stress X,
the deformations of the index ellipsoid are given by

Aay=—guX, A Qg0 = N\ Q33 = — 19X, 1;9; azj = 0.
The solid therefore becomes uniaxial with its optic axis coinciding with the
stress direction. Rotatory power along this direction could be measured if
suitable holes are provided in the stress apparatus for sending the light

along the direction of stress. The deformations in the gyration surface are
given by

Dgn=—RpX, Age= Ags=—RpX, égij = 0.
ivEj '
Hence, if A p is the change in the optical rotation along the stress direction

Ap=—RyX or R:u:“‘éxf- (1)
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For an hydrostatic stress Xp,

A= Ay = Aday=—(qq + 2q12) Xp, A a;; =0
ik

and therefore the substance remains optically isotropic. The changes in
the gyration tensor may be described by

A& A L= N\ g = — (Ryy + 2Ry) Xy, é}gij = 0.
i9;

Therefore, if we measure the change A p, in rotatory power along any
direction

AW (Ru |- 2R12) Xh. (2)

From (1) and (2)

Ry == ;(/}(p - /;(:')

Thus all the components of the piczo-rotation tensor may be determined
by measuring changes in the rotatory power for a uniaxial stress along
the stress direction and for an hydrostatic stress in any direction.

4. Ort1icALLY AcTIVE CuBic CRYSTALS
(¢) 432 Class :

This is the simplest of the cubic classes wherein all the piezo-rotatory
coefficients can be recovered.  Unfortunately no crystal belonging to this
class has been reported in the literature. The piezo-rotatory and the
photoclastic tensors have the same form (Table I, No. 11). There are
3 independent piezo-rotatory cocflicients Ry, Ry and Ry,

Application of a stress X, along the cube axis (100) deforms the index
cllipsoid and the gyration surface in the following manner:

A ay = — quXie A G = A Gy = — G1Xaon, ¢§1an =9

and

Agu = — RuXie A gae= A &= — RyaXaoos ‘%,gﬁ =0,
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The crystal becomes uniaxial with the optic axis along the stress direction
(100). If A py is the change in rotation along the (100) direction, then

Apioo = — RuuXie 0F Ry = — “%(“’“%1 ;0‘0 . (3)

For an hydrostatic stress Xp, deformations in the index ellipsoid are given
by
Aan= Aap=Nas=—(qu + 2¢12) Xn, é}‘aii = 0.

Hence, the crystal remains isotropic, but the radius of the gyration sphere
changes and it is given by

Agn= Agn= NAgs=— Ry + 2Ryp) Xp, Agij =0.
i5%j

If A p, is the change in the optical rotatory power in any direction undex
the hydrostatic stress Xy,

A oy = — Ry + 2Ryp) Xp. “)
From (3) and (4)

_1fApio _ Aps
R12 2 Xmo Xn )

Changes in the index and gyration tensors under a uniaxial stress X;;;
along the cube diagonal (111) are given by

Aay = Nayp= A aps=—1% (g1 + 2¢:15) Xan,

ANtyy=ANay= Nay = — q::TéXlu

and
Agu=ANgo= NAEgs=— &u__i‘g}_&z Xlll:
Agio=NAgs= Agn=— ‘1‘1‘354 X

Thez ﬁrst. set of equations establish that the crystal becomes uniaxial with the
optic axis along the cube diagonal (i.e., stress direction). If P and py

e X e A

S e L ke B+ i i S =
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are the rotatory powers along this direction before and after stress, then
one can easily verify that

h= gu 1 oo + 8as 1 2815 + 2805 + 285,
3

P1
and
POy = gut 8t g°33 + 2% + 2¢%, + 28%
3 .
or
A pyy = Lgut Agmt A gyt 2 Agis+2A8n+2 A g1
3
ie.,
Apin = — Ry T 2R§2 + 2Ry X111
giving

___l A pn _ 3A put’
R44 -—-— 2( Xh an )

Thus all the 3 constants can be determined from 3 independent measure-
ments,

(&) 23 Class:

The important optically active crystals NaClO; and NaBrO, belong
to this class. Photoelastic and piezo-rotatory tensors have the same form
as given in Table I (No. 10). There are 4 constants Ry;, Ryp, Rys and
R4, to be determined.

(i) If A p, is the change in the optical rotatory power under an hydro-
static stress Xp, then

A py = — (Ryy 4+ Ryg + Ryg) X, ‘ )

(ii) If Apyy is the change in the optical rotatory power along the cube
diagonal for a stress Xj;; acting along it, then

Ap=— Ry T Ry an T Ry X (6)
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(iii) For a stress Xy, along the cube axis (100) the deformations in the
index and the gyration surfaces are given by

A i = — quXige A dap = — q13X1900 A A33 = — G12X1005

A ai5,=0
56

and
Agun=— RiiXig0s A 822 = — RysXjo0» A 33 = — Ri2X1005

A gij = 0.
=y

The first set of equations shows that the crystal becomes biaxal. Generally,
g1 < G1z < q12 and hence the plane containing the two optic axes is the
ZX plane. The angle V that one of the optic axes makes with the stress
direction, i.e., X-axis is given by

sin?V = %2~ % _ 913 ~ 9u
dzz — dj1 912 — 911

Tf A p; is the change in rotation along this optic axis, then

A p1 = — (Ry; cos?V -+ Ry, 8in2V) X9 €

determination of A p; should not be difficult because the optic axial
angle and the optical axial plane can be completely worked out from
a knowledge of photoelastic constants. The optic axial angle is
independent of the stress magnitude. Hence, the crystal can be so cut that
the optic axes in the stressed crystal are in proper positions to make the
measurements. '

(iv) When the crystal is subjected to a uniaxial stress X,,, acting along
the (110) direction, the index and the gyration surfaces deform according
to the following set of equations:

X
Aau:“"(%l“{‘%z)"zms A422=_(Q11+913)*¥“2ma

X X
A @z = — (q1z + 413)*“%9> A ayy = ""%4“‘%19,

Aaym= NAay =0

e e
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and
B8n=~Ru+R) ™%, Aga=—(Ry+Ry) 2,

A 833 = ""(R12+R13)”}'("21“@9 Agn=—Ry )%‘1'9,

A gy = A gy =0,

The first set of equations shows that (1) the index ellipsoid undergoes a rota-
tion about the XY plane; (2) the crystal becomes biaxial with YZ as the
optic axial plane. If one of the optic axes of the stressed crystal makes
an angle V' with the Z-axis, then

’ !
: Ao —ay A
SIn?V’ =2 738

i
adp—ay B

where

A=(qp+q)— {‘hz + g3+ 24 — \/(412 dis)® + 444

B = (qus + 1) — {912 + s+ 29u T \2/ (912 — ¢19)* + 4%

and the angular displacement § from the stress direction is given by

tan 20 = N2~ 913

‘]44

From a knowledge of V' and 8 one can work out direction cosines /, m, n
of the optic axis with reference to the unstressed state. Then the change
A py in that direction for a stress X;,, is given by

Apr=—[Ry + Ryp) 2+ (Ry; + Ryg) m* + Ry + Ryg) #?
-+ R44 lm] Wk (8)

From the 4 equations (5), (6), (7) and (8) all the piezo-rotatory constants
can be worked out. Ry, is the easiest of all the coefficients to find.

_1 (A _ Apm
Rt = ( Xpn X )
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5. STRESS-INDUCED OPTICAL AcCTVITY IN CUBIC CRYSTALS
(@) 43m Class :

In this interesting point group, to which ZnS belongs, stress actually
should induce optical activity. The photoelastic and the piezo-rotatory
tensors are of different forms (Table III, No. 6). From the nature of the
two matrices it can be easily concluded that although a uniaxial stress along
the 4-fold or 3-fold axis makes the crystal uniaxial with the optic axis
along the stress direction, yet the rotation along the optic axis is zero. Even
for stress along the 2-fold axis the rotation along the optic axes is zero. For
hydrostatic stress also induced optical activity is zero. Hence, to detect
this induced rotation and to extract the piezo-rotatory coefficient R;, one
should stress the crystal in a general direction (/, m, n) which is only a
1-fold symmetry axis. LetX be the uniaxial stress acting along (I, m, n).
The deformations in the index and gyration surfaces are given by

Ay = — [gul + g (m? + n] X
A g = — [qum® + g (B + n)] X
A agy = — [qun® + g2 (P + mA] X
Aty = — gaamn X

Aty =— quulnX

Adp=— gulmX

and
Agn=—Rp(m*—n)X
Ao = — Ryy (n? — HX é}gij =0
Agss = — Ryp (B —m) X,

Hence, in general the crystal becomes biaxial. Index and the gyration sur-
faces in the stressed crystal are

anxz + a22y2 "l“ R3322 + 2a12xy 4+ 2 QosYZ + 2 dg2X = 1

and

gux® + gaay? + gnzi=1.
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If X, Y, Z be the principal axes of the index ellipsoid, then the index
ellipsoid and the Gyration surface are given by
Ay X2+ ApY? + AgpZ? =1
GuX2 + Gy Y2 + Gy3Z2 + 2 G, XY + 2 GyiYZ
+ 2 G31ZX - 1
Aij’s and Gy;’s can be obtained from a knowledge of the refractive index

of the unstressed crystal and its photoelastic constants. In the most general
case Ay, Ags and A,; will be different.

If Ay < Agy < Ay, then the biaxial plane is XZ and if V is the angle
that one of the optic axes makes with X-axis. Then rotation along that
axis 1is

p = Gy, c0s2V + 2 Gz cos Vsin V 4 Ggg sin?V

along the other optic axis also we get the same rotation. If this rotation
is measured, we can easily find the only existing piezo-rotatory coefficient R,

p = — Ry, (cos®V + fi37 cosV sin V 4 f;sin?V) X
ie.,

pIX
J1€08%V + fi5 cosV sin V4 f5 sin2V

Ryp = —

where

= {(12 — m?) + ( ™ ({f‘_'* q12)2 [(ﬁz — 21)2 ’m? *‘—7(122:;122 nzlz]}

fis =2 {(12 — n% — 2m?) (m)

— (@ —1) (411 iq“i‘l%z)z [(lz - m%”g:‘z — nz)-]}
= {0+ (L) [

+(n~?;—:n%§mn]}
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and

6. ENANTIOMORPHIC OPTICALLY ACTIVE UNIAXIAL CRYSTALS

The photoelastic and the piezo-rotatory matrices are of the same form
in all these crystals and they are shown in Table I (Nos. 4, 5, 6, 7, 8 and 9).
The crystal remains uniaxial under an hydrostatic stress Xy, as well as a stress
X, along the optic axis. In both the cases the optic axis in the stressed
crystal is in the same direction as that of the unstressed crystal. If A p,
and A p, are the changes in the optical rotatory power along the optic
axis for these two stresses, then

Ap
Ry = — S0
33 Xo
and
2Ry + Rgg = — %‘(ﬁb
ie.,

R =3 (52— 52)-

Hence, the two constants Ry, and R, can be easily found out. Determi-
nation of other constants involve many experimental complications. The
actual values of these constants for a-quartz have been computed by the
authors (Ranganath and Ramaseshan 1969 b).

7. NON-ENANTIOMORPHIC OPTICALLY ACTIVE UNIAXIAL CRYSTALS

Crystals belong to 4 and 42m point groups come under this heading.
In these the photoelastic and the piezo-rotatory tensors are of different forms
as Table IL shows. Itis clear from the nature of the gyration tensor (Table T1,
Nos. 3 and 4) that the unstressed crystal has no optical rotation along the
optic axis. Again no rotation can be induced by an hydrostatic stress or
a uniaxial stress along the optic axis. If we subject the crystal to a stress
X acting perpendicular to optic axis, then the changes in the index and
gyration tensors are given by

A ay = —quX, Aap=— 01X, A a3=—gyX, éaij =0
ive§
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Agn=—-R
gu R11X, Agp=—RpX, A g1 = —RyX, A 8ii = 0.
_ i#i

He -
ence, the crystal becomes biaxial. Normally gs; > g1 > g1, and hence

the optic axial plane i
s YZ plane. .
makes with Z axis is givenpby The angle V that one of the optic axes

§in2 VvV =% 43 _ dp— i
(oo — ds3 (33 — dap

I (gn —q) X + (@ — )
~ (g — q) X + (&% — @)

For most of the crystals this tilt will be very small for normal stresses. In

ADP this is 1° : X :
dven by is 1° per X bar. The optical rotation along the optic axis is

p = £33 C082ZV + g, sin?V
= — (Ry; c0s?V — Ry sin®?V) X

As V is very small,
P Ry — R31X

=P
< -

R31 ~

Hence, one of the constants can be evaluated.

8. WNON-ENANTIOMORPHIC OPTICALLY INACTIVE UNIAXIAL CRYSTALS

Crystals belonging to this class are not optically active in the unstressed
gtate, but they become optically active under stress. The photoelastic and
the piczo-rotatory matrices have different forms and they are shown in
Table III (Nos. 1, 2. 3,4 and 5). In none of the classes a siress along the
optic axis induces any rotation along the stress direction. Stresses acting
perpendicular to the optic axis even though they induce rotation, their maxi-
mum effect is felt along directions along which birefringence is also present.
Thus experimentally it is difficult to extract any of the piezo-rotation

coefficients.
A3
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9. OPTICAL AcCTIVITY IN NON-ENANTIOMORPHIC CRYSTALS

As has been mentioned earlier it is difficult to make measurements
of the optical activity in directions other than that of the optic axis. The
only crystal in which accurate measurements of the optical activity have been
made perpendicular to the optic axis is a-quartz (Bruhat and Grivet,
1935; Munster and Szivessy, 1935). A method of measuring optical
activity perpendicular to the optic axis in the case of the uniaxial crystal
benzil was suggested (see Ramachandran and Ramaseshan, 1961, p. 166)
some years ago. In this positive uniaxial crystal the birefringence pro-
gressively decreases as one goes from red to blue so that at A =4900 A
the crystal shows no birefringence. It was suggested that the rotation
could be measured at this wavelength in any direction with ease. It is
interesting that this method of measuring the rotation when a birefringent
crystal becomes isotropic has been used with success by Hobden (1969) in
AgGeS,. By this experiment the long-standing problem of the measurement
of optical activity in non-enantiomorphic crystals which do not exhibit
optical activity along the optic axis has been solved.

At these wavelengths crystals like AgGeS, and benzil become isotropic

and so it must also be possible to obtain the different piezo-rotatory
coefficients.

The method of obtaining the piezo-rotatory coefficient given in Section 5
for the point group 43m suggests a method by which optical activity could be
measured in different directions in these non-enantiomorphic classes. In
theory by stressing the crystal in a particular direction it is possible to
get the optic axis in a direction that is different from that in the unstressed
crystal. It would then be possible to measure the optical activity along
the new optic axis. Again, in theory, it should be possible, by choosing diffe”
rent directions and magnitudes of stress, to map out the gyration surface.
Here one assumes that the change in the optical activity due to stress 15 so
small that the measured value may be taken to correspond to the optical
activity of the unstressed crystal in that direction.

Unfortunately, these speculations prove to be of no use in the cases of
ADP and KDP which belong to the non-enantiomorphic group 42m. The
maximum tilt of the optic axis that one could obtain experimentally is
much lower than a degree. However, in the case of less birefringent
crystals this possibility must be kept in mind.
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