organic compounds

Actal Crystallographical Section, E Structure Reports Online ISSN 1600-5368

trans-1,2-Difluoro-3,4,5,6,7,8-hexaphenyltricyclo[4.2.0.0^{2,5}]octa-3,7-diene

Deepak Chopra,^a* K. Nagarajan,^b J. D. Roberts^c and T. N. Guru Row^a

"Solid State and Structural Chemistry Unit Indian Institute of Science, Bangalore 560-012, Karnataka, India, ^bHikal India Limited, Banerghatta Road, Bangalore 560 076, Karnataka, India, and ^cCrellin Laboratory, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA Correspondence e-mail: deepak@sscu.iisc.ernet.in

Received 25 October 2007, accepted 30 October 2007.

Key indicators single-crystal X-ray study: I = 400 K: mean $\sigma(C-C) = 0.009$ Å: R factor = 0.076 wk (actor = 0.241; data-to-parameter ratio = 13.3.

In order to probe the possible mechanism of the rearrangement of trans-hexaphenyldifluorotricyclooctadiene (a dimer of fluorotriphenylcyclobutadiene) to pentaphenyldihydrodifluoropentalene via C-F bond migration, a high-temperature study of the title compound, $C_{44}H_{30}F_2$, was performed at 400 (2) K. In the title compound, there are three fused fourmembered rings with the resulting eight-membered tricyclooctadiene ring adopting a sofa conformation. The dihedral angles between the central four-membered ring and the two outer rings are 66.03 (2) and 65.39 (2)°. The crystal structure contains centrosymmetric dimers formed by $C - H - \pi$ interactions.

Related literature

For background on chemistry of octadienes and their precursors, see: Choudhury et al. (2007); Fritchie & Hughes (1962). For the preparation of the title compound, see: Nagarajan et al. (1964).

Acta Cryst. (2007). E63, 04557

doi:10.1107/S1600536807054281

Experimental

Crystal data	
$C_{44}H_{36}F_2$	
$M_r = 596.68$	
Frichnic, PI	
a = 9.331 (9) Å	
b = 13.136 (8) Å	
: = 13.614 (9) Å	
$x = 95.63 (4)^{\circ}$	

Data collection

 $\beta = 103.87(5)$

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS, Sheldrick, 1997)
$T_{\rm min} = 0.939, \ T_{\rm max} = 0.985$

Refinement

415 parameters
H-atom parameters constrained
$\Delta \rho_{\text{max}} = 0.31 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-7}$

Table 1 Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C9--C14 ring.

$\overline{D-H\cdots A}$	D-H	H···A	D···A	D-H A
$C_{17}-H_{17}-C_{g1}$	0.93	2.91	3.689 (10)	142
Summateu ando: (i)				

Symmetry code: (i) -x + 2. -y

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin er al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the IRHPA-DST program. DC thanks the Indian Institute of Science for a fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2394).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993) J. App! Cryst. 26, 343-350.
- Bruker (2000). SMART and SAINT. Bruker AXS Inc. Madison Wisconsin, USA
- Choudhury, A. R., Chopra, D., Guru Row, T. N., Nagarajan, K. & Roberts, J. D. (2007). J. Org. Chem. In the press.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Fritchie, C. J. & Hughes, E. W. (1962). J. Am. Chem. Soc. 84, 2257-2258.
- Nagarajan, K., Caserio, M. C. & Roberts, J. D. (1964). J. Am. Chem. Soc. 86. 449-453
- Sheldrick, G. M. (1997). SADABS and SHELXL97. University of Göttingen. Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory. University of Oxford, England.

Mo Ka radiation $\mu = 0.08 \text{ mm}^-$ T = 400 (2) K $0.30~\times~0.25~\times~0.20~mm$

11153 measured reflections 5532 independent reflections

3395 reflections with $I > 2\sigma(I)$

 $v = 91.64(4)^{\circ}$

 $R_{\rm int} = 0.033$

 $V = 1610 (2) \text{ Å}^3$ Z = 2

June -

Acta Cryst. (2007). E63, o4557 [doi:10.1107/S1600536807054281]

trans-1,2-Difluoro-3,4,5,6,7,8-hexaphenyltricyclo[4.2.0.0^{2,5}]octa-3,7-diene

D. Chopra, K. Nagarajan, J. D. Roberts and T. N. Guru Row

Comment

The chemistry of fluorotriphenylcyclobutadiene, a monomer of the title compound is well known (Fritchie & Hughes, 1962). In order to investigate and probe the possible mechanism of rearrangement of *trans*-hexaphenyldifluorotricyclooctadiene. (a dimer of fluorotriphenylcyclobutadiene), to pentaphenyldihydrodifluoropentalene *via* C—F bond migration (Choudhury *et al.*,2007), a high temperature study of the title compound was performed at 400 (2) K. It was hoped that at that temperature C—F bond cleavage would occur to produce the rearrangement product pentaphenyldihydrodifluoropentalene. However, no additional migratory process was in fact observed.

The eight-membered cyclooctadiene ring exists in a sofa conformation, Fig 1. This also depicts the relative disposition of the phenyl and fluoro substituents around the eight-membered ring. The dihedral angles between the central four membered ring and the two fused four membered rings other rings on either side are 66.03 (2)° and 65.39 (2)° respectively. The crystal structure is stabilized by the formation of inversion related dimers linked by C--H··· π interactions (Fig. 2).

Experimental

The title compound was synthesized in accordance with the procedure reported in literature (Nagarajan *et al.*, 1964). Crystals were obtained by recrystallization from chloroform and ethanol 2:1 (v:v).

Refinement

All the H atoms were fixed in calculated positions and allowed to ride on the parent carbon atoms with C—H = 0.93Å and $U_{(eq)}H = 1.2 U_{(eq)}C$.

Figures

Fig. 1. The structure of (I) with displacement ellipsoids drawn at the 10% probability level.

Fig. 2. Partial packing diagram for (I). The dotted lines show the C-H $\cdots\pi$ interactions.

trans-1,2-Difluoro-3,4,5,6,7,8-hexaphenyltricyclo[4.2.0.0^{2,5}]octa-3,7-diene

Crystal data

 $C_{44}H_{30}F_{2}$ $M_{\rm f} = 596.68$ Triclinic, PT Hall symbol: -P 1

a = 9.331 (9) Å

b = 13.136 (8) Å c = 13.614 (9) Å $\alpha = 95.63 (4)^{\circ}$ $\beta = 103.87 (5)^{\circ}$ $\gamma = 91.64 \ (4)^{\circ}$ $V = 1610(2) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Monochromator: graphite $R_{\rm int} = 0.033$ $\theta_{\rm max} = 25.0^{\circ}$ T = 400(2) K $\theta_{min} = 2.1^{\circ}$ ϕ and ω scans Absorption correction: multi-scan $h = -11 \rightarrow 11$ (SADABS; Sheldrick, 1997) $T_{\rm min} = 0.939, \ T_{\rm max} = 0.985$ $k = -15 \rightarrow 14$ $l = -16 \rightarrow 16$ 11153 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.076$ $wR(F^2) = 0.241$

S = 1.10

sup-2

Z == 2 $F_{000} = 624$ $D_{\rm x} = 1.231 \,{\rm Mg}\,{\rm m}^{-3}$ Mo Ka radiation $\lambda=0.71073~\text{\AA}$ Cell parameters from 963 reflections $\theta = 1.2 - 25.8^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 400 (2) K Block, yellow 0.30 × 0.25 × 0.20 mm

5532 independent reflections 3395 reflections with $l > 2\sigma(l)$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.1465P)^2 + 1.8307P]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = <0.001$

5532 reflections

 $\Delta \rho_{max} = 0.31 \text{ e } \text{Å}^{-3}$ $\Delta \rho_{min} = -0.18 \text{ e } \text{Å}^{-3}$

415 parameters

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement para	meters (.4	₹²,	J
---	------------	-----	---

,	x	\mathcal{Y}	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
FI	0.0988 (3)	0.5834 (2)	0.7694 (2)	0.0832 (9)
F2	0.3326 (3)	0.7528 (2)	0.9294 (2)	0.0816 (8)
C1	0.0157 (5)	0.7480 (4)	0.8309 (4)	0.0670 (12)
C2	0.1247 (5)	0.6883 (3)	0.7876 (3)	0.0630(11)
C3	0.2854 (5)	0.7249 (3)	0.8255 (3)	0.0644 (11)
C4	0.3944 (5)	0.6710 (3)	0.7758 (4)	0.0660 (12)
C5	0.3756 (5)	0.7329 (3)	0.7007 (4)	0.0649 (12)
C6	0.2698 (5)	0.8024 (3)	0.7434 (3)	0.0614 (11)
C7	0.1033 (5)	0.7629 (3)	0.7015 (3)	0.0632 (11)
C8	0.0040 (5)	0.8169 (3)	0.7631 (4)	0.0650 (12)
С9	-0.0453 (5)	0.7314 (4)	0.9179 (4)	0.0670 (12)
C10	0.0107 (6)	0.6607 (4)	0.9826 (4)	0.0831 (15)
CÍI	-0.0489 (7)	0.6420 (5)	1.0628 (5)	0.1032 (19)
C12	-0.1666 (8)	0.6948 (6)	1.0779 (6)	0.114 (2)
C13	-0.2266 (8)	0.7630 (6)	1.0125 (6)	0.116 (2)
C14	-0.1683 (6)	0.7814 (5)	0.9334 (5)	0.0927 (17)
C15	-0.0660 (5)	0.9150 (4)	0.7530 (4)	0.0716 (13)
C16	-0.0491 (7)	0.9888 (4)	0.8345 (5)	0.0972 (18)
C17	-0.1156 (9)	1.0801 (5)	0.8242 (7)	0.119 (2)
C18	-0.1996 (9)	1.0989 (6)	0.7330 (9)	0.128 (3)
C19	-0.2165 (8)	1.0285 (6)	0.6499 (7)	0.119 (2)
C20	-0.1501 (7)	0.9369 (5)	0.6589 (5)	0.0970 (18)
C21	0.0383 (5)	0.7255 (4)	0.5918 (4)	0.0696 (12)
C22	-0.0656 (8)	0.6452 (5)	0.5655 (5)	0.112 (2)
C23	-0.1263 (11)	0.6109 (6)	0.4661 (7)	0.143 (3)
C24	-0.0855 (11)	0.6533 (7)	0.3888 (6)	0.131 (3)
C25	0.0112 (9)	0.7332 (7)	0.4122 (5)	0.124 (2)
C26	0.0749 (7)	0.7683 (5)	0.5136 (5)	0.0997 (18)

C27	0.3174 (6)	0.9143 (3)	0.7669 (4)	0.0673 (12)
C28	0.2478 (7)	0.9871 (4)	0.7095 (5)	0.0904 (17)
C29	0.3028 (9)	1.0887 (5)	0.7281 (7)	0.112 (2)
C30	0.4252 (11)	1.1161 (5)	0.8035 (8)	0.119 (3)
C31	0.4954 (9)	1.0448 (6)	0.8624 (6)	0.113 (2)
C32	0.4416 (7)	0.9445 (5)	0.8426 (5)	0.0894 (16)
C33 ·	0.4231 (5)	0.7315 (4)	0.6055 (4)	0.0689 (12)
C34	0.4755 (6)	0.8186 (5)	0.5754 (4)	0.0848 (15)
C35	0.5170 (7)	0.8162 (6)	0.4848 (5)	0.1024 (19)
C36	0.5067 (9)	0.7271 (7)	0.4249 (6)	0.121 (2)
C37	0.4569 (11)	0.6399 (6)	0.4538 (6)	0.133 (3)
C38	0.4153 (8)	0.6422 (5)	0.5436 (5)	0.105 (2)
C39 -	0.4800 (6)	0.5821 (4)	0.8010 (4)	0.0725 (13)
C40	0.6126 (6)	0.5707 (5)	0.7734 (5)	0.0930 (17)
C41	0.6933 (8)	0.4874 (6)	0.7985 (6)	0.111 (2)
C42	0.6456 (9)	0.4145 (5)	0.8489 (6)	0.114 (2)
C43	0.5171 (8)	0.4254 (5)	0.8790 (6)	0.110 (2)
C44	0.4351 (7)	0.5089 (4)	0.8551 (5)	0.0928 (17)
H10	0.0909	0.6244	0.9721	0.100*
HII	-0.0092	0.5939	1.1061	0.124*
H12	-0.2060	0.6844	1.1330	0.137*
HI3	-0.3087	0.7974	1 0222	0 140*
H14	-0.2111	0.8279	0.8892	0.111*
H16	0.0084	0.9766	0.8977	0.117*
H17	-0.1029	1.1292	0.8801	0.142*
H18	-0.2463	1 1604	0.7268	0.154*
H19	-0.2731	1.0426	0.5870	0.143*
H20	-0.1612	0.8893	0.5070	• 0.116*
H22	-0.0951	0.6137	0.6163	0.135*
H23	-0.1976	0.5570	0.4505	0.171*
H24	-0 1245	0.6268	0.3214	0.157*
H25	0.0365	0.7659	0.3607	0.148*
H26	0.1450	0.8230	0.5284	0.120*
H28	0.1633	0.9685	0.5204	0.120
H29	0.2554	1.1376	0.6888	0.134*
H30	0.4621	1.1839	0.8155	0.143*
H3I	0.5784	1.0640	0.9150	0.135*
H32	0.3704	0.8050	0.915	0.107*
H34	0.4832	0.8802	0.6167	0.107
H35	0.5521	0.8760	0.0707	0.102
H36	0.5338	0.7256	0.3633	0.145*
H37	0.4511	0.5783	0.3035	0.149
H38	0.3812	0.5819	0.5629	0.126*
H40	0.6468	0.6193	0.3329	0.112*
-141	0.7829	0.4808	0.7805	0.133*
	0.7003	0 3573	0.8629	0.137*
-144	0.3476	0.5162	0.8758	0.111*
	0.4851	0.3768	0.9154	0.132*
		v	··· · · ·	

	ispice emera paramen					
	U^{11}	U^{22}	L^{33}	U^{12}	U^{13}	U^{23}
FI	0.095 (2)	0.0582 (16)	0.100(2)	0.0018 (14)	0.0290 (17)	0.0104 (14)
F2	0.0918 (19)	0.0848 (19)	0.0679 (18)	0.0097 (15)	0.0171 (15)	0.0111 (14)
CI	0.066 (3)	0.068 (3)	0.069 (3)	0.007 (2)	0.018 (2)	0.009 (2)
C2	0.073 (3)	0.053 (2)	0.066 (3)	0.009 (2)	0.021 (2)	0.012 (2)
C3	0.076 (3)	0.062 (3)	0.056 (3)	0.009 (2)	0.016 (2)	0.007 (2)
C4	0.070 (3)	0.059 (3)	0.071 (3)	0.008 (2)	0.019 (2)	0.009 (2)
C5	0.068 (3)	0.054 (2)	0.072 (3)	0.000 (2)	0.019 (2)	0.001 (2)
C6	0.069 (3)	0.056 (2)	0.062 (3)	0.007 (2)	0.021 (2)	0.008 (2)
C7	0.070 (3)	0.056 (3)	0.066 (3)	0.008 (2)	0.021 (2)	0.007 (2)
C8	0.067 (3)	0.060 (3)	0.070 (3)	0.007 (2)	0.019 (2)	0.007 (2)
C9	0.069 (3)	0.067 (3)	0.067 (3)	0.007 (2)	0.019 (2)	0.012 (2)
C10	0.081 (3)	0.089 (4)	0.088 (4)	0.014 (3)	0.030 (3)	0.021 (3)
CH	0.102 (5)	0.119 (5)	0.097 (4)	0.008 (4)	0.028 (4)	0.043 (4)
C12	0.097 (5)	0.159 (7)	0.103 (5)	0.011 (4)	0.048 (4)	0.037 (5)
C13	0.096 (4)	0.157 (6)	0.120 (5)	0.033 (4)	0.058 (4)	0.042 (5)
C14	0.083 (4)	0.117 (5)	0.091 (4)	0.027 (3)	0.034 (3)	0.033 (3)
C15	0.066 (3)	0.066 (3)	0.089 (4)	0.009 (2)	0.026 (3)	0.014 (3)
C16	0.104 (4)	0.081 (4)	0.108 (5)	0.013 (3)	0.030 (4)	0.003 (3)
CI7	0.122 (6)	0.077 (4)	0.163 (8)	0.018 (4)	0.053 (6)	-0.005 (4)
C18	0.106 (5)	0.080 (5)	0.212 (10)	0.031 (4)	0.052 (6)	0.041 (6)
C19	0.107 (5)	0.102 (5)	0.146 (7)	0.034 (4)	0.014 (5)	0.042 (5)
C20	0.089 (4)	0.089 (4)	0.109 (5)	0.019 (3)	0.009 (3)	0.028 (3)
C21	0.069 (3)	0.066 (3)	0.072 (3)	0.006 (2)	0.014 (2)	0.011 (2)
C22	0.133 (6)	0.104 (5)	0.086 (4)	-0.037 (4)	0.005 (4)	0.011 (4)
C23	0.171 (8)	0.114 (6)	0.111 (6)	-0.045 (5)	-0.015 (6)	-0.002 (5)
C24	0.155 (7)	0.136 (7)	0.085 (5)	-0.002 (6)	0.004 (5)	-0.003 (5)
C25	0.128 (6)	0.168 (8)	0.073 (4)	-0.006 (6)	0.018 (4)	0.023 (5)
C26	0.096 (4)	0.114 (5)	0.083 (4)	-0.012 (4)	0.009 (3)	0.024 (4)
C27 ·	0.075 (3)	0.058 (3)	0.075 (3)	0.006 (2)	0.032 (3)	0.004 (2)
C28	0.088 (4)	0.067 (3)	0.128 (5)	0.014 (3)	0.042 (3)	0.028 (3)
C29	0.125 (6)	0.067 (4)	0.169 (7)	0.015 (4)	0.080 (6)	0.027 (4)
C30	0.140 (7)	0.071 (4)	0.160 (7)	-0.024 (4)	0.079 (6)	-0.017 (5)
C31	0.126 (6)	0.096 (5)	0.114 (5)	-0.031 (4)	0.042 (4)	-0.020 (4)
C32	0.097 (4)	0.084 (4)	0.085 (4)	-0.013 (3)	0.025 (3)	-0.004 (3)
C33	0.068 (3)	0.069 (3)	0.072 (3)	0.009 (2)	0.021 (2)	0.009 (2)
C34	0.092 (4)	0.089 (4)	0.080 (4)	0.004 (3)	0.032 (3)	0.013 (3)
C35	0.112 (5)	0.112 (5)	0.099 (5)	0.014 (4)	0.047 (4)	0.033 (4)
C36	0.148 (6)	0.144 (7)	0.084 (5)	0.042 (5)	0.047 (4)	0.021 (5)
C37	0.206 (9)	0.104 (5)	0.099 (5)	0.020 (5)	0.061 (6)	-0.015 (4)
C38	0.159 (6)	0.076 (4)	.0.084 (4)	0.003 (4)	0.043 (4)	-0.006 (3)
C39	0.075 (3)	0.060 (3)	0.079 (3)	0.012 (2)	0.012 (3)	0.003 (2)
C40	0.084 (4)	0.091 (4)	0.105 (4)	0.022 (3)	0.024 (3)	0.012 (3)
C41	0.090 (4)	0.111 (5)	0.129 (6)	0.039 (4)	0.019 (4)	0.003 (4)
C42	0.104(5)	0.080(4)	0 140 (6)	0.033 (4)	-0.009 (4)	0.008 (4)

Atomic displacement parameters (\hat{A}^2)

•

C43	0.112 (5)	0.078 (4)	0.133 (6)	0.016 (4)	0.006 (4)	0.032 (4)
C44	0.093 (4)	0.076 (4)	0.114 (5)	0.019 (3)	0.026 (3)	0.027(3)
						0.02 (2)
Geometric p	parameters (Å, °)					
FI-C2		1.381 (5)	C20-	C19	1.3	72 (9)
F2C3		1.385 (5)	C20-	—H20	. 0.9	300
C8C1		1.344 (6)	C44-	—C43	1.3	76 (8)
C8-C15	- 1 4 2	1.465 (6)	C44-		0.9	300
C8—C7		1.536 (6)	C35-	C36	1.3	46 (10)
C7—C21		1.498 (7)	C35-	—H35	0.9	300
C7C6		1.574 (7)	C30–		1.3	53 (11)
C7—C2		1.581 (6)	C30–	C31	1.3	71 (11)
C6C27		1.504 (7)	C30–	-H30	0.9	300
C6—C5		1.539 (6)	C22–	C23	1.3	51 (10)
C6C3		1.570 (6)	C22	H22	0.9.	300
C5C4		1.350 (6)	C42—	-C41	1.3	56 (10)
C5-C33		1.466 (7)	C42-	-C43	1.30	54 (10)
C9C10		1.372 (7)	C42—	-H42	0.93	00
C9C14		1.387 (7)	C40—	-C41	1.37	0 (8)
C9—C1		1.462 (7)	C40	-H40	0.93	00
C4C39		1.456 (6)	C29—	-H29	0.93	00
C4C3		1.506 (6)	С38—	-C37	1.36	6 (9)
C3—C2		1.511 (7)	C38—	-H38	0.93	00
C2C1		1.497 (6)	C41—	-H4I	0.93	00
C33—C38		1.366 (7)	C11—	-C12	1.36	2 (9)
C33C34		1.368 (7)	C11	HII	0.93	00
C39-C44		1.380 (8)	- C18—	-C17	1.34	9 (11)
C39C40		1.386 (8)	C18—	-C19	1.36	5 (12)
C21-C26		1.359 (8)	C18	H18	0.93	00
C21C22		1.372 (8)	C17—	H17	0.93	00
C27C28		1.374 (7)	C37—	C36	1.35	3 (11)
C27C32		1.372 (8)	C37—	H37	0.93	00
C15C16		1.376 (8)	C26—	C25	1.39	3 (9)
C15C20		1.394 (8)	C26—	H26	0.930	00
C34C35		1.377 (8)	C43	H43	0.930)0
C34—H34		0.9300	.C3I—I	H31	0.930	00
C32—C31		1.373 (9)	C12(C13	1.362	. (9)
C32—H32		0.9300	C12I	H12	0.930	0
C28C29		1.393 (9)	. C13—1	H13	0.930	0
C28—H28		0.9300	C36—I	H36	0.930	0
C10C11		1.377 (8)	C19I	119	0.930	0
C10—H10		0.9300	C25(224	1.328	(11)
C14C13		1.356 (8)	C25—H	H25	0.930	0
C14—H14		0.9300	C24—C	223	1.362	(11) .
C16—C17		1.370 (9)	C24F	124	0.930	0
C16—H16		0.9300	C23—F	423	0.930	0
CIC8C15		133.9 (4)	C19C	C20-C15	120.3	(7)
C1C8C7		95.5 (4)	C19—C	C20—H20	119.9	
•						

sup-6

C15—C8—C7	130.3 (4)	C15C20H20	119.9
C21C7C8	118.7 (4)	C43C44C39	121.4 (6)
C21C7C6	122.8 (4)	C43—C44—H44	119.3
С8—С7—С6	111.3 (4)	C39C44H44	119.3
C21C7C2	121.8 (4)	C36-C35-C34	119.8 (7)
C8C7C2	83.1 (3)	C36-C35-H35	120.1
C6—C7—C2	89.0 (3)	C34—C35—H35	120.1
C27—C6—C5	116.2 (4)	C29-C30-C31	120.5 (7)
C27C3C3	124.2 (4)	C29C30H30	119.7
C5—C6—C3	83.9 (3)	C31—C30—H30	119.7
C27—C6—C7	122.9 (4)	C23C22C21	120.9 (7)
C5C6C7	112.2 (4)	C23—C22—H22	119.6
C3C7	88.7 (3)	C21C22H22	119.6
C4—C5—C33	134.2 (4)	C41—C42—C43	119.7 (6)
C4C5C6	94.9 (4)	C41—C42—H42	120.2
C33C5C6	130.7 (4)	C43C42H42	120.2
C10-C9-C14	117.8 (5)	C41—C40—C39	119.7 (6)
C10—C9—C1	121.1 (4)	C41-C40-H40	120.2
C14—C9—C1	121.0 (5)	C39-C40-H40	120.2
C5C4C39	135.4 (5)	C30—C29—C28	119.9 (7)
C5—C4—C3	93.2 (4)	C30—C29—H29	120.1
C39—C4—C3	131.3 (4)	C28—C29—H29	120.1
F2C3C4	116.2 (4)	C37C38C33	121.1 (6)
F2C2	115.4 (4)	C37—C38—H38	119.4
C4C2	117.1 (4)	C33C38H38	119.4
F2C3C6	124.0 (4)	C42—C41—C40	121.6 (7)
C4C3C6	87.7 (3)	C42C41H41	119.2
C2C3C6	91.7 (3)	C40-C41-H41	119.2
F1	117.1 (4)	C12C11C10	119.2 (6)
F1-C2-C3	115.2 (4)	C12-C11-H11	120.4
CIC2C3	116.7 (4)	C10C11H11	120.4
FI	124.3 (4)	C17-C18-C19	120.5 (7)
C1C2C7	87.9 (3)	C17-C18-H18	119.7
C3C7C7	90.5 (3)	C19-C18-H18	119.7
C38—C33—C34	117.9 (5)	C18C17C16	120.1 (7)
C38-C33-C5	120.4 (5)	C18—C17—H17	120.0
C34—C33—C5	121.7 (5)	C16—C17—H17	120.0
C44C39C40	118.1 (5)	C36—C37—C38	120.0 (7)
C44—C39—C4	121.8 (5)	С36—С37—Н37	120.0
C40C39C4	120.1 (5)	C38—C37—H37	120.0
C26C21C22	116.3 (5)	C21C26C25	122.3 (6)
C26—C21—C7	123.3 (5)	C21C26H26	118.9
C22C21C7	120.4 (5)	C25C26H26	118.9
C28—C27—C32	118.2 (5)	C42C43C44	119.5 (7)
С28—С27—С6	122.1 (5)	C42-C43-H43	120.2
С32—С27—С6	119.5 (5)	C44—C43—H43	120.2
C8C1C9	136.9 (4)	C30—C31—C32	119.2 (7)
C8C1C2	93.2 (4)	C30—C31—H31	120.4
C9C1C2	129.9 (4)	C32—C31—H31	120.4

C16C15C20	117.9 (5)	C11C12C13	120.0 (6)
C16-C15-C8	121.7 (5)	C11C12H12	120.0
C20-C15-C8	120.4 (5)	C13C12H12	120.0
C33—C34—C35	120.9 (6)	C14C13C12	120.9 (6)
C33—C34—H34	119.6	C14—C13—H13	119.5
C35-C34-H34	119.6	C12-C13-H13	119.5
C31-C32-C27	121.7 (7)	C35—C36—C37	120.2 (7)
СЗІ—СЗ2—Н32	119.1	C35—C36—H36	119.9
С27—С32—Н32	119.1	C37-C36-H36	119.9
C27—C28—C29	120.5 (7)	C18C19C20	120.0 (7)
C27-C28-H28	119.8	C18-C19H19	120.0
C29-C28-H28	119.8	C20-C19-H19	120.0
C9-C10-C11	121.6 (5)	C24—C25C26	120.2 (7)
C9—C10—H10	119.2	C24—C25—H25	119.9
C11C10H10	119.2	C26—C25—H25	119.9
C13C14C9	120.5 (6)	C25C24C23	118.3 (7)
C13C14H14	119.8	C25C24H24	120.9
C9—C14—H14	119.8	C23C24H24	120.9
C17-C16-C15	121.1 (7)	C22C23C24	121.9 (8)
C17-C16-H16	119.5	C22—C23—H23	119.0
C15-C16-H16	119.5	C24—C23—H23	119.0
C1C8C7C21	118.4 (4)	C5-C6-C27-C28	109.3 (5)
C15C8C7C21	-66.3 (7)	C3-C6-C27-C28	-149.7 (5)
C1C8C7C6	-90.5 (4)	C7-C6-C27-C28	-35.8(7)
С15С8С7С6	84.9 (6)	C5C6C27C32	-65.1 (6)
С1—С8—С7—С2	4.2 (4)	C3—C6—C27—C32	35.9 (6)
C15-C8-C7-C2	171.1 (5)	C7C6C27C32	149.8 (5)
C21—C7—C6—C27	102.4 (5)	C15-C8-C1-C9	7.9 (10)
C8C7C6C27	-47.4 (6)	C7 - C8 - C1 - C9	-177.0(6)
C2C7C6C27	-129.6 (4)	C_{15} $-C_{8}$ $-C_{1}$ $-C_{2}$	-170.6(5)
C21-C7-C6-C5	-43.9 (6)	C7 - C8 - C1 - C2	4 4 (4)
C8C7C6C5	166.4 (4)	C10-C9-C1-C8	-168.7 (6)
C2C7C6C5	84.2 (4)	C14—C9—C1—C8	15.9 (9)
C21-C7-C6-C3	-126.8(4)	C10-C9-C1-C2	9 4 (8)
C8-C7-C6-C3	83.5 (4)	<u> </u>	-166.0(5)
C2C7C6C3	1.3 (3)	F1	-132.2 (4)
C27C6C5C4	121.7 (4)	C3C2C1C8	85.2 (5)
C3C6C5C4	-3.5 (4)	C7C2C1C8	-43(4)
C7C6C5C4	-89.6 (4)	F1	491(7)
C27-C6-C5-C33	-63.9 (7)	$C_{3} - C_{2} - C_{1} - C_{9}$	-93 5 (6)
C3C6C5C33	170.8 (5)	C7C2C1C9	177.0 (5)
C7—C6—C5—C33	84.8 (6)	C1	46.0 (8)
C33C5C4C39	7.1 (10)	C7—C8—C15—C16	-127.5 (6)
С6—С5—С4—С39	-178.8 (6)	C1C8C15C20	-135.2 (6)
C33C5C4C3	-170.4 (5)	C7C8C15C20	51.2 (7)
C6C5C4C3	3.7 (4)	C38—C33—C34—C35	0.9 (9)
C5C4C3F2	-130.8 (4)	C5-C33-C34-C35	-178.8 (5)
C39—C4—C3—F2	51.5 (7)	C28—C27—C32—C31	0.9 (8)
C5—C4—C3—C2	87.2 (5)	. C6C27C32C31	175.5 (5)
			× /

sup-8

_

C39C4C3C2	-90.5 (6)	С32С27С28С2	9	0.1 (8)
C5C4C3C6	-3.6 (4)	C6—C27—C28—C29		-174.4 (5)
C39—C4—C3—C6	178.7 (5)	C14—C9—C10—C11		-2.4 (9)
C27C6C3F2	6.0 (7)	C1C9C10C11		-177.9 (5)
C5-C6-C3-F2	123.6 (5)	C10C9C14C13		2.4 (9)
C7C3F2	-123.9 (4)	C1C9C14C13		178.0 (6)
C27—C6—C3—C4	-114.5 (5)	C20—C15—C16—C17	7	1.5 (9)
C5-C6-C3-C4	3.2 (3)	C8C15C16C17		-179.8 (6)
C7C6C3C4	115.7 (3)	C16-C15-C20-C19)	-1.8 (9)
C27C6C3C2	128.5 (4)	C8C15C20C19		179.5 (6)
C5C6C3C2	-113.9 (3)	C40C39C44C43	3	-1.6 (9)
C7C6C2	-1.3 (3)	C4—C39—C44—C43		-179.7 (6)
F2C3C2F1	-100.5 (4)	C33—C34—C35—C36	, ,	0.3 (10)
C4C3C2F1	41.8 (6)	C26—C21—C22—C23		0.6 (10)
C6C3C2F1	130.2 (4)	C7C21C22C23		179.6 (7)
F2C3C2C1	42.8 (5)	C44C39C40C41		1.1 (9)
C4C3C1	-174.9 (4)	C4—C39—C40—C41		179.2 (5)
C6C3C1	-86.5 (4)	C31C30C29C28		-0.4 (11)
F2-C3-C2-C7	130.7 (4)	C27C28C29C30		-0.3 (9)
C4—C3—C2—C7	-87.0 (4)	C34—C33—C38—C37		-0.8 (10)
C6C3C7	1.3 (3)	C5-C33-C38-C37		179.0 (7)
C21C7C2F1	6.0 (6)	C43-C42-C41-C40		-2.5 (11)
C8C7C2F1	125.6 (4)	C39—C40—C41—C42		0.9 (10)
C6C2F1	-122.8 (4)	C9-C10-C11C12		0.2 (10)
C2I—C7—C2—C1	-115.8 (4)	C19—C18—C17—C16		-1.5 (12 <u>)</u>
C8-C7-C2-C1	3.8 (3)	C15-C16-C17-C18		0.1 (11)
C6C7C1	115.4 (3)	C33-C38-C37-C36		-0.1 (13)
C21C7C3	127.5 (4)	C22C21C26C25		0.0 (10)
C8—C7—C2—C3	-112.9 (3)	C7C21C26C25		-179.0 (6)
C6C7C3	-1.3 (3)	C41-C42-C43-C44		1.9 (11)
C4—C5—C33—C38	42.7 (9)	C39—C44—C43—C42		0.1 (10)
C6C33C38	-129.5 (6)	C29—C30—C31—C32		1.3 (11)
C4C5C33C34	-137.6 (6)	C27C32C31C30		-1.6 (10)
C6C5C33C34	50.2 (8)	C10C11C12C13		1.9 (11)
C5C4C39C44	-152.2 (6)	C9C14C13C12		-0.4 (11)
C3C4C39C44	24.5 (8)	C11—C12—C13—C14		-1.8 (12)
C5C4C39C40	29.7 (9)	C34C35C36C37		-0.6 (12)
C3C4C39C40	-153.6 (5)	C38C37C36C35		0.8 (13)
C8—C7—C21—C26	110.3 (6)	C17C18C19C20		1.2 (12)
C6C7C21C26	-37.4 (7)	C15C20C19C18		0.4 (11)
C2C7C21C26	-149.5 (5)	C21—C26—C25—C24		-2.2 (12)
C8—C7—C21—C22	-68.7 (7)	C26-C25-C24-C23		3.6 (13)
C6C7C21C22	143.7 (5)	C21C22C23C24		1.0 (14)
C2C7C21C22	31.6 (7)	C25—C24—C23—C22		-3.1 (15)
Hydrogen-bond geometry (Å, °)				·
DH···A	D	–Н Н…А	D…A	<i>D</i> H…A
C17H17Cg1	0.9	3 2.91	3.689 (10)	142

Symmetry codes: (i) -x+2, -y, -z.

Fig. 1

