

N-(3-Fluorophenyl)-9*H*-xanthen-9-ylideneamine

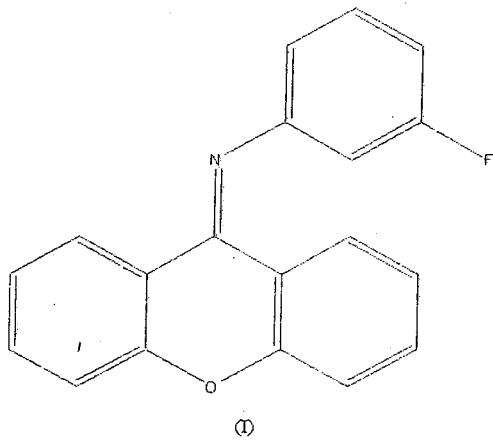
Deepak Chopra,^{a*} K. Nagarajan^b
and T. N. Guru Row^a

^aSolid State and Structural Chemistry Unit,
Indian Institute of Science, Bangalore 560 012,
Karnataka, India, and ^bHIKAL India Limited,
Banerghatta Road, Bangalore 560 078
Karnataka, India

Correspondence e-mail:
deepak@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study
 $T = 293\text{ K}$
Mean $\sigma(\text{C}-\text{C}) = 0.005\text{ \AA}$
 R factor = 0.082
 wR factor = 0.157
Data-to-parameter ratio = 11.5


For details of how these key indicators were automatically derived from the article, see <http://journals.iucr.org/e>

In the title compound, $\text{C}_{19}\text{H}_{12}\text{FNO}$, the dihedral angle between the mean planes of the 9H -xanthene moiety and the 3-fluorophenyl group is $82.5(1)^\circ$. An intramolecular $\text{C}-\text{H}\cdots\pi$ interaction stabilizes the molecular conformation.

Received 8 November 2004
Accepted 15 November 2004
Online 20 November 2004

Comment

Molecular organization and molecular interactions are the features that are responsible for molecules exhibiting different functional properties. An understanding of non-covalent interactions becomes essential for interpreting and predicting relationships between chemical structure and function (Hunter *et al.*, 2001). Crystal engineering, *via* manipulation of hydrogen bonding, has attracted a lot of interest in the recent literature (Aakeröy, 1997; Desiraju, 2000). Weak intermolecular forces of the type $\text{C}-\text{H}\cdots\pi$ play an important role in various systems of biological and chemical interest (Nishio, 2004). Intramolecular $\text{C}-\text{H}\cdots\pi$ interactions are responsible for molecules adopting a particular conformation in the solid state (Jennings *et al.*, 2001). A structural study of the title compound, (I), has been carried out as a case study where there is no possibility of formation of hydrogen bonds and hence it is thought to be suitable for the study of weak interactions.

A view of (I) with the atom-labelling scheme is shown in Fig. 1. The 9H -xanthene unit is almost planar, as indicated by the torsion angles (Table 1). The bond angle $\text{C}12-\text{N}1-\text{C}14$ of $126.7(2)^\circ$ is greater than the ideal bond angle value of 120° to avoid steric repulsion between atoms $\text{H}15$ and $\text{H}1$. Rotation of the 3-fluorophenyl group takes place and this is favoured because it leads to the formation of an intramolecular $\text{C}-\text{H}\cdots\pi$ interaction (Table 2) involving $\text{H}1$, which stabilizes the molecular conformation (Fig. 1).

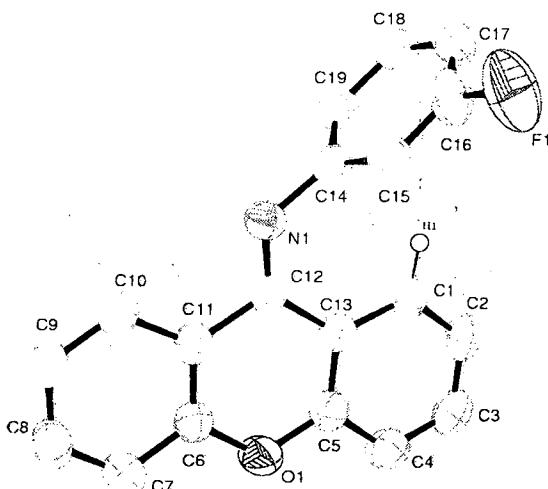


Figure 1

The molecular structure of (I), showing 40% probability ellipsoids. H atoms have been omitted for clarity, except for H1. The dashed line indicates the intramolecular C–H···π interaction.

Experimental

Compound (I) was synthesized according to a procedure reported in the literature (Nagarajan *et al.*, 1974). The compound was crystallized from a solution in ethyl acetate and hexane, by slow evaporation at *ca* 278 K.

Crystal data

$C_{19}H_{12}FNO$	$D_v = 1.379 \text{ Mg m}^{-3}$
$M_r = 289.30$	MoK α radiation
Monoclinic, $P2_1/n$	Cell parameters from 757 reflections
$a = 14.175 (3) \text{ \AA}$	$\theta = 1.3\text{--}24.4^\circ$
$b = 5.0634 (9) \text{ \AA}$	$\mu = 0.10 \text{ mm}^{-1}$
$c = 19.912 (3) \text{ \AA}$	$T = 293 (2) \text{ K}$
$\beta = 102.794 (4)^\circ$	Prism, orange-yellow
$V = 1393.6 (4) \text{ \AA}^3$	$0.60 \times 0.60 \times 0.56 \text{ mm}$
$Z = 4$	

Data collection

Bruker SMART CCD area-detector diffractometer
 φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
 $T_{\min} = 0.902$, $T_{\max} = 0.949$
10501 measured reflections

Refinement

Refinement on F^2
 $R[F^2 > 2\sigma(F^2)] = 0.082$
 $wR(F^2) = 0.157$
 $S = 1.12$
2849 reflections
247 parameters
All H-atom parameters refined

$$\begin{aligned}
w &= 1/[\sigma^2(F_{\text{w}}^2) + (0.0527P)^2 \\
&\quad + 0.0746P] \\
&\text{where } P = (F_{\text{w}}^2 + 2F_{\text{c}}^2)/3 \\
&(\Delta/\sigma)_{\text{max}} < 0.001 \\
&\Delta\rho_{\text{max}} = 0.16 \text{ e \AA}^{-3} \\
&\Delta\rho_{\text{min}} = -0.17 \text{ e \AA}^{-3}
\end{aligned}$$

Table 1
Selected geometric parameters (\AA , $^\circ$).

N1–C12	1.283 (3)	N1–C14	1.403 (4)
C12–N1–C14	126.7 (2)		
C14–N1–C12–C13	−6.1 (5)	C6–O1–C5–C13	1.7 (4)
N1–C12–C11–C10	1.4 (4)	C12–N1–C14–C15	−82.4 (4)
N1–C12–C13–C1	−5.8 (5)	C5–O1–C6–C11	−0.8 (4)

Table 2
Hydrogen-bonding geometry (\AA , $^\circ$).

$D\text{--H}\cdots A$	$D\text{--H}$	$H\cdots A$	$D\cdots A$	$D\text{--H}\cdots A$
C1–H1···Cg1	0.98 (3)	2.76 (3)	3.630 (5)	147 (2)

Cg1 is the centroid of the C14–C19 ring.

All H atoms were located in difference Fourier maps and refined isotropically. The C–H bond distances are in the range 0.89 (3)–1.08 (2) \AA .

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare *et al.*, 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin *et al.*, 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the IRFA–DST program. D. Chopra thanks CSIR, India, for a Junior Research Fellowship.

References

- Aakeröy, C. B. (1997). *Acta Cryst. B* **53**, 569–586.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). *J. Appl. Cryst. 26*, 343–350.
- Bruker (2000). SMART (Version 5.628) and SAINT (Version 6.02); Bruker AXS Inc., Madison, Wisconsin, USA.
- Desiraju, G. R. (2000). *J. Chem. Soc. Dalton Trans.* pp. 3745–3751.
- Farrugia, L. J. (1997). *J. Appl. Cryst. 30*, 565.
- Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). *J. Chem. Soc. Perkin Trans. 2*, pp. 651–669.
- Jennings, W. B., Farrell, B. M. & Malone, J. F. (2001). *Acc. Chem. Res.* **34**, 885–894.
- Nagarajan, K., Kulkarni, C. L. & Venkateswarlu, A. (1974). *Indian J. Chem. 12*, 247–251.
- Nishio, M. (2004). *CrystEngComm*, **6**, 130–158.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). *J. Appl. Cryst. 36*, 7–13.
- Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.