

Condensed heterotricycles: Synthesis of pyrazolo[3,4-*c*]quinoline derivatives[†]

Kuppuswamy Nagarajan*‡ & Rashmi K Shah

Hindustan CIBA—GEIGY Ltd, Research Centre, Bombay 400 063, India

Received 29 October 1991; accepted 13 December 1991

Pyrazol[3,4-*c*]quinoline **4a** is obtained from 4-(2-nitrophenyl)pyrazole-3-carboxylate (**3a**) by reduction followed by thermal cyclization. **4a** undergoes aminoalkylation uniquely at N(3) to form **4b-d**, as shown by ¹³C NMR. Pyrazoles **3a** and **3c** are methylated at N(2) to **6a** and **6b** respectively which are reductively cyclized to pyrazoloquinolones **7a** and **7b**. The later are transformed into amino derivatives **8b-d** and **8g,h** via chloro compounds **8a** and **8f**. The amino alkoxy pyrazoloquinoline (**8e**) is obtained from **8a** or the lactam **7a**. Cyclic hydroxamic acids **7c** and **7d** are prepared from the nitropyrazoles **6a** and **6b** by using NaBH₄ and Pd—C. A second synthesis of the pyrazolo[3,4-*c*]quinoline ring system consists of heating mercaptoacid (**8**) with methyl or phenyl hydrazine when **10a** or **10b** is obtained. Attempts to convert the pyrazole carboxylate **13a** into an isomeric pyrazoloisoquinoline system **12** via the isocyanate **13d** resulted only in the formation of bis-urea **14**.

As part of an ongoing programme of synthesis and biological evaluation of condensed heterotricycles¹, we took up a study of the pyrazolo(3,4-*c*)quinoline ring system. Syntheses reported in earlier literature² involving diazotisation of 3-aminolepidine offer access to the parent molecule, but with limited potentials for manipulation, whereas our new route reported herein leads to the pyrazolo-quinoline system with possibilities for derivatisation. Further our study highlights the use of ¹³C NMR spectroscopy^{3,4} for assignment of structures to products arising from substrates with multiple points of attack.

Addition of diazomethane to ethyl 2-nitro-(**1a**) and ethyl 2-nitro-4,5-dimethoxy (**1b**) cinnamate afforded the pyrazolines **2a** and **2b** which were oxidised by bromine to the pyrazoles **3a** and **3c** respectively⁵. Catalytic reduction of **3a** gave the amine **3b** which was cyclized thermally to pyrazoloquinoline **4a**. Attempts to convert the lactam to the iminochloride for further derivatisation failed. However, it could be converted to aminoalkyl derivatives **4b-d** by reaction with one molar equivalent of the respective chloride. Although there are potentially four sites of alkylation, *viz.* 2-5, the products formed under the reaction conditions were uniquely the 3-aminoalkyl derivatives. Crucial diagnostic data were the presence of a C=O band in the IR spectrum and

signals in the ¹³C NMR spectra for C-4 around δ 155 ppm as a singlet and for C-1 around 130 ppm as a large doublet (¹J_{CH} 190 Hz) with no further fine structure. 4-Alkyl derivatives would lack a C=O group; 5-alkyl derivatives would exhibit ³J_{CH} coupling for the C=O carbon signal in the ¹³C NMR spectrum, while 2-alkyl derivatives would be characterized by the presence in the ¹³C NMR spectrum of a large doublet for C-1, with further fine structure due to the three-bond coupling with the protons on the substituent at N-2^{3,4}. Treatment of the sodium salt of **4a** with excess methyl iodide gave a product which was probably a mixture of **5** as the HI salt (C₁₂H₁₁N₃O·HI; M⁺ at m/z 213) and a small percentage of **4e** (C₁₁H₉N₃O; M⁺ at m/z 199; IR: 1670 cm⁻¹ (C=O), the formation of **5** from **4e** being based on analogy with the behaviour of **7a** (see below).

Methylation of pyrazoles **3a** and **3c** afforded 1-methyl-4-aryl pyrazole-3-carboxylates **6a** and **6b**. The structures are deduced from the fact that in their ¹³C NMR spectra, the signals due to C-5 around δ 131 ppm were seen as a large doublet (¹J_{CH} 186 Hz), exhibiting further quartet structure (³J_{CH} (CH₃) 3 Hz). **6a** and **6b** were transformed readily into **7a** and **7b** respectively by catalytic hydrogenation in ethanol solution and evaporation. As expected, in the ¹³C NMR spectrum of **7a**, the signal of C-1 was a doublet (¹J_{CH} 190 Hz) with further quartet structure (³J_{CH} 3 Hz). **7a** and **7b** were converted readily into the chloro derivatives **8a** and **8f** which were further

† Contribution No. 774 from Research Centre.

‡ Present address: R&D Centre, Searle (India) Ltd., Thane 400 601.

transformed to various derivatives **8b-d**, **8g** and **8h**. A complete analysis of the ¹³C NMR spectrum of **8g** is given in the experimental section. In the ¹H NMR spectra of **8b-d** and **8g**, belonging to the 2-methyl series, the signal due to H(1) suffered a larger down-field shift ($\Delta\delta$ 0.5 ppm), compared to that in **4c,d** of the 3-alkyl series ($\Delta\delta$ 0.3 ppm) in changing over from CDCl₃ to DMSO-*d*₆ as the solvent. This is in keeping with observations on isomeric alkyl nitromidazoles⁴ and pyrazoles⁶. Treatment of the sodium salt of **7a** with 3-dimethylaminopropyl chloride led to the O-alkylated product **8e** (no C=O band in IR) which was also obtained from **8a** with the sodium salt of 3-dimethylaminopropanol. Reduction of the nitro esters **6a** and **6b** with sodium borohydride in

the presence of palladised charcoal led to the formation of the cyclic hydroxamic acids **7c** and **7d** respectively.

The pyrazolo[3,4-*c*]quinoline ring system has been constructed by heating 3-mercaptop-carbostyryl-4-carboxylic acid **9** with phenyl hydrazine⁷. In addition to repeating this, we have also used methyl hydrazine. The product from the former reaction has been formulated as **11b**⁷. We prefer structures **10a** and **10b** to **11a** and **11b** for the products because in their ¹H NMR spectra in DMSO-*d*₆ and in the ¹³C NMR spectrum of the methyl hydrazine product, signals due to CH(CO) were not seen. On the other hand, both showed signals for two exchangeable hydrogens, one around 11 ppm due to H(5)

Table 1—Physical data of compounds 4-10

Compd	Mol. formula	Mol. wt.	IR (Nujol) cm ⁻¹	¹ H NMR data	Selected ¹³ C NMR data
4a	C ₁₀ H ₇ N ₃	185.20	1690 (CO)	^a 11.58 (s, N-5H); 8.52 (s, C-1H); 8.00 (m, C-9H); 6.98-7.53 (m, 4H, C-6 to C-8H + N-3H)	^a 155.0 (s, C-4), 130.8 (d × d; C-1; ¹ J _{CH} 192; ² J _{CH} 6 Hz).
4b	C ₁₆ H ₁₈ N ₄ O ₂	298.34	1660 (CO)	^a 11.66 (s, N-5H); 8.42 (s, C-1H); 8.01 (m, C-9H); 7.13-7.53 (m, 3H, C-6 to C-8H); 4.84 (t, N-3 CH ₂); 3.49 (m, CH ₂ OCH ₂); 2.81 (t, CH ₂ -N); 2.46 (m, -N)	^a 154.6 (s, C-4); 131.1 (d, C-1; ¹ J _{CH} 191 Hz)
4c	C ₁₆ H ₂₀ N ₄ O	284.36	1660 (CO)	^b 12.34 (s, N-5H); 7.11-7.51 (s, C-1H); 7.77 (m; C-9H); 7.11-7.51 (m, 3H, C-6 to C-8H); 4.86 (t, N-3 CH ₂); 3.00 (t, CH ₂ NEt ₂); 2.72 (q, 4H, 2CH ₂ CH ₃); 1.04 (t, 2CH ₃); 8.33 (C-1H).	
4d	C ₁₅ H ₁₈ N ₄ O	270.33	1650 (CO)	^b 11.0 (s, N-5H); 8.15 (s, C-1H); 7.87 (m, C-9H); 7.00-7.47 (m, 3H, C-6 to C-8H); 4.90 (t, N-3 CH ₂); 1.80-2.60 (m, 4H, CH ₂ CH ₂ NMe ₂); 2.5 2.25 (s, 6H, 2NCH ₃); 8.30 (C-1H).	^a + ^b 155.2 (s, C-4); 131.7 (d, C-1; ¹ J _{CH} 186 Hz).
7a	C ₁₁ H ₉ N ₃ O	199.21	1680 (CO)	^a + ^b 11.33 (s, N-5H); 8.55 (s, C-1H); 7.80 (m, C-9H); 6.90-7.60 (m, 3H, C-6 to C-8H); 4.20 (s, N-2 CH ₃)	^a 157.0 (s, C-4); 126.05 (dxq; C-1; ¹ J _{CH} 192; ³ J _{CH} 3 Hz).
7b	C ₁₃ H ₁₃ N ₃ O ₃	259.26	1660 (CO)		^a 153.0 (s, C-5); 126.05
7c	C ₁₁ H ₉ N ₃ O ₂	215.21	1630 (CO)	^a 11.09 (s, N-OH); 8.69 (s, C-1H); 7.94 (m, C-9H); 7.69 (m, C-6H); 7.56 (m, C-7H); 7.24 (m, C-8H); 4.15 (s, N-CH ₃).	(dxq; C-1; ¹ J _{CH} 190; ³ J _{CH} 3 Hz).
7d	C ₁₃ H ₁₃ N ₃ O ₄	275.22	1610 (CO)	^a 11.06 (broad s, N-OH); 8.59 (s, C-1H); 7.53 (s, C-9H); 7.22 (s, C-6H); 4.13 (s, N-CH ₃); 3.85 (s, 6H, 2OMe).	
8b	C ₁₆ H ₁₉ N ₅	281.38		^b 8.05 (s, C-1H); 7.06-7.81 (m, 4H, C-6 to C-9H); 4.31 (t, 4H, =C-N); 4.17 (s, N-2 CH ₃); 2.60 (t, 4H, CH ₂ N-CH ₂); 2.36 (s, Me); CH ₃); 8.60 (C-1H)	
8c	C ₁₅ H ₁₆ N ₄ O	268.32		^b 8.03 (s, C-1H); 7.12-7.81 (m, 4H, C-6 to C-9H); 4.27 (t, 4H, CH ₂ OCH ₂); 4.14 (s, N-CH ₃); 3.89 (t, 4H, CH ₂ NCH ₂); 8.60 (C-1H)	^b 123.0 (d × q; ¹ J _{CH} 186; ³ J _{CH} 3 Hz)
8d	C ₁₅ H ₁₈ N ₄	254.33		^b 7.32-8.01 (m, 4H, C-6 to C-9H); 7.89 (s, C-1H); 4.33 (q, 4H, NCH ₂); 4.13 (s, NCH ₃); 1.56 (t, CH ₂ CH ₃); 8.60 (C-1H)	
8g	C ₁₇ H ₂₀ N ₄ O ₂	312.37		^b 7.91 (s, C-1H); 7.19, 7.11 (2s, C-6H, C-9H); 4.12 (s, N-2CH ₃); 4.04 (m, CH ₂ NCH ₂); 3.97, 3.93 (2s, 2OCH ₃); 1.97 (m, 4H, -N-CH ₂ CH ₂ CH ₂); 8.48 (C-1H).	^b 121.7 (dxq; C-1; ¹ J _{CH} 185; ³ J _{CH} 3 Hz)
8e	C ₁₆ H ₂₀ N ₄ O	284.36		^b 8.02 (s, C-1H); 7.83 (m, C-9H); 7.10-7.83 (m, 3H, C-6 to C-8H); 4.72 (t, OCH ₂); 4.15 (s, N-3CH); 1.8-2.70 (m, CH ₂ CH ₂ NMe ₂); 2.30 (s, 6H, 2N-CH ₃).	
10a	C ₁₁ H ₉ N ₃ O ₂ (M ⁺ 215)	215.11	1680, 1610	^a 11.47 (s, N-5H); 8.10 (m, C-9H); 7.03-7.40 (m, 3H; C-6 to C-8H).	
10b	C ₁₆ H ₁₁ N ₃ O ₂ (M ⁺ 277)	277.28	1670, 1620	^a 11.84 (s, N-5H); 8.27 (m, C-9H); 7.0-8.0 (m, 8H, C-6 to C-8H + C ₆ H ₅).	

Satisfactory C, H, N analyses were obtained for all the compounds

^ain DMSO-d₆; ^bin CDCl₃

and the other as a broad one due to NH below 6 ppm due to exchange with moisture in the solvent. Further the ^{13}C NMR spectrum of **10a**, showed two C=O carbon signals, one as a singlet at 158.2 (C-4) and the other as a finely split multiple at 156.4 ppm (C-1).

We made one futile attempt to use the ester **13a** for the synthesis of the isomeric pyrazoloisoquinoline system **12**, though the acid **13b**, acid chloride, hydroxamic acid **13c** and isocyanate **13d**. Treatment of the acid chloride with hydroxylamine in aqueous alkaline medium gave amine **13e** directly. Pyrolysis of the azide **13f** afforded the symmetrical urea **14** instead of the isocyanate **13d**.

Experimental Procedure

Ethyl 4-(2-nitrophenyl)-4,5-dihydropyrazole-3-carboxylate (2a) and its 3,4-dimethoxy derivative (2b)

To a solution of ethyl 2-nitrocinnamate (12.8 g, 60 mmole) in ether (50 ml) was added ethereal diazomethane (from 20 g nitrosomethyl urea, 60 ml 50% aq. KOH and 200 ml ether) and the mixture left overnight. On removal of ether, a residue was obtained which was crystallized from ether-hexane. Recrystallisation from the same mixture afforded **2a** (7.9 g, 50%) m.p. 94-96°. **2b** similarly prepared was a gum and used as such for the next experiment.

Ethyl 4-(2-nitrophenyl)pyrazole-3-carboxylate (3a) and its 3,4-dimethoxy derivative 3c

Ester **2a** (2.1 g, 8 mmole) in ether (120 ml) was treated with bromine (1.4 g, 9 mmole) in the same solvent (20 ml). The solution was set aside at room temperature for 4 hr and evaporated. The residue was washed with water and crystallised from ethanol to give **3a** (1.5 g; 58%), m.p. 182-84°.

The free acid was obtained from the ester by hydrolysis with aqueous alcoholic alkali; m.p. 227-9° (from aq. ethanol) (Found: C, 51.75; H, 3.35; N, 18.1. $\text{C}_{10}\text{H}_7\text{N}_3\text{O}_4$ requires C, 51.5; H, 3.05; N, 18.0%).

Similarly was prepared **3c** in an overall yield of 60% and crystallised from methanol-acetone; m.p. 235-6°. This was also obtained by nitration of ethyl 4-(3,4-dimethoxyphenyl)pyrazole-3-carboxylate, m.p. 160-2° (Found: C, 61.1; H, 6.2; N, 10.3. $\text{C}_{14}\text{H}_{16}\text{N}_2\text{O}_4$ requires C, 60.85; H, 5.85; N, 10.15%) prepared by addition of diazomethane to ethyl 3,4-dimethoxy cinnamate followed by oxidation with bromine.

Ethyl 4-(2-aminophenyl)pyrazole-3-carboxylate (3b)

Ester **3a** (1g) was dissolved in ethanol (50 ml) and

shaken with hydrogen at 1 atmospheric pressure in the presence of platinum catalyst (from 0.1 g PtO_2). The catalyst was filtered off and the filtrate evaporated. The residue was crystallised from ether to give **3b** (0.9 g), m.p. > 300°.

Pyrazoloquinolone (4a)

The above ester (6 g) was heated to its melting point. The initial melt solidified and was ground with ethanol and filtered to yield **4a** (4.5 g, 94%), m.p. > 300°.

Aminoalkyl pyrazoloquinolones (4b-d)

Pyrazoloquinolone **4a** (3.7 g, 20 mmole) in hot DMF (50 ml) was stirred with sodium hydride (50% suspension in mineral oil, 1 g) at 50° for 1 hr and then treated with N-(2-chloroethyl)morpholine (3 g, 20 mmole). The mixture was stirred at 60° overnight and filtered. The filtrate was evaporated and the residue treated with water and filtered. The precipitate was crystallised from chloroform-ethanol to give **4b** (3.5 g, 59%), m.p. 270-1°.

Similarly was prepared the diethylaminoethyl derivative **4c** in 32% yield; m.p. 173-75° (from ether) forming a tosylate ($\text{C}_{23}\text{H}_{28}\text{N}_4\text{O}_4\text{S}$) m.p. 194-96°C (from ethanol) and dimethylaminopropyl derivative **4d** (50%), m.p. 168-70° (from ether-hexane).

Dimethylpyrazoloquinoline (5)

To the sodium salt of **4a** [prepared from **4a** (1.1 g, 6 mmole) and 50% sodium hydride (300 mg)] in DMF (20 ml), methyl iodide (5 ml) was added and the mixture stirred at 50° for 16 hr. It was then filtered and the solvent removed from the filtrate. The residue obtained was treated with water again and filtered. The filtrate was made acidic when the HI salt of **5** was precipitated along with some **4e**. This was filtered off and crystallised from MeOH; yield 0.2 g, m.p. 222° (d) (Found: C, 42.6; H, 3.75; N, 12.55. $\text{C}_{12}\text{H}_{12}\text{IN}_3\text{O}$ requires C, 42.25; H, 3.5; N, 12.3%).

Methyl pyrazoloquinolone 7a and its dimethoxy derivative 7b

Ester **3a** (2.1 g, 8 mmole) in dioxane (25 ml) at 50° was treated with sodium hydride (50% suspension in mineral oil; 0.4 g, 8.3 mmole) and the resultant sodium salt stirred with methyl iodide (2 ml) at 50° overnight. The mixture was filtered and the filtrate evaporated to dryness. The residue was crystallized from hexane and it was recrystallised from ethanol to give **6a** (2g, 91%), m.p. 129-131°. Similarly was prepared the dimethoxy derivative **6b** in 66% yield; m.p. 153-5° (from ethanol). *

Reduction of ester **6a** (11 g, 40 mmole) in ethanol

(250 ml) with hydrogen at atmospheric pressure and room temperature using platinum catalyst (from 0.5 g PtO₂), filtration, evaporation of the filtrate and heating of the residue at 100° for 3 hr yielded pyrazoloquinolone **7a** (5.9 g, 74%), m.p. 285-57° (from methanol). Likewise ester **6b** was reduced in methanol solution and cyclised to **7b** in 85% yield; m.p. > 300° (from DMF-ethanol).

4-Chloro-2-methylpyrazoloquinolone (8a) and its dimethoxy derivative (8f)

Quinolone **7a** (5 g, 25 mmol) and phosphorous oxychloride (30 ml) were heated together under reflux for 3 hr. Excess reagent was removed *in vacuo* and the residue treated with ammonia. Extraction with chloroform and evaporation of the extract afforded **8a** (5.1 g, 94%), m.p. 148-49° (from CHCl₃ - hexane).

The dimethoxy derivative **8f** was similarly prepared from **7b** in 90% yield m.p. 255-56° (from chloroform).

4-Amino-2-methyl pyrazoloquinolones (8b-d), 8g and 8h

Chloro derivative **8a** (3.3 g, 15 mmol) and N-methyl piperazine (3.0 g, 30 mmole) were heated together at 100° for 4 hr. The solution was diluted with water and filtered to give piperazinopyrazoloquinoline **8b** (4.0 g, 95%), m.p. 85-89°, yielding a ditosylate, (C₃₀H₃₅N₅O₆S₂·H₂O), m.p. 176° (from ethanol).

8c was similarly prepared in 92% yield; m.p. 129-131° (from methanol); tosylate (C₂₂H₂₄N₄O₄S), m.p. 273-75° (from methanol).

8d was obtained in 60% yield from **8a** using excess diethylamine at 100° in an autoclave for 16 hr and characterized as the tosylate (C₂₂H₂₆N₄O₃S·H₂O) m.p. 182-84° (from ethanol-ether).

The displacement reaction of chloride in **8f** was conducted in chloroform-ethanol mixture to give pyrrolidino derivative **8g** as tosylate (C₂₄H₂₈N₄O₅S·H₂O) in 75% yield; m.p. 278-79° (from ethanol); ¹³C of base in CDCl₃: δ 149.4 (C-8, qui, J 3.7 Hz), 148.5 (C-4, s), 145.3 (C-7; qui, J 3.7 Hz), 139.5 (C-5a; d × d; J 3.2, 7.9 Hz), 138.2 (C-3a; d; J 7.4 Hz), 123.2 (C-9a; d × d; J 5.2, 8.9 Hz), 121.7 (C-1; d × q; J 188, 2.8 Hz), 110.7 (C-10; d; J 5.6 Hz), 109.3 (C-6; d; J 158 Hz), 104.7 (C-9; d; J 155 Hz), 56.3 (O-CH₃; q; J 144 Hz), 55.9 (O-CH₃, q; J, 144 Hz), 48.5 (N-CH₂; t; J 143 Hz), 40.0 (N-CH₃; q; J 140 Hz), 25.4 ppm (N CH₂CH₂; t; J 132 Hz), and the hydrazino derivative **8h** (85%), m.p. 216-8° (from methanol).

Dimethylaminopropoxy pyrazoloquinoline (8e)

To a stirred solution of 3-dimethylaminopropanol

(0.8 g, 8 mmole) in dioxane (10 ml) was added with stirring, sodium hydride (50% suspension in mineral oil, 0.4 g, 8 mmole). After 30 min, a solution of chloro compound **8a** (1.3 g, 6 mmole) in dioxane (25 ml) was added. The mixture was stirred at 60° overnight and filtered. The filtrate was evaporated to dryness and the residual oil separated into neutral (0.15 g) and basic (0.7 g) parts. The latter gave the dipicrate of **8e** (C₂₈H₂₆N₁₀O₁₅), m.p. 178-80° (from acetone-methanol).

This was also obtained in 32% yield by treating pyrazoloquinolone **7a** with sodium hydride in DMF followed by 3-dimethylaminopropyl chloride.

5-Hydroxy-2-methyl pyrazoloquinolones (7c) and (7d)

Nitroester **6a** (2.75 g, 10 mmole) in methanol (25 ml) was added to a stirred suspension of 10% Pd - C (50 mg) in water (25 ml) containing sodium borohydride (0.8 g) in an atmosphere of nitrogen. After 15 min, the mixture was filtered and the filtrate made acidic. The precipitate was filtered off and crystallised from chloroform-methanol to give **7c** (1.1 g, 51%), m.p. 284-46°, giving a deep red ferric reaction; M⁺ 215.

Similarly nitroester **6b** afforded **7d** in 65% yield; m.p. 282-3°; M⁺ 275.

Pyrazoloquinolinediones (10a) and (10b)

Mercaptoquinoline carboxylic acid **9** (3.3 g, 15 mmole) and methyl hydrazine (2.3 g, 50 mmole) were heated together in ethanol (50 ml) under reflux for 1 hr. After removal of solvent, the residue was acidified with 2N HCl. The precipitate was filtered off and recrystallised from DMF-ether to afford **10a** (1.5 g, 70%), m.p. > 300°.

Likewise **9** (1.1 g, 5 mmole) and phenylhydrazine (1.1 g, 10 mmole) gave **10b** in 60% yield, m.p. > 300° (from acetone-ethanol).

1-Methyl-4-phenylpyrazole-3-carboxylic acid (13b)

Ethyl 4-phenylpyrazole-3-carboxylate was methylated using the conditions employed for **6a** in 92% yield to give **13a**, m.p. 89-91° (from ethanol).

Hydrolysis using aq. alcoholic sodium hydroxide gave the free acid **13b**, m.p. 127-29° (from chloroform-hexane).

Action of hydroxylamine on acid chloride of (13b)

The above acid (2.0 g, 10 mmole) was refluxed with thionyl chloride (20 ml) and benzene (20 ml) for 2 hr. After evaporation, the acid chloride was dissolved in dry ether (20 ml) and the solution added to an ice-cold solution of hydroxyl amine hydrochloride (0.8 g) and sodium hydroxide (0.9 g) in water

(20 ml) with stirring. After 3 hr the crystalline precipitate was filtered off and recrystallised from ether to give **13e** (0.5 g, 30%), m.p. 116-19°; NMR(CDCl_3) 7.30-7.60 (m, 5 aromatic H), 7.25 (s, pyrazole H), 3.72 (NCH₃), 3.63 (s, 2H, disappears with D₂O); M⁺ 173.

Curtius degradation of acid (13b)

Acid chloride from the acid **13b** (2.5 g) was dissolved in acetone (20 ml) and the solution cooled to -5°. Sodium azide (1.0 g) in water (5 ml) was added with stirring. After 30 min, water (500 ml) was poured in and the oily azide **13f** extracted into benzene (100 ml). The dried benzene extract was heated gently under reflux until nitrogen evolution ceased. After a further 2 hr reflux, the solvent was

evaporated off and the residue extracted with hexane. The insoluble part was crystallised from chloroform-hexane to give the bis-urea **14** (1.2 g, 55%), m.p. 205-7°.

References

- 1 Nagarajan K in *Studies in organic chemistry—New trends in heterocyclic chemistry*, edited by R B Mitra, N R Ayyangar, V N Gogte R M Acheson & N Cromwell (Elsevier, Amsterdam), 1979, p. 317.
- 2 Elter K & Szierak S, *Mh Chem*, 85 (1954) 283.
- 3 Vogeli H, Philipsborn W von, Nagarajan K & Nair M D, *Helv chim Acta*, 61 (1978) 607.
- 4 Nagarajan K, Sudarsanam V, Parthasarathy P C, Arya V P & Shenoy S J, *Indian J Chem*, 21B (1982) 1006.
- 5 Granacher von Ch & Kouninotis Ch, *Helv chim Acta*, 11 (1928) 242.