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Abstract

The three phase transitions – the GUT, the electro-weak and the quark-

hadron, which the universe is assumed to have undergone produce very im-

portant physical effects if they are assumed to be of first order. It is also

important that enough supercooling is produced at these transitions so that

the rate of nucleation of the lower temperature phase out of the higher tem-

perature phase is large. We argue on the basis of finite-size scaling theory

that for the quark-hadron and the electro-weak phase transitions the universe

does not supercool enough to give sizeable nucleation rates. Only for the

GUT transition the nucleation probability seems to be significant.
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According to the standard big bang model, the universe started from a state of very high

density and temperature. Due to the expansion of the universe the temperature falls and

depending on the underlying theory of particle interactions, a sequence of phase transitions

takes place. Physical consequences of the three such phase transitions have been extensively

investigated. These are 1) the GUT phase transition at a Tc1 ∼ O(1014 − 1016) GeV, where

the symmetry between the strong and the electroweak interactions is spontaneously broken,

2) the electroweak (EW) phase transition at a Tc2 ∼ O(102) GeV, where the electroweak

symmetry is spontaneously broken, and finally 3) the chiral symmetry breaking and/or the

confining QCD phase transition at a Tc3 ∼ O(10−1) GeV. The value of Tc1 is, of course,

purely conjectural as there is no viable grand unified theory at the moment. However, non-

perturbative results from simulations of corresponding lattice field theories indicate that the

values of the other two critical temperatures, Tc2 and Tc3 are reasonably well determined.

It is natural to expect some cosmological and astrophysical consequences of these phase

transitions. Indeed, the GUT phase transition leads to the formation of various topolog-

ical structures– domain walls, cosmic strings, magnetic monopoles etc. [1]. It has been

also exploited in the inflationary scenarios for the early universe. Recently there have been

attempts to show that the baryon asymmetry of the universe can be generated at the elec-

troweak phase transition [2,3]. There have been also speculations about the creation of initial

density inhomogeneities necessary for large scale structure formation in the universe at this

transition [4]. The quark-hadron transition has been shown [5,6] to lead to an alternative

scenario for nucleosynthesis with substantially large baryon density contrast, ΩB . In many

of these applications, a (strong) first order phase transition with substantial supercooling

has been assumed. The consequent bubble nucleation is then the mechanism responsible for

the expected effects.

For the purposes of this article we will therefore assume that all the phase transitions

to be of first order and examine critically the estimates of the corresponding nucleation

rates. It is usually assumed that the high temperature symmetric phase, A, goes into a

metastable state and is ‘supercooled’ before decaying into droplets of the less symmetric low
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temperature phase, B. The universe passes through this series of equilibrium and metastable

states only if the interactions necessary for particle distribution functions to adjust to the

changing temperature are rapid compared to the expansion rate of the universe. A rough

criterion that a reaction rate is fast enough for maintaining equilibrium is Γ > H where Γ is

the interaction rate per particle and H is the Hubble constant. If Γ < H then the particles

‘freeze out’ and do not contribute to the maintenance of equilibrium [1].

The rate of nucleation of droplets of phase B has so far been calculated using the ho-

mogeneous nucleation theory [7]. It is assumed that the droplets of phase B arise through

spontaneous thermodynamic fluctuations in phase A. For the formation of a spherical droplet

of radius r the change in the free energy of the system is given by,

∆F =
4π

3
(pA(T ) − pB(T )) r3 + 4πr2σ (1)

where pA(T ) − pB(T ) is the difference in pressure in the two phases at temperature T and

σ is the surface tension of the interface of the phases. ∆F increases with r till a maximum

value rcr is reached where

rcr =
2σ

pB(T ) − pA(T )
(2)

Droplets with r < rcr shrink and disappear while droplets with r > rcr grow. The rate of

nucleation per unit volume is given by

I = I0exp
(

−
∆Fcr

T

)

(3)

where ∆Fcr is the value of ∆F for r = rcr and I0 is the prefactor. For small supercooling,

that is, for η = (Tc − T )/Tc < 1 Eq. (3) can be written as

I = I0exp

(

−
16π

3

σ3

Tc∆E2η2

)

(4)

where ∆E is the latent heat per unit volume. Thus the rate decreases exponentially, as

supercooling becomes smaller, unless I0 happens to be very large.

Since the early days of the nucleation theory much effort has gone into the calculation

of I0 [8]. The most well-known result is that due to Becker and Döring [9]. They calculated
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I0 by considering explicitly the kinetics of the condensation process. In recent years Langer

[10] has developed a more detailed theory of nucleation based on statistical mechanical

considerations. He obtains an expression for I0 very different from that of Becker and

Döring. However the numerical values of I0 do not differ much in the two theories [11].

For the quark-hadron phase transition, Fuller et al. [6] calculated the rate by setting

I0 = T 4
c . Recently Csernai and Kapusta [12] have calculated I0 using Langer’s theory. They

obtain

I0 =
16

3π

(

σ

3T

)3/2 σηArcr

ξ4
A(∆w)2

(5)

where ηA and ξA are respectively the shear viscosity and a correlation length in the phase A

and ∆w is the difference in the enthalpy densities in the two phases. It turns out that the

new values of I0 are smaller than the prefactor T 4
c for the quark-hadron phase transition [12].

Therefore, the crucial parameter which governs the nucleation rate in this case is indeed the

possible amount of supercoooling the universe can undergo near Tc. It seems likely that

these arguments apply to other, especially the elecroweak, phase transitions as well.

Before we address the question of the possible amount of supercooling the universe can

undergo at any of these transitions, it is perhaps worthwhile to point out that even in a

simple heterogeneous nucleation mechanism, it is still the supercooling which dominates the

nucleation rate. As an example of heterogeneous nucleation we consider the condensation

of light quarks on heavy quarks in the case of quark–hadron transition in analogy with the

condensation of water vapour on ions [13]. The contribution to the change free energy of

the system is now given by

∆Fimpurity = α
(

1 −
εA

εB

)(

1

r
−

1

r0

)

(6)

where εA and εB are the dielectric constants in the A and B phases , r0 is the effective

radius of the impurity particles, in this case the heavy quarks and α is the QCD coupling

constant. The Coulomb-like form of the potential in Eq. (6) is justified for a deconfined

quark-gluon plasma at sufficiently high temperatures. Minimizing the full ∆F , one can

obtain the corresponding rcr and the modified nucleation rate. For small α, one obtains
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rhet
cr = rcr

(

1 −
α

8πσr3
cr

)

. (7)

From the above equation, one sees that the critical radius for the heterogeneous system is

smaller than the rcr for the homogeneous case, but it still is governed by η, the magnitude

of supercooling, in the same way as before. Thus in the limit of vanishing supercooling the

critical radius of the stable bubble is still too large to allow significant nucleation rates. Of

course, for very small η the solution Eq. (7) is not valid but then it is easy to show that the

full ∆F has no minimum at all.

This leads us to the central question which we wish to discuss in this paper: is it possible

to estimate the amount of supercooling the universe can undergo at a phase transition ? We

suggest that standard arguments from the finite size scaling theory [14,15] near a first order

phase transition can be exploited to answer this question. If ξ(T ) is the correlation length

in a given phase at a temperature T close to the transition point and L is the linear size

of the system then clearly for L ≤ ξ one expects large finite size effects to cause rounding

of a discontinuity and broadening of the transition region whereas for L ≫ ξ, the system

should behave as if it is in the thermodynamic limit. Indeed, while the system could remain

trapped in a single, perhaps metastable, phase for the former case, it will be in a mixed

phase of several domains of both phases for the latter. In fact, Challa et al [16] in their

study of temperature-driven first order transitions have shown that

∆T

Tc

≃
Tc

∆EL3
. (8)

This result can be expressed in terms of ξ and ∆E, by observing that ∆E, the latent heat

per unit volume can be written as

∆E =
c1Tc

ξ3
, (9)

purely on dimensional grounds. Here c1 is a constant. ( Note that the above equation is

consistent with the statement that a second order transition is the limit of a first order phase

transition for infinite correlation length or vanishing latent heat.) Substituting Eq. (9) in

Eq. (8) we get,
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η = A
(

ξ

L

)3

= A
(

ξTc

LTc

)3

, (10)

where the constant of proportionality, A, should be typically O(1). This relation has been

verified for the quenched QCD and both A and ξTc have been estimated [17] to be O(1). For

the electro-weak theory or any grand unified theory, no such test has so far been made and

no estimate of ξTc or A is available. On the other hand Eq. (9) has been verified for a large

number of models in statistical mechanics [15]. It thus seems natural to assume that for

electro-weak and GUT theories also both these dimensionless numbers are O(1), although

we will allow them to vary up to O(102).

Thus for determining the amount of supercooling at a phase transition in the universe

one needs the correlation length and the volume of the universe at the crtical temperature.

The volume can be obtained from standard cosmology. Assuming an ideal gas equation of

state for the matter in the early universe,

ρ = 3P =
π2

30
N(T )T 4 , (11)

where N(T ) = NB(T ) + 7/8NF (T ) is the total number of bosonic (B) and fermionic (F)

degrees of freedom. The age of the universe at temperature T is given by the relation [1]

t =
1

4π

√

45

πN(T )

MP

T 2
. (12)

Here MP ∼ 1019 GeV is the Planck mass. Since the radius of the universe as given by the

particle horizon is 3t, the volume, V, of the universe at temperature T is given by

V T 3 =
405

16

√

45

π7N3(T )

(

MP

T

)3

=
5.625 × 1057

N3/2(T )T 3
(13)

Here T is expressed in GeV. Substituting Eq. (13) in Eq. (10), one finds that the super-

cooling which the universe can undergo is

η = 1.78 × 10−58A(ξTc)
3N3/2(Tc)T

3 . (14)
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As mentioned earlier, all quantities in Eq. (14) are known only for the quark-hadron

phase transition. Using the data from lattice QCD for Tc and ξ(Tc)Tc [17] and N(Tc) =

51.25 [corresponding to photons(2), gluons(16), electrons(4), muons(4), neutrinos(6) and

two flavours of quarks(24)], one finds that the supercooling η is negligibly small, as shown

in our earlier work [18] where all the caveats in using the lattice QCD data and their effects

are also discussed. This result is not changed if we take the new results of Ref. 12 for I0 or

even the possibility of heterogeneous nucleation caused by heavy quarks.

Similar arguments as given above can be applied to any other phase transition occurring

during the evolution of the universe. Thus, for the electroweak phase transition, N(Tc) is

51.5 [corresponding to W and Z-bosons(6), taus(4), and four flavours of quarks(48)] and

we obtain Tc ∼ 250 GeV on simple dimensional grounds. One-loop perturbation theory

yields [19] ξ(Tc)Tc = 28.1 and Tc = 184 GeV for a Higgs mass of 80 GeV, while lattice

investigations [20] of the O(4) model suggest Tc = 370 GeV for a Higgs mass close to its

triviality bound of about 650 GeV. Choosing the estimates of Ref. 20, we find that

ηEW = 1.57 × 10−43A , (15)

which can be significant only for unnaturally large A. Note that the expected uncertainty

of a factor of two in Tc and a correlation length which is 2-3 orders of magnitude larger

than the one used above will not alter the conclusion at all. Furthermore, the ideal gas

equation of state used here should be adequate, since the non-perturbative contributions to

the energy density are unlikely to change N(Tc) by more than an order of magnitude.

Finally, for the GUT phase transition, one sees that substituting Tc = Tc1, the small

numerical factor in Eq. (14) is increased by 42-48 orders of magnitudes. Since N(T ) may

increase by a further factor of 2 or so, the universe can undergo significant supercooling

at this phase transition provided the correlation length is ∼ 100Tc. Indeed it seems that

only for theories which have either a transition temperature close to MP or a very large

(but finite) correlation length near Tc it is possible to get sufficient supercooling and hence

interesting effects through bubble nucleation.
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