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Abstract

Using improved mean field and strong coupling expansions we re-analyse the bulk phase

diagram of the fundamental-adjoint action of the SU(2) Lattice Gauge Theory. We find that

the qualitative features of the bulk phase diagram are robust and unchanged by the inclusion of

higher order terms. On the other hand, some of the quantitative features, such as the location

of the endpoint of the line of bulk phase transitions, seem to be strongly dependent on the

higher order terms of the strong coupling expansion.

1E-mail:saumen@theory.tifr.res.in
2E-mail:gavai@mayur.tifr.res.in

http://arXiv.org/abs/hep-lat/9610022v1
http://arXiv.org/abs/hep-lat/9610022


Lattice regularization of a continuum action is not unique. For non-abelian gauge theories

the Wilson action [1] is the most popular one, but other actions have been studied in the

literature. In particular, lately there has been a resurgence of interest in the Bhanot-Creutz

action[2]

S =
∑

p

{

βf (1 −
1

2
TrF Up) + βa(1 −

1

3
TrAUp)

}

. (1)

Here F and A denote the fundamental and adjoint representations respectively. The Wilson

action is a special case of (1), corresponding to βa = 0. The action (1) was first studied by

Bhanot and Creutz for SU(2) gauge theories in order to understand the bulk phase transition

found in numerical studies of some non-abelian gauge theories (SO(3), SU(4) etc.) and the role

they play in the physics of confinement. They found a line of first order transition in the βf -

βa plane (see Fig.1) that ended at a finite βa. Since the location of the peak in the plaquette

susceptibility for the Wilson action corresponds to the interception of the extrapolation of this

line with the βa = 0 axis, it has been considered as a possible source for the observed crossover in

the string tension. It is thus a possibly important key in our understanding of the confinement

phenomenon.

However, recent [3, 4] finite temperature investigations of this action have cast some doubt

on the nature of the phase transition line seen in [2]. It was found that switching on a nonzero

βa, the known finite temperature phase transition of the Wilson action becomes a line and joins

the above mentioned bulk transition line. Moreover, the order of the deconfinement transition

changes from second to first order at βa ≥ 1.5. No indications of two separate transitions were

found at any βa. After considering various possibilities, it was concluded [4]that the transition

line is not a bulk one, but the deconfinement transition line. Since the study in [2] was done on

small lattices, which were at relatively high temperature, such a misinterpretation is possible.

A finite size scaling-based analysis of the bulk transition has also been done [6] to determine

the nature of the phase transition. It was found that the line of the phase transition ends at a

somewhat higher βa than what was found in [2]. Simulations at a still higher value of βa (=1.5)

suggested the presence of a 1st order bulk phase transition, but the Polyakov line, which is the

order parameter of the finite temperature phase transition, was also found to jump across this

transition at βa = 1.5, thus further making a distinction between the zero temperature bulk

transition and the finite temperature deconfinement transition very difficult.

Numerical simulations thus seem to give conflicting signals. The deconfinement order

parameter acquires non-zero vacuum expectation value at these transitions for all βa. However,

the shift of the transition point with Nt - the temporal lattice size - decreases and becomes

negligibly small. The latter is suggestive of a bulk transition unless this behaviour changes on
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very large lattices. In the absence of such large lattice simulations it may be instructive to look

for guidance by conventional analytical techniques.

The existence of a deconfinement phase transition for βa = 0 has been rigorously proven

[7] in the strong coupling limit. In [5] a leading order strong coupling analysis of the action

in (1) was done at finite temperature. It yielded a deconfinement phase transition line in the

(βf , βa) plane, along with a change in order of the phase transition for large βa, as seen in [3].

A mean-field analysis of (1) at zero temperature was done in Ref [8] and the results of [2]

were supported. In view of the results of [6], however, it seems to be necessary to reexamine

the results of Ref [8]. In this note, we have attempted to check how stable the results of Ref

[8] are, both qualitatively and quantitatively, by improving and extending their work to higher

orders in a consistent manner. We find that our results still predict qualitatively the same bulk

phase diagram as in [8] but the location of the endpoint of the transition line is very sensitive

to higher orders and cannot be precisely obtained by our study.

The mean field analysis proceeds by writing the partition function

Z(βf , βa) =

∫

∏

l

dUl exp(−S) (2)

in the axial gauge by fixing all the links in time direction equal to 1. The SU(2) elements are

parametrized as U = uo + iu.σ, for real numbers (u0,u) satisfying u2
0 + u2

1 + u2
2 + u2

3 = 1. The

standard technique [9, 10] of Fourier transforming the measure and the action gives

Z(βf , βa) =

∫

∏

l

dvl

∫

∏

l

dαl

(2πi)4
exp(−S(βf , βa, vl) +

∑

l

(w(α) − αo
l v

o
l − αl.vl)) (3)

where

w(α) = ln

∫

dΩ exp(αouo + α.u). (4)

One then looks for translationally invariant saddle points of (3) of the form [9]

vl = (v,0), αl = (α,0). (5)

For βf < 2 one gets the stable solution v = 0, α = 0 [8]. An expansion of the free

energy around this saddle point gives just the strong coupling expansion. The strong coupling

expansion for the Bhanot-Creutz action has been obtained upto terms of order sixteen by

Dashen et al [11]. In our notation the series for free energy as obtained by them is

FI(βf , βa) = 6 ln b0 + 4(4b6
1 + 9b6

2) + 36(4b10
1 + 9b10

2 )

+36(12b10
1 b2 + 24b6

1b
5
2 + 27b11

2 − 224b12
1 − 1368b6

1b
6
2 − 1359b12

2 )

+4(432b5
1b

5
2b3 + 405b10

2 b4 + 16b6
3 + 25b6

4) (6)

2



and the characters b0 and bj, j=1,2,3,4, are evaluated as

b0 =

∫ 4π

0

dθ

2π
sin2 θ

2
exp

(

−βf (1 − cos
θ

2
) −

2

3
βa(1 − cos θ)

)

, (7)

bj =
1

(j + 1)b0

∫ 4π

0

dθ

2π
sin

θ

2
sin

(j + 1)θ

2
exp

(

−βf (1 − cos
θ

2
) −

2

3
βa(1 − cos θ)

)

. (8)

The characters are now expanded in a series of βf and βa to rewrite FI explicitly as an expansion

in powers of βf , βa. We checked that for our region of interest, the difference between eqn(6)

and the explicit series is negligible. Also the convergence of the strong coupling series was

checked by looking at the series terminated at differet orders. It was found that the strong

coupling series converges very slowly near the transition line, specially for smaller βa values.

For regions of large βa and βf there are stable solutions of (3) for nonzero v, α satisfying

the equations [8]

v =
I2(α)

I1(α)
, (9)

α = βf2v(1 + (d − 2)v2) + βa
16

3
v3(1 + (d − 2)v4), (10)

where I2, I1 are the modified Bessel functions; d, the space-time dimensionality, will be 4 in all

our calculations.

Expanding near this saddle point, the partition function, or equivalently, the free energy

per site, is

FII(βf , βa) =
1

N
ln Z(βf , βa) = Ftree + F1−loop + F2−loop + ... (11)

The first two terms of this series were calculated in Ref [8] and are

Ftree = 3βf (v2 + v4
− 2) + 4βa(v

4 + v8
− 2) + 3

(

ln
2I1(α)

α
− αv

)

, (12)

F1−loop =
3

2

(

ln 2 + 3 ln
α

2v
− ln(βf +

8

3
βav

2)
)

− 3 ln
(

βf (1 + 3v2) +
8

3
βav

2(1 + 3v4)
)

+3K1 (13)

where

K1 = −

∫ π

π

d4p

(2π)4
ln(1 − C1 cos po − C2(cos p1 + cos p2 + cos p3)) (14)

with

C1 = (1 + 3c)−1, C2 = (3 +
1

c
)−1 (15)

and

c =
3βfv2 + 8βav

6

3βf + 8βav2
. (16)
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A comparison of magnitude of Ftree and F1−loop near the phase transition line shows that

they are of the same order of magnitude, and so care should be taken in using (11). The loop

expansion in (11) is justified by saying that the higher loop corrections are suppressed by inverse

powers of α [10]. However, the lower loop terms might have a large contribution from higher

powers of 1/α. Reexpanding Ftree +F1−loop in (11) we found that the term proportional to 1/α

comes with a coefficient ∼ O(10). So for consistency, one should explicitly write the series as

a series in inverse powers of α. Both due to the sensitivity of the location of the endpoint of

the phase transition line, and to check the convergence of the series in 1/α, it is necessary to

evaluate the series up to the term proportional to 1/α. This can be done [14] by a comparison

with the weak coupling perturbation series. Using the weak coupling series of Ref [11], one gets

the following expression for free energy around this saddle point :

FII =
2 + 3r

2

2 + 4r
α −

9

2
ln α + c0 +

c1

α
+ O(

1

α2
) (17)

where r = 4βa/3βf , and the coefficients are

c0 = −
3

2
ln π +

9

2
ln 3 − 3 ln 2 +

(28 + 157r + 102r2)

8(1 + 2r)2
+ 3K2, (18)

c1 = 5.4 −
68 + 1115r + 804r2 + 1692r3

32(1 + 2r)3
−

9(3 + r)

4(1 + 2r)
(19)

and

K2 = −

∫ π

−π

d4p

(2π)4
ln

(

1 −
1

4

3
∑

ν=0

cos pν

)

(20)

≈ .0798. (21)

It is assuring to note that the coefficient of the O(1/α) term is ∼ O(1) - large contributions

from F1−loop and F2−loop cancel to give a well-behaved series. In the following, we will use

eqn(17) for the free energy in this region.

Pure Yang-Mills theory has other saddle point solutions[12] : the “fluxon” configurations,

which are topological excitations corresponding to center of the gauge group. These are stable

for βa > 3
8βf [13]. For the region of large βf , contributions of these maxima are much smaller

than the higher loop terms and so we will neglect these configurations.

Since the term proportional to βa in (1) is blind to the center of the group, such configu-

rations are not suppressed on or near the βf = 0 axis, and will have to be taken into account.

This is done [8] by expanding the partition function in a series in βf , to obtain

FIII(βf , βa) = −6βf (1 −
1

2
βf ) + FSO(3)(βa +

3

8
β2

f ) + O(β4
f ) (22)
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where, up to one loop,

FSO(3)(βa) ≈ 3
(

βa(v
2 + v4

− 2) + ln(I0(α) − I1(α)) +
α

2
−

3

2
αv

)

+
3

2

(

ln 2 + 3 ln(1 + 2v2) − 2 ln(1 + 3v2) + 2K1

)

. (23)

Here K1 is given by eqn(14) with a substitution of c = v4 in (15). α, v are solutions of

v =
1

3

I1(α) − I2(α)

I0(α) − I1(α)
, (24)

α =
4

3
βav(1 + 2v2). (25)

One can check that coefficient of the term proportional to 1/α in FSO(3) is ∼ O(1) - the

loop expansion does not differ substantially from an expansion in 1/α. Figs. 1 and 2 display

a comparison of the Monte Carlo data [2, 6] with the predictions for phase transition lines

obtained by comparing the free energies FI , FII , FIII in the different regions.
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Fig.1 : The points (joined by thin dots) are the Monte Carlo data of [2], with open diamonds

denoting the points where a first order bulk phase transition was ruled out by [6]. The full line

is the curve obtained in [8], thick dotted line is obtained taking upto 10th order in eqn(6).

In Fig.1 the Monte Carlo data are shown along with the curve obtained in [8] by comparing

FI upto 10th order in eqn(6)and FII , FIII upto one loop order in eqns (11), (22). Also shown

5



is the curve obtained by taking the strong coupling series upto 16th order. While taking the

higher order terms in strong coupling expansion changes the location of the endpoint of the

phase transition line drastically, moving it closer to the Monte Carlo data, the location of the

transition line itself changes very little for βa ≥ 1.8.
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Fig.2 : The Monte Carlo data are shown against prediction using 16th order strong coupling

expansion and eqns (17),(22) (full line). The thick dotted line corresponds to 10th order in

strong coupling series.

In Fig.2 we show the prediction for phase transition curve obtained by comparing the

improved mean field series of eqn(17), the strong coupling series upto 16th order and eqn(22).

Also shown is the curve for taking strong coupling series upto 10th order. The same feature,

namely, the extreme sensitivity of the endpoint and robustness of the upper part of the curve

is noted. Also, a comparison of Figs. 1 and 2 reveals that the improvement in the mean field

series leads to a curve that is considerably closer to the Monte Carlo results. The convergence

of the mean field series was checked by checking that on taking just the first two terms in

(17), the transition line is left unchanged. The endpoint of the transition line, however, is still

in disagreement with [6]. Due to the extreme sensitivity of the endpoint, it seems that very

high orders in strong coupling series may be needed in order to pinpoint it precisely. However,

since the strong coupling expansion seems to be well behaved near the phase transition line for

βa ≥ 1.5, the existence of the bulk transition at least upto this region seems to be confirmed.
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The only caveat for this conclusion is the choice of gauge fixing. It is always advisable to

check for possible gauge dependence of a result obtained by gauge fixing. In this case, it is even

more so since the axial gauge constrains the deconfinement order parameter to be nonzero in

region II whereas it is zero (or small) in the strong coupling region I. It would be interesting

to confirm the bulk phase diagram in Fig.2 by using another gauge condition to establish the

bulk transition for βa ∼ 1.5 beyond doubt.
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