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Abstract

A systematic analysis of the L-dependence of the J/ψ-suppression in the
data of the CERN NA38 and NA50 experiments shows that the anomalous
suppression in the 1995 Pb−Pb data is at best a 4σ effect at any of the L-
values for the Pb−Pb data, where L is the geometrical mean path length of
the J/ψ in the colliding nuclei. Possible implications for the 1996 data are
discussed.
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Discovery of Quark-Gluon Plasma (QGP) is one of the most exciting aims of
the current heavy ion collision experiments for a variety of reasons. Unfortunately,
however, the evaporation of QGP is expected to occur in such a short time that es-
tablishing its formation by distinguishing possible hadronic backgrounds to the pro-
posed signals of QGP is a very non-trivial task. Observation of J/ψ-suppression[1]
has been thought of as a particularly promising way of looking for QGP. Here too,
however, nuclear structure function effects[2] and absorption2 of produced J/ψ’s by
the surrounding nucleons[4] or the co-movers[5] are additional competing mecha-
nisms.

The recent announcement[6] by the CERN NA50 experiment of observing once
again anomalous J/ψ-suppression in their more precise 1996 data assumes a lot
of significance in view of their earlier published results[7, 8] where they obtained
anomalous suppression at about 5σ level in the total J/ψ cross section in Lead-
Lead collisions at 158 GeV/A and at about 10σ level in the L-dependence of the
suppression at their largest L-values. Here L is the geometrical mean path length of
J/ψ in the colliding nuclei. It is obtained from the measured transverse energy ET

through its relation with the impact parameter b by performing a weighted average
over possible production points of J/ψ. Proton-nucleus data and nucleus-nucleus
data for light projectiles provides the standard in both the cases with respect to
which the anomalous suppression is measured. As pointed out earlier[9], there are
various theoretical uncertainties in this way of estimating the anomalous suppression.
These range from simple propagation of errors due to the fitting procedure used to
parameterize the usual suppression to the more intricate uncertainties in scaling
some observed cross sections to energies other than the measured. Ref. [9] has
evaluated many of these uncertainties for the anomalous suppression in the total
cross sections and concluded that there was no anomalous suppression at 95 %
confidence level, i.e. it was a less than a 2σ effect. The experimental effect is
claimed to be a lot stronger in the L-dependence of the suppression. In this brief
note, we re-assess its statistical significance and find that the anomalous suppression
at any given L is at most a 4σ effect. We also update the results of Ref. [9] in view
of the changes in the published[8] 1995 data of NA50 compared to their preliminary
results[7].

In its data analysis[8], the NA50 collaboration fits the the (rescaled) pA data
and A′A data to a power-law

Bσ(A) = σ0A
α , (1)

where B is the branching ratio for J/ψ → µ+µ−, and A is the effective mass number,
given by the product of the mass numbers of the (light) projectile, A′, and target
A. The L-dependence of the ratio Rexpt. of the J/ψ cross section to the Drell-Yan
cross section is, on the other hand, fitted by

Rexpt. = C exp(−ρ0σabsL) , (2)

where C is a constant, ρ0 = 0.17 fm−3 is the nuclear matter density and σabs is the
absorption cross section for the J/ψ in nuclear matter. By taking logarithms of both

2 It has been argued[3] that the usual color singlet J/ψ has too small absorption cross section
and it is the color octet pre-resonant cc̄ which contributes to this mechanism. We will not need to
worry here about such a distinction.
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equations, the fits can be thought of as straight line fits. However, the NA50 data
has measurement errors on both L as well as the ratio Rexpt.; the former come from
binning of events in transverse energy. As a consequence, a straightforward least
squares fit is inadequate in this case, unlike equation (1). One, therefore, has[10] to
minimize the χ2, defined by

χ2(a, b) =
N∑

i=1

(yi − a− bxi)
2

σ2
yi + b2σ2

xi

, (3)

where y(x) = a + bx is a straight line fit to a data set of N points (xi, yi), i=1, N ,
with σxi and σyi as the standard deviations in the x and y directions respectively.

The usual statistical procedure[11] to propagate errors is the following. Let us
assume that the expectation values of a set of variables, pi, are known along with
their full covariance matrix, cij. Since we deal here with an f(pi) which is a linear
function of the pi, 〈f(pi)〉 = f(〈pi〉), and the error

(∆f)2 =
∑

ij

cij
∂f

∂pi

∂f

∂pj

. (4)

Note that when the correlations vanish, this reduces to the usual formula for adding
errors in quadrature. Obtaining the covariance of a and b in a linear fit is simple but
it could be numerically tricky in the case of χ2-minimization for equation (3). One
can overcome this by a simple observation3. Making a transformation x′ = x+ x0,
changes the intercept from a to a′ = a + bx0. Thus getting an error estimate on
the parameter a′ for the shifted data set under this transformation is the same as
obtaining the ∆y(x0) including the full covariance matrix. We use this method
to obtain ∆y at each point x0 by defining it as usual as the variation in a′ which
produces a change in χ2

min by one.
Using equation (1) to fit the latest[8] pA data, one obtains

σ0 = 2.28(1 ± 0.07) nb, α = 0.91 ± 0.02, Cov(log σ0, α) = −0.0013 , (5)

leading to a prediction Bσ(Pb−Pb) = 0.88(1 ± 0.13) nb. The measured point[8],
Bσ(Pb−Pb) = 0.67± 0.05 nb, is, therefore, within 2σ of the extrapolation. Adding
further the dataset with light nuclei projectiles by assuming that no other source
of suppression than the one operative in pA collisions exists in those cases too, one
obtains,

σ0 = 2.26(1 ± 0.06) nb, α = 0.914 ± 0.013, Cov(log σ0, α) = −0.0007 , (6)

leading to a prediction for the Pb−Pb cross section as 0.904±0.078 nb, which again
is within 2σ of the measured cross section. The smaller errors on the pA and A′A
data[8], thus result in predictions with slightly better error estimates compared to
the original results of Ref. [9]. However, the final measured Pb−Pb cross section
has also moved up a little so that the measured cross section lies within 2σ of the
prediction irrespective of the inclusion or exclusion of the light nuclei A′A data in
the fit.

3I thank Ruedi Burkhalter for pointing this out to me.
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As mentioned earlier, the L-dependence of the J/ψ cross section yielded[8] a
statistically lot more significant result than the 5σ for the case discussed above.
Using equation (2) in this case along with the χ2 as defined in equation(3), we find

C = 45.2(1 ± 0.13), σabs = 6.64 ± 1.11 mb . (7)

If we set, by hand, all errors on L to zero, then we get

C = 43.3(1 ± 0.07), σabs = 6.28 ± 0.66 mb , (8)

which is in excellent agreement with the results in [8].
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Figure 1: The ratio of J/ψ cross section and the Drell-Yan cross section vs. L in
fm. The diamonds are NA38 data, shown along with the straight line fit, a 2σ band
around it, and the NA50 data (squares) with 2σ errors on them.

Fig. 1 compares the fit (7) with the NA38 pA and S−U data. A 2σ band around
the fit is shown along with the NA50 Pb−Pb data with 2σ error at each point. The
band includes the effects of the full covariance matrix for the fit parameters in

3



10

100

2 3 4 5 6 7 8 9 10

R
  
  

e
x
p
t.

L(fm)

Figure 2: Same as Fig. 1 but with a 4σ band around the fit and the NA50 data
with 4σ errors on them.
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equation (7) using the trick mentioned above. Unlike the total cross section data,
there is a now clear deviation of the Pb−Pb data from the theoretical prediction at
a 95 % confidence level, especially for the two points at the largest L-values. They
are compatible with the fit only at a 4σ level, as shown in Fig. 2. Of course, in
both figures one clearly sees that all the deviations are in the same direction, which
adds further weightage to the observation of anomalous behavior. Nevertheless,
our results suggest a much less stronger result, if one goes by the usual wisdom of
requiring a 5σ effect for a new discovery.

It may not be out of place to comment on 1) the origin of our different result
vis-a-vis those in Ref. [8] and 2) the implications for the preliminary 1996 data.
In both the cases, discussed above, Ref. [8] compares the ratio of the measured
value to the theoretical prediction with unity whereas we compare the difference of
the measured and theoretical cross sections. Both procedures will give same result
provided the theoretical prediction has no errors at all, which is what seems to be
assumed in Ref. [8]. Since the theoretical prediction has big errors, which stem in
one case from large extrapolation and in another case from the fact that the fitted
experimental data has errors in both x and y directions, we think our procedure is
more appropriate. Of course, it is really the neglecting of the propagated errors
on the predictions which gives rise to a larger result for the deviations, i.e., larger
apparent anomalous suppression, than what the data warrant. The preliminary 1996
data[6] are mostly in agreement with the 1995 data and may be slightly higher up
for the larger ET or equivalently larger L. Since neither the pA nor the S−U data
have changed, none of the fits reported here change; if the data were available using
the same rescaling as in Ref. [8], one could directly put them on Figs. 1 and 2. An
indirect comparison via the transverse energy plots of Ref. [6] yields a preliminary
conclusion on the 1996 data that the anomalous suppression at any L will unlikely
be more than 4σ for them as well. The same will also hold true for any discontinuity
in the data, if present.

In conclusion, we have shown that the spread in L, which arises due to the pres-
ence of many events in a given in ET bin with varying L, causes it to be known less
precisely than assumed previously. Taking into account this inevitable imprecision
makes the theoretical prediction less accurate due to error propagation. However,
the L-dependence of the J/ψ cross section shows a definite anomalous suppression
at the 95 % confidence level, while the A′A-dependence of the cross section is not
anomalous at that level. On the other hand, the anomalous suppression at each L
is at best a 4σ effect. Better data for lighter nuclei in finer bins of ET are needed
to improve the significance of the Pb−Pb results, as the dominant errors are in the
theoretical predictions.
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