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Exact chiral invariance at finite density on the lattice

R. V. Gavai∗† and Sayantan Sharma‡

Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld, Germany

We propose a lattice action for the overlap Dirac matrix with nonzero chemical potential which
is shown to preserve the chiral invariance on the lattice exactly. We further demonstrate it to
arise from the Domain wall by letting the chemical potential count only the physically relevant wall
modes.
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I. INTRODUCTION

Our world of strongly interacting particles has two light quarks with masses much smaller than ΛQCD, the scale of
the corresponding theory, Quantum Chromo Dynamics (QCD). While the mass of the strange quark is comparable
to this scale, other quarks are heavy. It has been argued on the basis of the corresponding symmetries of the theory,
called the chiral symmetries, that QCD may have a critical point in the temperature (T )-baryon number density (or
equivalently, the baryonic chemical potential µB). Theoretical [1–3] as well as experimental searches for locating it
are currently going on [4]. Its discovery would be exciting in many ways. Apart from becoming a new milestone in
our understanding of the nature of the strongly interacting matter, it would also be unique compared to the other
known phase diagrams in the way theory and experiment compliment in locating the critical point in it.
Due to the essentially non-perturbative nature of the problem, theoretical efforts based on a first principles approach

employ lattice QCD techniques which have made successful predictions for many hadronic quantities such as the heavy
meson decay constants. Indeed, it has also been very successful in application at finite temperature, leading to several
interesting results for the RHIC and other heavy ion experiments [5]. But its foray in the finite density domain has
been hampered by serious conceptual problems. In spite of the so-called ‘fermion sign problem’, which refers to the
complex measure of the theory for nonzero chemical potential, many attempts have been made to explore nonzero
µB, some claiming success [1, 2, 6] in locating it, while others arguing for a lack [7] of a critical point. Most of these
computations use the staggered quarks, primarily since the critical point is thought to be related to chiral symmetry.
Staggered quarks have a U(1)V × U(1)A chiral symmetry on the lattice, and a corresponding order parameter, the
chiral condensate. Studying its variation with T or µB, one can look for a chiral phase transition. The critical point
would then just be an end point of a line of first order phase transitions.
Staggered quarks, however, i) break the flavour and spin symmetry on the lattice, ii) have no flavour singlet axial

symmetry and iii) have a stronger [8] ‘rooting problem’ at nonzero µB. Since the QCD critical point is expected [9]
to exist if only if one has two light flavours, and the flavour singlet anomaly is mildly temperature dependent [10],
it appears desirable to improve upon them. The overlap Dirac fermions [11], or the closely related domain wall
fermions [12], offer such a possibility to improve. Indeed, the overlap quarks have all the symmetries of the continuum
QCD and also have a an index theorem [13] as well, raising the hope that even the anomaly effects could be well
treated. Unfortunately, adding the chemical potential turns out to be nontrivial for them. Bloch and Wettig [14]
made a proposal to do so but it violates [15] the exact chiral invariance on lattice as does the simple addition [16] of
a baryon number term. In this letter we propose an alternative which does have exact chiral invariance on lattice for
any value of the lattice spacing and any chemical potential. It therefore can permit, in principle, the task of mapping
out the T -µB phase diagram, assuming that the algorithmic developments can handle the fermion sign problem well.
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II. FORMALISM

The massless continuum QCD action can be written in a form where the chiral symmetry is manifest in terms of
the fields appearing in the action:

SQCD =

∫

d3x dτ [ψ̄ 6Dψ − FµνFµν/4]

=

∫

d3x dτ [
∑

i=L,R

(ψ̄i 6Dψi)− FµνFµν/4] , (1)

where ψL = (1 − γ5)ψ/2 and ψR = (1 + γ5)ψ/2 with ψ̄L = ψ̄(1 + γ5)/2 and ψ̄R = ψ̄(1 − γ5)/2. The second term is
the action for gluons which will play no role in our discussion below. We assume below that some usual convenient
form has been chosen. Adding the canonical µN to the first line for investigating finite density effects is the same as
adding µψ̄iγ

4ψi to the second line, leaving the manifest chiral symmetry intact. We propose that addition of chemical
potential on the lattice be done in this explicit chiral symmetry preserving manner as well, opting therefore for the
overlap quarks.
The overlap quarks have all the symmetries of the continuum QCD but also have a nonlocal action:

SF =
∑

n,m

ψ̄n aDov,nm ψm , (2)

where the sum over n and m runs over all the space-time lattice sites, a is the lattice spacing, and the overlap Dirac
matrix Dov is defined by aDov = 1+ γ5sgn(γ5DW ). sgn denotes the sign function. DW is the standard Wilson-Dirac
matrix on the lattice but with a negative mass term M ∈ (0, 2):

DW (x, y) = (4 −M)δx,y −
4

∑

i=1

[U †
i (x − î)δx−î,y

1 + γi
2

+
1− γi

2
Ui(x)δx+î,y] . (3)

The overlap Dirac matrix satisfies Ginsparg-Wilson relation [17], {γ5, D} = aDγ5D and has exact chiral symmetry
on lattice. The corresponding infinitesimal chiral transformations [18] are

δψ = iαγ5(1−
a

2
Dov)ψ and δψ̄ = iαψ̄(1−

a

2
Dov)γ5 . (4)

An alternate set of transformations, differing by terms of O(a) is

δψ = iαγ5(1− aDov)ψ and δψ̄ = iαψ̄γ5 . (5)

Since one needs to write chiral projectors on the lattice to mimic eq.(1), we focus on eq.(5). The generators of the
transformation in eq.(5) satisfy γ25 = 1 and γ̂25 ≡ [γ5(1 − aDov)]

2 = 1. On the other hand, the corresponding ones in
eq.(4) do not square to unity. One therefore defines the left-right projections for quark fields as ψL = (1 − γ̂5)ψ/2
and ψR = (1 + γ̂5)ψ/2, leaving the antiquark field decomposition as in the continuum above. Such a decomposition
is commonly done for writing chiral gauge theories [19] on the lattice and is possible since ψ and ψ̄ are independent
fields in the Euclidean field theory. In analogy with the eq.(1) of continuum QCD, the action for the overlap quarks
in presence of nonzero chemical potential may now be written down as

S =
∑

n

∑

i=L,R

[ψ̄n,i(aDov + aµγ4)ψn,i] (6)

=
∑

n

ψ̄n[(1 − aµγ4/2)aDov + aµγ4]ψn . (7)

It is easy to verify that i) this action is invariant under the chiral transformation eq.(5) for all values of aµ and a
and ii) it reproduces the continuum action in the limit of a→ 0 with µ→ µ/M scaling. In order to obtain the order
parameter for checking if the symmetry is spontaneously broken, one usually adds a linear breaking term. Adding a
quark mass term, am(ψ̄RψL + ψ̄LψR), one obtains the order parameter valid for all T and µ on the lattice by taking
a derivative of the log of the partition function with respect to am as,

〈ψ̄ψ〉 = lim
m→0

lim
V→∞

〈Tr
(1− aDov/2)

[aDov + (am+ aµγ4)(1− aDov/2)]
〉 . (8)
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The only real eigenvalues of aDov are 0 or 2, with only the former contributing to the order parameter. Defining
a matrix Kov = Dov(1 − aDov/2)

−1, such that {γ5, Kov} = 0, the order parameter can be written in a form more
analogous to the continuum :

〈ψ̄ψ〉 = 〈Tr
1

aKov + am+ aµγ4
〉 . (9)

Although the discussion above is for a single flavour of quark, i.e, U(1)L × U(1)R symmetry, its generalization to
Nf flavours is straightforward. Indeed, since it relies only on the spin-structure, the flavour index as well as the
corresponding generator matrices just carry through.

III. DOMAIN WALL FERMIONS

The action in eq.(7) was obtained by demanding the left-right symmetry to be explicit. A physically more intuitive
way to arrive it is in the domain wall formalism. Since only the massless domain wall modes are physical although
there are many massive unphysical modes, the appropriate way to introduce µ is as a Lagrange multiplier for the
number of these massless modes. The domain wall action of [20] then for nonzero chemical potential, µ, is

S =
∑

x,x′

N5
∑

s,s′=1

a4ψ̄(x, s)
[

−δx,x′ (P−δs′,s+1 + P+δs′,s−1) + (
a5
a
DW (x, x′) + δx,x′)δs,s′ (10)

+ aµ γ4 δx,x′ (δs,1δs′,1P− + P+δs,N5
δs′,N5

) + am δx,x′ (δs,1δs′,N5
P+ + P−δs,N5

δs′,1)]ψ(x
′, s′) ,

where P± = (1±γ5)/2 and N5 and a5 are the number of sites and the lattice spacing in the fifth direction respectively.
The physically relevant 4D massless fermion field is identified with the fermion fields at the boundaries of the fifth
dimension as,

ψ = P−ψ1 + P+ψN5
, ψ̄ = ψ̄1P+ + ψ̄N5

P− . (11)

It is convenient to visualize the five dimensional action in terms of the fields ηi localized on four dimensional branes
existing at each site i along the fifth dimension, as in [21]. Defining a transfer matrix, T = (1 + a5HWP+)

−1(1 −
a5HWP−), between pairs of neighboring branes, where HW = γ5DW , the five dimensional action can be rewritten in
terms of these fields as,

S =
∑

x,s

[

η̄1

(

P− −maP+ + aµ (a5HWP− − 1)
−1
γ4P−

)

η1 − η̄N5
T−1

(

P+ −maP− − aµ (a5HWP+ + 1)
−1
γ4P+

)

η1

− η̄1T
−1η2 +

N5−1
∑

s=2

(

η̄sηs − η̄sT
−1ηs+1

)

+ η̄N5
ηN5

]

. (12)

The fermion fields ηi can be integrated out successively, resulting in a partition function of the form,

Z5D ≡

∫

DUe−SG J detD(5)(ma, aµ) , (13)

where J is the Jacobian for the transformation from ψ-fields to η-fields and the five dimensional determinant D(5) is
given by

D(5) = det
[

P− −maP+ + aµ (a5HWP− − 1)
−1
γ4P− − T−N5

(

P+ −maP− − aµ (a5HWP+ + 1)
−1

)

γ4P+

]

. (14)

In order to obtain the overlap matrix, the contribution of the bulk five dimensional modes needs to be removed from
the partition function. Following [22], we introduce pseudo-fermions and obtain the partition function of interest as

ZQCD(T, µ) =

∫

DU e−SG
detD(5)(ma, aµ)

detD(5)(ma = 1, aµ = 0)
(15)

where detD(5)(ma = 1, aµ = 0) is the contribution from the pseudo-fermions. Taking first a5 → 0 limit and then
N5 → ∞, the ratios of determinants turns out to be det[Dov + (1 − Dov/2)(ma + aµγ4)], where the dimensional µ
and m have been scaled by a factor of M to match with the continuum limit. A little algebra shows that γ4 can be
commuted through in the determinant above to yield the same overlap matrix of eq.(7) with exact chiral symmetry
on the lattice.
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IV. DISCUSSION

The action in eq.(7) leads to an overlap fermion determinant which is identical to that in the recent work [23] with
fermionic sources in the overlap formalism of [24]. The main difference is, however, in the necessity of sources in [23]
to define the chiral symmetry. Indeed, the chiral symmetry transformation there is local, defined as rotation of the
sources while our eq. (5) is nonlocal, defined as the rotation of quark fields. The left-right symmetry is in-built in the
formalism there whereas we needed to introduce the left-right projections in form of L- and R-fields to do so. Our
new fermion matrix is linear in µB , similar to an earlier proposal by us [16]. This leads us to expect it to have the
same good as well as bad properties. In particular, only its first derivative with respect to aµB is nonzero, all the rest
being zero. As a consequence, the coefficients of the Taylor expansion of the baryonic susceptibility in µB , needed
in estimating the location of the QCD critical point simplify considerably. On the other hand, the corresponding
free theory itself has a µ2

B-divergence in the baryonic susceptibility in the continuum limit. It is easy to see that
the successful prescription [25] for local actions of introducing µB as the fourth component of a constant Abelian
gauge field to remove the divergence, will not work in this case since the nonlocal overlap Dirac matrix intertwines all
four momentum components in a covariant manner. We have recently shown in case of the staggered fermions that
the free theory divergence can be subtracted [26] out successfully. In particular, the resultant ratios of the Taylor
coefficients appear to be in good agreement with those where the subtraction is effected analytically by a change of
action. While further investigations of the finite cut-off and finite volume effects are needed to establish it firmly, it
may be hoped that a similar subtraction scheme will work for our above overlap quarks as well. Of course, it would be
clearly desirable to modify even the action (7), without loss of its chiral symmetry, such that it has no µ2

B-divergences.
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