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A threshold induced phase transition in the kinetic exchange models
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We study an ideal-gas-like model where the particles exchange energy stochastically, through
energy conserving scattering processes, which take place if and only if at least one of the two
particles has energy below a certain energy threshold (interactions are initiated by such low energy
particles). This model has an intriguing phase transition in the sense that there is a critical value
of the energy threshold, below which the number of particles in the steady state goes to zero, and
above which the average number of particles in the steady state is non-zero. This phase transition is
associated with standard features like “critical slowing down” and non-trivial values of some critical
exponents characterizing the variation of thermodynamic quantities near the threshold energy. The
features are exhibited not only in the mean field version but also in the lattice versions.
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I. INTRODUCTION

The kinetic theory of gases had played a pivotal role in
the development of statistical mechanics, which is more
than a century old. This theory describes a gas as a col-
lection of a large number of particles (atoms or molecules)
which are constantly in random motion, and these rapidly
moving particles constantly collide with each other and
exchange energy. In the ideal gas, this energy is only ki-
netic. Recently physicists have been studying two-body
kinetic exchange models in the socio-economic contexts
in the rapidly growing interdisciplinary field of “Socio-
physics” Iﬂ)ﬂ] and “Econophysics” [2]. The two-body ex-
change dynamics has been developed in the context of
modeling income, money or wealth distributions in a so-
ciety , and modeling opinion formation in the so-
ciety ﬂ], analogous to the kinetic theory model of
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ideal gases. These studies have given deeper insights and
different perspectives in the simple physics of two body
kinetic exchange dynamics. In this context of wealth ex-
change processes, Iglesias et al. , ] had considered
a model for the economy where the poorest in the so-
ciety (atom with least energy in the gas) at any stage
takes the initiative to go for a trade (random wealth /
energy exchange) with anyone else. Interestingly, in the
steady state, one obtained a self-organized poverty line,
below which none could be found and above which, a
standard exponential decay of the distribution (Gibbs)
was obtained.

Here, we study a model where N particles, interact
among themselves through two-body energy (z) conserv-
ing stochastic scatterings with at least one of the parti-
cles having energy below a threshold 6 (poverty line in
the equivalent economic model). The states of particles
are characterized by the energy {a;}, ¢ = 1,2,..., N,
such that z; > 0, Vi and the total energy F = >, z;
is conserved (= N here, such that the average energy of
the system £ = E/N = 1). The evolution of the system
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is carried out according to the following dynamics:
xi</ = E(If + ),

zj = (1= e)(a7 +25), (1)
where 2~ < 0 (threshold energy or “ poverty line”) and
€ (0 < e < 1) is a stochastic variable, changing with
time (scattering). It can be noticed that, the quantity
is conserved during each collision: =" + 2/ = 7 + ;.
The question of interest is: “What is the steady state
distribution p(z) of energy = in such systems?”

In the standard case, when the threshold energy goes to
infinity (f — o0), we know that the steady state energy
distribution will be the exponential Gibbs distribution
(p(x) ~ exp (—x)) |3]. However, when a finite threshold
energy is introduced (6 > 0), several new and intriguing
features appear. These features are exhibited not only
in the mean field version (with infinite-range interaction,
pairs of particles randomly chosen from N particles) but
also in the lattice versions (with nearest neighbor inter-
actions, i.e. exchanges between the nearest neighbors on
lattice sites).

II. MODEL SIMULATIONS AND RESULTS
A. The Model

We simulate a system of N particles (agents). At any
time t, we select randomly a particle ¢. If the energy
of the particle is below a prescribed threshold energy 6,
then it collides with any other random particle j (in the
mean field model) which can have any energy whatsoever,
and the two particles will exchange energy according to
the Gibbs-Boltzmann dynamics of Eq. ([I). After each
such successful collision, the time is incremented by unity.
The dynamics will continue for an indefinite period, un-
less there is no particle left below the threshold energy,
in which case the dynamics will freeze. If the dynamics
gets frozen (when x; > 6 for all i), we employ a ‘mild’
perturbation such that a randomly chosen particle will be
dropped to the lower level (< ) by giving up its energy
to anyone else (to ensure total energy conservation). It
can be shown that the addition of this perturbation does
not alter the relevant quantities for a thermodynamically
large systems, and simply ensures ergodicity in the sys-
tem. After sufficiently large time t > 7, a steady state
is reached when the energy distribution p(z) (and also
other average quantities) do not change with time. We
start with different initial random configurations, where
the states of particles are characterized by the energies
{z;}, i = 1,2,..., N, which are drawn randomly from
an uniform distribution such that x; > 0, Vi and the
average energy E = . x;/N is set to unity. We find
the system to be ergodic (the steady state distribution
p(z) is independent of the initial conditions {z;}), and
we take steady state averages over all such independent
initial conditions to evaluate the quantities of interest.

p(x)

FIG. 1. (Color online) Energy distribution p(x) in the steady
state (t > 7), for different 6 values. Th inset shows semi-log
plot of the energy distribution. The tail of the distribution
is Gibbs-like (N = 10°; Mean field model with average taken
over many independent initial conditions).

We study mainly three cases (a) mean field (or infinite
range) case where 7 and j in Eq. (I]) can represent any two
particles/agents in the system; (b) one dimensional case
where j = ¢ £ 1 along a chain and (c) two dimensional
case, where j = i £ § where § represents neighbors of 7.
In our studies we consider a 2D-square lattice.

We observe that for finite values of the energy thresh-
old 6, the steady state energy distribution is no longer
the simple Gibbs-Boltzmann distribution. We also find

that O (= foep(x)dx), the average number of particles
below the threshold energy in the steady state, is zero
for @ values below or at a critical threshold energy 6.,
and for 6 > 6., O is non-zero. The steady state value of
O, the average number of particles below the threshold
energy 6 is seen to act like an “order parameter” of the
system. We study the relaxation dynamics in the sys-
tem: the relaxation of O(t) to the steady state value of
O (= 0(8) for t > 7(6), the “relaxation time”). We find
7(0) grows as 6 approaches 6., and eventually diverges
at f.. The details of the results are given below.

B. Results: Mean field model

In the mean field (long range) model, we first look
for any particle (i) with energy z; < € and then this
particle is allowed to interact with any other particle (5),
following Eq. (). This continues until either the steady
state, or a frozen state with z; > 6 for all i is reached.
In the case of frozen state, as mentioned earlier, any one
particle is picked up randomly and it loses its energy to
any other (randomly chosen) particle, and goes below the
threshold #. This induces further dynamics. Eventually
steady state is reached. We study this steady state energy
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FIG. 2. (Color online) Simulation results for the variation
of O, the average number of particles below the threshold
energy 6 in the steady state (¢t > 7), against threshold energy
0. (Inset)(a) Shows the results at O — 0 for 8 = 0.59(< 6.)
as N — oo; (b) Shows scaling fit (0 — 0.)” with 8 ~ 0.97.
(N = 10%; Mean field model with average taken over many
independent initial conditions).

distribution p(z) (see Fig. [ ), and the order parameter
0= foep(:zr)d:r (see Fig. [), showing a “phase transition”
at 0. ~ 0.607+0.001. A power law fit O ~ (0 —6..)” gives
8 ~0.97+0.01.

We also studied the relaxation behavior of O. At 6 =
6., the O(t) variation fits well with t=°; § ~ 0.93 + 0.01
(see Fig. B]). The relaxation time 7 is estimated numer-
ically from the time value at which O first touches the
steady state value O(6) within a pre-assigned error limit.
We find diverging growth of relaxation time 7 near 6 = 6,
(see Fig. 4), showing ‘critical slowing down’ at the criti-
cal value 6.. The values of exponent z for the divergence
in 7 ~ |6 — 0.]7% have been estimated (for both 6 > 6,
and 6 < 6.). For the mean-field model, the fitting value
for exponent z ~ 0.83 + 0.01.

We have also studied the universality of this behavior
by generalizing the dynamics in Eq. () to

</

_ <
T, = ear; + €x;,

x; =(1—-e)zs + (1 —e)xy, (2)

where e¢; and ey are the random stochastic variables
within the range [0,1]. The critical point 6. shifts to
0. ~0.69 (6. ~ 0.61 for e;= €2 = € ). The transition be-
haviour is seen to be universal near the critical point 6.,
but the critical point depends specifically on the model

(see Fig. [)).

C. Results: One dimensional model

In one dimensional lattice version, the particles are ar-
ranged on a periodic chain. At any time ¢, we randomly
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FIG. 3. (Color online) Variations of O versus time ¢, shown
for different 6 values. At critical value 0., order parameter
follows a power law decays with exponent 6 ~ 0.93 (shown
by the solid line). (N = 107; Mean field model with average
taken over many independent initial conditions).
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FIG. 4. (Color online) Variation of 7 versus 6. (Inset) Scaling
fit 7 ~ |0 — 0] 7%, with exponent z ~ 0.83 (Mean field case;
N =10°).

select a lattice site . If the energy of the corresponding
particle is below a prescribed threshold energy 6, then
it collides with any one randomly chosen nearest neigh-
bors j(= i & 1) which can have any energy whatsoever,
and the two particles will exchange energy according to
Eq. [@). After each such successful collision, the time
is incremented by unity. This process is continued until
steady state is reached. The steady state order param-
eter O variations against theshold 8 is shown in Fig. [6]
with exponent 8 ~ 0.41 4+ 0.02 and 6. ~ 0.810 £ 0.001.
The fitting value for exponent z turn out to be around
1.9+ 0.05 (see Fig. [M). Also we find § ~ 0.19 £ 0.01 (see
Fig.8). It may be noted that a recent study of a related
chain model with such energy cut-off for kinetics, where
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FIG. 5. (Color online) Variation of steady state order param-
eter O(0) against 6 for dynamics following Eq. () (denoted
by red squares) and Eq. ([2)) (denoted by green circles). (Inset)
Shows O vs. (0 — 6.) for both cases. (N = 10°; Mean field

case).
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FIG. 7. (Color online) Relaxation time 7 as a funtion of
0. Clearly 7 diverges as § — 6.. (Inset) Numerical fit to
T~ 10 — 0|77, with 2 ~ 1.9. (N = 10*, 1D case).
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FIG. 6. (Color online) Variation of O, the average number
of particles below the threshold energy 6 in the steady state
(t > 7), against threshold energy 6, following dynamics of
Eq. (@) for 1D. (N = 10*). (Inset) Shows scaling fit (6 — 6.)”
with g~ 0.41.

the effective temperature is varied, has been studied ﬂﬂ]
Though the behavior is similar, the effective critical be-
havior (exponent values) seem to be quite different.

D. Results: Two dimensional model

For the 2D lattice version, the particles are arranged
on a square lattice, and this time one of the four near-
est neighbors of ¢ is chosen randomly as particle j. If
the energy of the particle is below a prescribed thresh-
old energy 6, then it collides with any one randomly
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FIG. 8. (Color online) Variation of O(t) versus ¢ for different
6 values for 1D case (N = 10%).

chosen nearest neighbor j which can have any energy
whatsoever, and the two particles will exchange energy
according to Eq. (). After each such successful colli-
sion, the time is incremented by unity. This process
is continued until steady state is reached. Variation of
the steady state order parameter O against theshold 6
is shown in Fig. @ with exponent § ~ 0.67 &+ 0.01 and
0. ~ 0.675 + 0.005. Also, we find z ~ 1.2 + 0.01 (see
Fig. [[0) and 0 ~ 0.43 £ 0.02 (see Fig. [IT)).

All these estimated values of the critical exponents (3,
z, and § are summarized in Table [l



This Model

Manna Model

D
B|2D
MF

0.41 £ 0.02
0.67 £+ 0.01
0.97 £ 0.01

0.382 + 0.019
0.639 £+ 0.009
1

1D
z 2D
MF

1.9 £ 0.05
1.2 £0.01
0.83 £ 0.01

1.876 + 0.135
1.22 £ 0.029
1

1D
42D

0.19 £ 0.01
0.43 £ 0.02

0.141 £ 0.024
0.419 + 0.015

MF|0.93 £ 0.01 1

TABLE I. Comparison of critical exponents of this model with
those of the Manna model [18§].
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FIG. 9. (Color online) Variation of O, the average number
of particles below the threshold energy 6 in the steady state
(t > 1), against threshold energy 6, following dynamics of
Eq. @) for 2D case. The simulation is done for lattice size
1000 x 1000. (Inset) Shows scaling fit (§—6.)® with 3 ~ 0.67.

III. FINITE SIZE EFFECT

We have also studied the time variation of O at dif-
ferent sizes (N) at 6.. Plots of O(¢)t° as a function of
t/N° for different values of the system size N (at critical
point) are expected to collapse on a single curve. How-
ever, as we have used a special dynamics which never
allows the system to fall in the absorbing state, in this
case the activity saturates at a small steady value (see
Fig. [2)) instead of showing the finite size cut-off.

To study finite size effects in the decay of activity at
the critical point, one has to remove the perturbation and
allow the system to be trapped in the absorbing states.
Using this dynamics, we have studied the effects of finite
system size. Fig. [[2 show the decay of O(t) with ¢ at the
critical point for MF, 1D, and 2D systems, respectively.
The insets in the corresponding figures show the data
collapse. The fitting values of the exponent o are o =
0.53 £ 0.02,1.53 + 0.05 and 1.55 £ 0.05 for MF, 1D, and
2D respectively, with ¢ values given in Table-I.
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FIG. 10. (Color online) Relaxation time (7) diverges as 6

approches 6. from both sides. (Inset) Numerical fit to 7 ~
|0 — 0,77 for 6 < 6. ( z~1.240.01). (Simulations for 100
x 100 system, 2D case).
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FIG. 11. (Color online) Variation of O(t) versus time ¢, shown
for different 0 values for 2D case. At critical value 6., order
parameter follows a power law decay with exponent § ~ 0.43.
The simulation is done for lattice size 500 x 500.

IV. SUMMARY & DISCUSSION

Inspired by the success of the kinetic exchange models
of market dynamics (see e.g., [2-4]) and the observation
that the poor or economically backwards in the society
take major initiative in the market dynamics (see e.g.,
[15, [16] and also [19, [20]), we consider an ideal-gas-like
model of gas (or market) where at least one of the parti-
cles (or agents) has energy (money) x less than a thresh-
old (poverty line) value 6 takes the initiative to scatter
(trade) with any other particle (agent) in the system,
following energy (money) conserving random processes
(following Eq. (). For # — oo, the model reduces to
the kinetic model of ideal gas with Gibbs distribution.
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FIG. 12. Study of finite size effect: The variation of O(t), versus ¢t at 6 = 0. for systems of different sizes N are shown. The
plots with bare symbols correspond to the case when there is no absorbing state and those with symbols connected by solid
lines correspond to the presence of absorbing state. The Figs. (a), (b) and (c) correspond to MF, 1D and 2D respectively.
Inset: The plot of Ot® vs. t/N? in presence of absorbing state, for different system size N collapse onto a single curve for
0 =0.93,0.19, and 0.43 and o = 0.53, 1.53, and 1.55 for MF, 1D, and 2D respectively.

The steady state is found to be ergodic (steady state re-
sults are independent of initial conditions). The pertur-
bation employed in the frozen cases (z; > 6 for all i) also
does not affect significantly the thermodynamic quanti-
ties (e.g., the steady state value of O for 6 < 6. goes to
0 with 1/N, as can be seen from inset (a) of Fig. [2).

In general, we find that the steady state distribution
p(z) (see Fig. [ for the mean field, where each parti-
cle can interact irrespective of their distance from the
active particle or agent having energy or money less
than threshold or poverty line #) differs in form signif-
icantly from the Gibb’s distribution, for finite values of
6. The order parameter O, giving the average fraction
of particles (or agents) having energy (or money) be-
low 6 shows a phase transition behavior: O = 0 for
0 < 6. and O # 0 for § > 6. (see Fig. 2 for mean
field, Fig. @ for 1D, and Fig. @ for 2D, respectively).
The critical values are given by 6. ~ 0.61,0.81,0.68 for
mean field, 1D and 2D cases, respectively. The varia-
tion of O near 6. is quite universal (see Fig. [B). We find
O ~ (0 —6,)? with B ~ 0.97,0.41,0.67 for mean field, 1D
and 2D cases, respectively. We also find that the relax-
ation time 7 diverges strongly near 6, as 7 ~ (§ — 6,)~*
with z ~ 0.83,1.9,1.2 for mean field, 1D and 2D cases,
respectively. Finally, at 6 = 6,, O(t) ~ t=° where
6 ~ 0.93,0.19,0.43 for mean field, 1D and 2D cases, re-
spectively (see Table[).

It might be mentioned here that the above exponent
values are indeed very close to those of the Manna Uni-
versality (MU) class ([18]; see also |21}, 122]) in mean field,
1D, 2D cases: Our estimates for 8 ~ 0.97, 0.41 and 0.67
for mean field, 1D and 2D cases, respectively, are quite
close to 8 ~ 1, 0.38 and 0.64 for corresponding MU cases;
6 ~0.93, 0.19 and 0.43 for mean field, 1D and 2D cases,

are also close to 0 ~ 1, 0.14 and 0.42 in the correspond-
ing MU cases. However, it may be noted that signifi-
cant differences in the above estimates do exist. Also,
z ~ 0.83,1.9,1.2 for mean field, 1D and 2D cases might
be compared with z ~ 1,1.87,1.22 in the corresponding
MU cases. These discrepancies could be due to finite size
effect, and in that case the critical behavior of our model
would belong to the MU class. As one can see, the esti-
mated values of the exponents /3, § and z fit reasonably
with the scaling relation 6 = §/z within our limits of
accuracy. In this connection, it is worth mentioning that
the violation of the above scaling relation has also been
observed [23], though such discrepancies seem to get re-
moved if one uses all sample averages instead of averages
over surviving samples [24]. In our case, however, this
scaling relation seems to hold, as our simulation results
correspond to all sample averages.

In summary, when the energy threshold 6 is introduced
in the kinetic theory of ideal gas such that the stochastic
energy conserving scatterings between any two particles
can take place only when one has energy less than 6, the
gas system shows an intriguing dynamic phase transition
at 0 = 6., having the exponent values in the mean field
(long range scattering exchange), one dimension and two
dimension, as estimated here using Monte Carlo simula-
tion, are given in Table I.
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