Renormalized Polyakov loop in the Fixed Scale Approach

Rajiv V. Gavai
T. I. F. R., Mumbai, India

Renormalized Polyakov loop in the Fixed Scale Approach

Rajiv V. Gavai
T. I. F. R., Mumbai, India

Introduction

Results

Summary

Introduction

- Polyakov loop $L(\vec{x})$ — Deconfinement Order Parameter (Spontaneous Breaking of $Z(N)$) (McLerran & Svetitsky, PRD 1981)

- One hopes to construct effective theories (Pisarski, PRD 2006) of L for investigations of deconfinement phase transitions and many models employ L.

Introduction

- Polyakov loop \(L(\vec{x}) \) — Deconfinement Order Parameter (Spontaneous Breaking of \(Z(N) \)) (McLerran & Svetitsky, PRD 1981)

- One hopes to construct effective theories (Pisarski, PRD 2006) of \(L \) for investigations of deconfinement phase transitions and many models employ \(L \).

- On an Euclidean \(N_\sigma^3 \times N_\tau \) lattice \(L(\vec{x}) \) is defined at a site \(\vec{x} \) as
 \[
 L(\vec{x}) = \frac{1}{N_c} \text{Tr} \prod_{x_0=1}^{N_\tau} U^4(\vec{x}, x_0).
 \]

- No SSB on finite lattices/volumes. Usually one defines \(\bar{L} = \sum_{\vec{x}} L(\vec{x}) / N_\sigma^3 \), and employs \(\langle |\bar{L}| \rangle \), or its susceptibility, to locate the deconfinement phase transition.

- \(\langle |\bar{L}| \rangle \to 0 \) as \(1/\text{Volume} \) in the confined phase, and \(\langle |\bar{L}| \rangle \neq 0 \) in the deconfined phase.
But on the lattice, at fixed $T = 1/N_\tau a$, $L \rightarrow 0$ in the continuum limit of $a \rightarrow 0$ even in the deconfined phase.
• But on the lattice, at fixed $T = 1/N_T a$, $L \to 0$ in the continuum limit of $a \to 0$ even in the deconfined phase.

• Like any Wilson loop, Polyakov loop needs to be renormalized.

• More so, since as an order parameter it seeks to label phases by being zero or nonzero.
Earlier Work

♣ The physical interpretation of L as relate to the free energy of a single static quark offers a clue.

♠ The single quark free energy $F_b(N_\tau, a)$ is obtained from

$$\ln \langle |\tilde{L}| \rangle = -F_b(T)/T = -aN_\tau F_b(N_\tau, a).$$
Earlier Work

♣ The physical interpretation of L as relate to the free energy of a single static quark offers a clue.

♠ The single quark free energy $F_b(N_\tau, a)$ is obtained from

$$\ln \langle |\bar{L}| \rangle = -\frac{F_b(T)}{T} = -aN_\tau F_b(N_\tau, a).$$

♦ Earlier attempts to get renormalized L include
Earlier Work

♣ The physical interpretation of L as relate to the free energy of a single static quark offers a clue.

♠ The single quark free energy $F_b(N_\tau, a)$ is obtained from

$$\ln \langle |\bar{L}| \rangle = -F_b(T)/T = -aN_\tau F_b(N_\tau, a).$$

♦ Earlier attempts to get renormalized L include

- Use of lattice perturbation theory (Heller & Karsch, NPB 1985)
- Use of quark-antiquark (Polyakov loop) correlations (Kaczmarek et al. PLB 2002)
Earlier Work

♣ The physical interpretation of L as relate to the free energy of a single static quark offers a clue.

♦ The single quark free energy $F_b(N_\tau, a)$ is obtained from

$$\ln\langle |\bar{L}| \rangle = -F_b(T)/T = -aN_\tau F_b(N_\tau, a).$$

◊ Earlier attempts to get renormalized L include

- Use of lattice perturbation theory (Heller & Karsch, NPB 1985)

- Use of quark-antiquark (Polyakov loop) correlations (Kaczmarek et al. PLB 2002)

- Use of N_τ-grids and fits to L (Dumitru et al. PRD 2004)

- Use of renormalization group iteratively (S. Gupta et al. PRD 2008)
I show (arXiv: 1001.4977) that the fixed scale approach, i.e., varying temperature by changing N_τ, leads to a simpler and better renormalized L.
Fixed Scale Approach

I show (arXiv: 1001.4977) that the fixed scale approach, i.e., varying temperature by changing N_τ, leads to a simpler and better renormalized L.

Let β_c, corresponding to the position of the peak of the $|L|$-susceptibility for some fixed $N_{\tau,c}$, be the choice of the fixed scale a_c.

Further, let it lie in the scaling region, then in the fixed scale approach $T/T_c = N_{\tau,c}/N_\tau$.
I show (arXiv: 1001.4977) that the fixed scale approach, i.e., varying temperature by changing N_τ, leads to a simpler and better renormalized L.

Let β_c, corresponding to the position of the peak of the $|L|$-susceptibility for some fixed $N_{\tau,c}$, be the choice of the fixed scale a_c.

Further, let it lie in the scaling region, then in the fixed scale approach $T/T_c = N_{\tau,c}/N_\tau$.

Write the single quark free energy as a sum of a would-be divergent and a regular contribution,

$$F_b(T, a_c) = F(T, a_c) - A(a_c),$$

where A is the would-be divergent free energy in physical units.
Since

\[
\frac{T}{T_c} \ln \langle |\bar{L}| \rangle = -\frac{F(T, a_c)}{T_c} + \frac{A(a_c)}{T_c},
\]

the free energy at any two different scales, \(a_{c1}\) and \(a_{c2}\), differs by the same constant at all \(T\).

◊ Use \(\langle |L| \rangle\) at just one temperature to eliminate the relative shift \(\Rightarrow\) All cut-off dependence of the order parameter is gone in the entire \(T\)-range.
Since

\[\frac{T}{T_c} \ln \langle |\bar{L}| \rangle = -\frac{F(T, a_c)}{T_c} + \frac{A(a_c)}{T_c}, \]

the free energy at any two different scales, \(a_{c1} \) and \(a_{c2} \), differs by the same constant at all \(T \).

Use \(\langle |L| \rangle \) at just one temperature to eliminate the relative shift \(\Rightarrow \) All cut-off dependence of the order parameter is gone in the entire \(T \)-range.

In the following, I consider the simple case of \(SU(2) \) to demonstrate how well it works. It should work similarly for any \(N_c \) or QCD.

I employ the critical \(\beta \) for \(N_\tau = 4, 6, 8 \) and 12 from the table of Velytsky, IJMP C19, (2008), 1079, which agree with earlier results where available.
4 different scales: Tc4, Tc6, Tc8 and Tc12 with \(a \to 0 \) progressively. Increasing Spatial Volume leads to decrease in \(L \) for \(T < T_c \).
• Illustrate for two scales: Different behaviour in T for the Free Energy. Shift F by $\Delta F(2T_c)$.
• Free Energy shifted by $\Delta F(2T_c)$ in each case: three constants for four scales.
• Free Energy shifted by $\Delta F(2T_c)$ in each case: three constants for four scales.

• For $T \leq T_c$, F increases with the spatial volume but scale-independent.
The shifted Free Energy leads to the renormalized L, which is independent of cut-off for $\beta \geq 2.2991$.
• The shifted Free Energy leads to the renormalized L, which is independent of cut-off for $\beta \geq 2.2991$.

• For $T \leq T_c$, L decreases with the spatial volume but scale-independent.
– I chose 3 constants to shift all the data to the Tc4 scale: The Tc6, Tc8, Tc12 results have simply jumped to their appropriate place on the \(\langle |L| \rangle \) for it.
– I chose 3 constants to shift all the data to the Tc4 scale: The Tc6, Tc8, Tc12 results have simply jumped to their appropriate place on the \(\langle |L| \rangle \) for it.

– Does the renormalized \(L \) then climb to unity slowly?
High Temperature Perturbation Theory (Gava-Jengo, PLB 1981) tells us that \(L \to 1 \) from above at very large \(T \) :
\[
L = 1 + C_3 g^3 + \mathcal{O}(g^4),
\]
where \(c_3(N_c) > 0 \) is a constant.
• High Temperature Perturbation Theory (Gava-Jengo, PLB 1981) tells us that $L \to 1$ from above at very large T: $L = 1 + C_3 g^3 + O(g^4)$, where $c_3(N_c) > 0$ is a constant.

• Instead of shifts at $2T_c$ for varying scales, try a fit

$$-\ln \langle |\bar{L}_j| \rangle = F(2T_c)/2T_c + B \cdot N_{\tau j}/2.$$
Eliminating the B-dependent divergent term for the Tc4-scale in addition to the shifts, one has,

L now does go to unity from above at large T. Large volumes, aspect ratio of ~ 10, needed for $L \approx 0$ for low T.

Lattice 2010, Tanka Village, Villasimius, Sardinia, Italy, June 15, 2010

R. V. Gavai
Summary

• I showed that the fixed scale approach leads to a natural definition of a physical, N_T-independent, order parameter which is defined in both the confined and the deconfined phases.

• It does not need two-point correlations, and works for even coarse lattices ($a \leq 1/4T_c$).
Summary

• I showed that the fixed scale approach leads to a natural definition of a physical, N_T-independent, order parameter which is defined in both the confined and the deconfined phases.

• It does not need two-point correlations, and works for even coarse lattices ($a \leq 1/4T_c$).

• The definition itself does not depend on any lattice artifacts or the lattice size in the deconfined phase.

• It displays the expected behaviour in both the phases, i.e., volume dependence in the low T-phase and approach to unity from above in high T-phase.