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Abstract. Our understanding of earthquakes is based on the theory of plate tectonics.
Earthquake dynamics is the study of the interactions of plates (solid disjoint parts of the
lithosphere) which produce seismic activity. Over the last about fifty years many models
have come up which try to simulate seismic activity by mimicking plate plate interactions.
The validity of a given model is subject to the compliance of the synthetic seismic activity it
produces to the well known empirical laws which describe the statistical features of observed
seismic activity. Here we present a review of one such, purely geometric, model of earthquake
dynamics, namely The Two Fractal Overlap Model. The model tries to emulate the stick-slip
dynamics of lithospheric plates with fractal surfaces by evaluating the time-evolution of overlap
lengths of two identical Cantor sets sliding over each other. As we show later in the text,
some statistical aspects of natural seismicity are naturally captured by this simple model. More
importantly, however, this model also reveals a new statistical feature of aftershock sequences
which we have verified to be present in nature as well. We show that, both in the model as well
as in nature, the cumulative integral of aftershock magnitudes over time is a remarkable straight
line with a characteristic slope. This slope is closely related to the fractal geometry of the fault
surface that produces most of thee aftershocks. We also go on to discuss the implications that
this feature may have in possible predictions of aftershock magnitudes or times of occurrence.
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1. Introduction
Many models of natural seismicity have been proposed over the last half-decade and more. These
cover a very broad range of approaches ranging from purely physical to purely statistical. The
relative successes of these very diverse models is testament to the great complexity involved in
the production of natural seismicity and points to the fact that the correct model is probably
neither extreme and is some elusive combination of these approaches. However, an approach
that has been less pursued to some extent is the investigation of the role of the fractal surface
geometry of a fracture surface topography (or self affine for most natural surfaces) in producing
the known statistical properties of natural seismicity. The model we propose in this article
incorporates this fractal topography of the fracture surface in a simplistic way.

1.1. Earthquake statistics
The overall frequency distribution of earthquakes is given by the Gutenberg-Richter (GR) Law
[1] which states

logN(m) = a− bm, (1.1)

where N(m) is the frequency of earthquakes with magnitude greater than or equal to m occurring
in a specified area. The parameter b, the so called b-value, has some regional variation (the value
of the exponent b-value has been seen to change from one geographical region to another) but
the value of b estimated from global catalogs or regional catalogs spanning many fault systems
is deemed to be universal and close to unity. The constant a is a measure of the regional level of
seismicity at the given lower magnitude threshold for the catalog. In particular, for aftershock
sequences, the a-value points to the total aftershock productivity of the mainshock to which the
sequence corresponds to. Owing to the log-linear relationship between seismic energy released
and the magnitude of the earthquake, there is another form in which the Gutenberg-Richter law
is stated:

N(ε) ∼ ε−α, (1.2)

where N(ε) is defined in analogy to the previous form but for events which release energy greater
than or equal to ε. This is due to the fact that usually magnitude is defined as logarithm of
the trace amplitude on a seismogram and hence bears a log-linear relationship with energy. The
temporal distribution of aftershocks of magnitude m greater than or equal to some threshold
value Mc is given empirically by another well known power law, namely the Omori Law [2],
saying

dN(t)

dt
=

1

tp
,m ≥Mc. (1.3)

Here dN(t)/dt gives the rate of occurrence of aftershocks at time t after the occurrence of the
mainshock. The value of the exponent p is generally larger than but close to unity for tectonically
active regions though a large range of variation in the p-value has been observed [3].

1.2. Modeling earthquake dynamics
The principal objective in constructing models of earthquake dynamics is to reproduce the
above two empirical (statistical) laws by simulating the dynamics of a fault or of a system of
interconnected faults. Different types of models have been proposed to capture this dynamics
which focus on different aspects of fault dynamics. One class mimics the dynamics by slowly
driving an assembly of locally connected spring-blocks over a rough surface. This essentially
captures the stick slip scenario involved in generation of earthquakes. The first successful model
of this kind was proposed by Burridge and Knopoff [4]. This model and all its variants [5, 6]
have been reliably shown (numerically) to recreate the GR Law but the Omori Law has not
been clearly demonstrated from this class of models. The underlying principle for this class of
models has been found to be Self Organized Criticality [7]. There is another traditional class of
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models based on the mechanical properties of deformable materials that break under a critical
stress. Fiber bundle models are typical of this class.

The main class of models that we will discuss here are a relatively new type. This class of
models deals with the fractal geometry of fault surfaces. We shall discuss in the next chapter
some of the available observations indicating that fault surfaces are fractals and how faults are
distributed in a fault zone with a fractal size-distribution. These are two very well established
facts. Naturally, a few of the geometrical models of earthquakes capture the fractal effects of
one fault surface sliding over the other by considering two fractals sliding over each other and
by taking into account the stresses developed and released due to such overlaps. Fig. 1.1 shows
a cartoon depicting this scenario. This is the basic motivation behind fractal overlap models.
There have been attempts at using random fractional Brownian profiles as the fractals involved
(in the so called Self-affine Asperity Model) in [8, 9]. The model yields the GR law readily
and relates the b-value to the geometry of the fault. A more generalized version of the model
discussed in [9] also recreates the Omori law but with a universal exponent. But in nature
the exponent value varies considerably. Also, the exponent is very different in value from the
exponent observed for real earthquakes (for this Self-affine Asperity Model [9] the value of the
exponent is 0.37, while in nature we observe values close to unity for seismically active zones
as mentioned before). Our focus though, will be on yet another geometric model which has
been reasonably successful in capturing most of the observed statistical features of earthquake
processes reproducing values of the parameters of these empirical laws much in agreement to
what we see in nature. We call this the ‘Two fractal overlap model’. The simplest scenario of
a fractal sliding over its complementary set involves a Cantor set sliding over its complement.
But the scenario considered here is even more simplified. We consider the overlap statistics of a
Cantor set sliding over its replica. Although the model does not, to start with, consider a real
fault profile the main strength of the model lies in the fact that it is completely analytically
tractable and gives all the well established statistics that real earthquakes demonstrate. We will,
through the length of this discussion, show these results and compare them with real earthquake
data. The reader will readily recognize that these results require a knowledge of no more than
high school mathematics to derive and in simplicity lies the true strength of this model.

Figure 1.1: A cartoon showing overlap of two fractal surfaces. The sticking is due to interlocking
of the asperities. Stress energy is accumulated and released at every slip (Adapted from [10]).

1.3. Fractal geometry of fault surfaces
Before we undertake a study and modeling of seismic activity, it is of interest to review what we
imply by fractures, joints and faults. Any crack or fissure on the surface of a rock is a fracture.
If the two blocks separated by the fracture are laterally displaced creating a plane across which
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the rock beds are discontinuous then, in strict terms of structural geology, the locus of the
discontinuity in the various rock beds is the fault. Figure 1.2 shows a fault exposure in the Dixie
Valley in the United States.

Figure 1.2: A) Chapter of a partly eroded slip surface at the Mirrors locality on the Dixie Valley
fault. B) LiDAR fault surface topography as a color-scale map rotated so that the X-Y plane is
the best-fit plane to the surface (Adapted from [11]).

If there has been no lateral offset across the fracture then the structure is generally referred
to a joint. Faults and joints often do not come singly but in a complex system of interconnected
structures. Such a system of interconnected faults is called a fault zone. In other words, it is
basically a highly fractured system of fault networks all of which have been formed by the same
tectonic process. It has for long been suggested that fractured rock surfaces are fractals. The
fractal geometry implies a balance between two competing processes: strain weakening and strain
hardening. This balance is critically tuned to produce neither positive nor negative feedback
mechanisms during deformation. In such a case, the long-term deformation is accommodated
statistically, at all time intervals, by structures that have no preferred size scale, i.e., structures
following a scale free (due to the lack of feedback) frequency-size distribution. Fractal geometry
has been reported to characterize brittle deformation structures in the crust over several bands
of length scales, from regional fault networks through main traces of individual faults to the
internal structure of fault zones.

In fact, fault surfaces are fractals. It was shown by [13] that the surfaces of joints are fractal.
They studied the surface topography of naturally occurring joints by analyzing the power spectra
of the profiles. They studied fresh joints (a fresh surface in structural geological context implies
an unweathered surface) in both sedimentary and crystalline rocks, a frictional wear surface
due to glacial activity and a bedding plane surface. The power spectrum of all these surfaces
showed a ‘red noise’ spectrum over the entire spatial frequency bandwidth employed in the
study with the amplitude falling off 2 to 3 orders of magnitude per decade increase in spatial
frequency. This was explained using a fractal model of the topography. The dimension D was
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Figure 1.3: Power spectra for the fault surfaces studied in the Dixie Valley by [12]. A, B, C are
from 10 – 20 mm long lab profiles. D is part of a spectrum from a 1 m long field profile. A
– smoothest, unweathered hand sample of surface. B – sugary weathered surface. C – surface
that apparently a is composite of sub-parallel surfaces (Adapted from [12]).

found to vary with spatial frequency. [12] did a similar analysis on the surface of faults in the
western United States and found fault surfaces to be fractal over eleven orders of magnitude in
wavelength. They found that the amplitude of the spectrum increased roughly in proportion to
the wavelength under consideration. The power spectra for the fault surfaces in Dixie Valley
(western United States) are shown in Figure 1.3 as reported in [12]. Such studies have been
strengthened by modern techniques of imaging like the LiDAR profile shown in Figure 1.2. The
topography of fault surfaces is now generally considered as fractal. So it is very reasonable to
consider the movement of fault surfaces on and relative to one another as two fractals sliding
over one another. This forms the basis of our motivation behind studying the overlap statistics
of a Cantor set sliding over its replica.

2. Two Fractal Overlap model
2.1. The model
As discussed already in Section 1, earthquakes are physically caused by the slip movements of
adjacent fault planes along the contact of hanging wall and footwall asperities and the release
of the stress energy accumulated due to friction during the period of sticking. But as (i) faults
surfaces are fractals (ii) friction is purely a surface phenomenon and (iii) the motion is, in general,
in a given direction, the process that causes release of the stored elastic energy can be analyzed
effectively in one dimension. Therefore a fractal embedded in one dimension can provide us a
suitable geometry to investigate the overall process. The sliding of one fractal over another thus
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would mimic a stick-slip scenario where the slip occurring after a stick would effectively be the
physical process through which the stored energy would be released. The one dimensionality of
the problem previously discussed means that we have to consider a fractal embedded in 1-D and
the natural choice is a Cantor set. This is especially valid due to the fact that the projection
of any fractal surface in a 1-D space is clearly a Cantor set (albeit a random one in most cases
we encounter in nature). But for the sake of analytical tractability of the process we adopt,

in this case, the middle third removal algorithm to generate it (fractal dimension is log 2
log 3). The

dynamical model involves one such Cantor set moving with uniform relative velocity over its
replica and one looks for the time variations of the measure of the overlapping sets common
between the two at any instant of time. The model was initially given by [14]. They tackled
the problem of determining the overlap statistics using a renormalization group method. We,
however, present a modified analysis following [15]. This model has been extended to Sierpinski
gaskets and carpets and random Cantor sets as well [16]. The model considered here however,
as we said earlier, employs two regular Cantor sets of the same generation and dimension sliding
over each other with uniform velocity as shown in Figure 2.1. For the nth generation, the step
size is 1/3n and the time taken to cover each step is taken as unity. Stress energy is accumulated
at each overlap of the non-empty intervals of the upper (moving) Cantor set with the non-empty
intervals of the lower (stationery) Cantor set. The extent of such overlaps (the number of such
overlapping non empty intervals) is represented by the ‘overlap magnitude’. This measure may
represent the stress (or stress energy) accumulated due to friction within the surfaces which gets
released through slips. The energy released at each such ‘slip’ is proportional to the overlap
magnitude during the ‘stick’ period. We therefore need to evaluate the overlap time series. At
any finite generation, the time series is exactly solvable in this model.

2.2. Analysis of the time series
As mentioned already, we present here a modified version of the analysis of the Chakrabarti
Stinchcombe model (or Two Fractal Overlap model) following [15]. We employ periodic
boundary conditions to formulate the time series. The overlap magnitude is evaluated in terms
of the number of pairs of non-empty intervals overlapping at a time. Therefore the overlap
magnitude Yn(t) can only assume values in a geometric progression given by Yn(t) = 2n−k, k =
0, 1, ..., n. Clearly Yn(0) = 2n and, due to the periodic boundary conditions, taking unit time to
be the time required to take one step of size 1/3n we obtain

Yn(t) = Yn(3n − t), 0 ≤ t ≤ 3n (2.1)

owing to the symmetric structure of the finite generation Cantor set.
A detailed analysis of the time series reveals a straightforward recursive structure. If we

simulate the overlap time series for the nth generation, after 3n−1 time steps we have the overlap
time series for the (n−1)th generation. Again after 3n−2 time steps beginning from the 3n−1 time
steps previously taken we have the overlap time series for the (n−2)th generation and recursively
so on. In other words the entire time series for the 1st generation (n = 1) is contained in the
time series for the 2nd generation (n = 2) starting from the time step t = 3 of the 2nd generation
time series) and ending at the time step t = 6 (of the 2nd generation time series). Again the
entire 2nd generation time series is contained in the 3rd generation time series starting from the
time step t = 9 (of the 3rd generation time series) and ending at the time step t = 18 (of the
3rd generation time series). Also the entire 1st (n = 1) generation time series is contained in
the 3rd generation (n = 3) time series starting from the time step t = 12 (of the 3rd generation
time series) and ending at the time step t = 15 (of the 3rd generation time series). This nested
recursive structure is present throughout the time series of any nth generation. Generalizing,
we may state that the entire time series of the (n − 1)th generation is contained in the time
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(A)

(B)

Figure 2.1: A) The recursive structure of the time series for the first four generations in the
fractal-fractal overlap model. On the left the respective Cantor set generations are shown.
Noticeable is the fact that the time series of all preceding generations are embedded within the
time series at a given generation. B) A realization of the model for the second generation at
t=0 and at t=2. The overlapping segments are shaded in grey. The lower Cantor set is repeated
between 1 and 2 to employ the periodic boundary condition. The upper Cantor set slides over
the lower (cf. [17]).

series of the nth generation starting from the time step t = 3n−1 (of the nth generation time
series) and ending at the time step t = 2× 3n−1 (of the nth generation time series). Again, the
entire time series of the (n− 2)th generation is contained in the time series of the nth generation
starting from the time step t = 4 × 3n−2 (of the nth generation time series) and ending at the
time step t = 5 × 3n−2 (of the nth generation time series). Again, the entire time series of the
(n− 3)th generation is contained in the time series of the nth generation starting from the time
step t = 13×3n−3 and ending at the time step t = 14×3n−3 and so on. This can be understood
very clearly from the illustrations in Figure 2.1.

There is however a finer recursive structure in the time series that leads to the analytical
evolution of the number density distribution. At any given generation n, a pair of nearest
line segments form a doublet and there are 2n−1 such doublets in the Cantor set. Within a
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given doublet, each segment is two time steps away from the other segment. This means that
an overlap of 2n−1 occurs when one of the sets is moved two time steps relative to the other.
Similarly, an overlap of magnitude 2n−1 also occurs if one considers a quartet and a relative shift
of 2× 3 time steps between the two Cantor sets. Again we can consider an octet and a relative
shift of 2× 32 time steps to obtain an overlap of magnitude 2n−1. In general if we consider pairs
of blocks of 2r1 nearest segments (r1 ≤ n−1), an overlap magnitude of 2n−1 occurs for a relative
time shift of 2× 3r1 time steps:

Yn(t = 2× 3r1) = 2n−1; r1 = 0, ....., n− 1. (2.2)

The complementary sequence is obtained using (2.1). We can create such rules for each of
the possible overlap magnitude values Yn(t) = 2n−k. Rules like these give us the frequency
distribution of overlap magnitudes. For example, from (2.2) we can see that as r1 can have n
possible values. Also, for each of these times at which an overlap of magnitude 2n−1 occurs
we have another time step in the complementary sequence (due to (2.1)) at which again an
overlap of magnitude 2n−1 occurs. Therefore the frequency of occurrence Fr(Yn) of an overlap
magnitude Yn = 2n−1 is 2n, that is Fr(Yn = 2n−1) = 2n. The complete distribution can be
obtained by studying the aforementioned recursive structure carefully (the mathematical details
can be found in [17]) and using simple combinatorics. The probability distribution of overlap
magnitudes for the model comes out to be a binomial distribution:

Pr(2n−k) =

(
n

n− k

)(
1

3

)n−k (2

3

)k
(2.3)

where Pr(Yn) = Fr(Yn)
3n , that is Pr(Yn) gives the probability of occurrence of an overlap of

magnitude Yn in a total of 3n time steps. Now, remembering that the overlap magnitude 2n−k

is proportional to energy we can put log2 Yn = n − k = m where m is the magnitude analog
for the model. It must however be kept in mind that while analyzing the model n is a constant
as we are considering the model at a specific generation number and m changes as k changes.
Then the frequency distribution for the model in terms of magnitude becomes

Pr(m) =

(
n
m

)(
1

3

)m(2

3

)n−m
. (2.4)

2.3. The Gutenberg Richter law
In the limit of large n the Cantor set becomes a true mathematical fractal and we have the
standard normal approximation of (2.4) which gives:

F (m) =
3

2
√
nπ

exp

(
−9

4

(m− n/3)2

n

)
, (2.5)

where F (m) is the probability distribution of magnitudes m = log2(Yn). The objective is to

show that the
∞∫
m
F (m)dm gives the Gutenberg Richter (GR) law. We shall attempt to evaluate

the following integral using (2.5):

Fcum(m) =

∞∫
m

F (m′)dm′ =

∞∫
m

3

2
√
nπ

exp

(
−9

4

(m′ − n/3)2

n

)
dm′. (2.6)
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This is not a standard Gaussian integral and we evaluate this integral by parts. Making the

substitution p = 3(m′−n/3)√
2n

in (2.6) we get:

Fcum(m) =
3

4
√
n

∞∫
3(m−n/3)√

2n

2√
π

exp

(
−p2

2

)
dp. (2.7)

Invoking the generalized definition for the complementary error function, erfc(x), we obtain,

Fcum(m) =
3

4
√
n

erfc

(
3(m− n/3)

2
√
n

)
. (2.8)

For large values of the argument x, erfc(x) has the asymptotic expansion (see 7.1.23 in [18])

erfc(x) =
exp (−x2)√

πx

(
1 +

∞∑
m=1

(−1)m
1.3...(2m− 1)

(2x2)m

)
. (2.9)

For very large x, (2.9) gives

erfc(x) =
exp (−x2)√

πx
. (2.10)

Therefore in the limit, m→∞ we have

Fcum(m) =
3

4
√
n

exp
(
−9

4
(m−n/3)2

n

)
√
π
(
3(m−n/3)

2
√
n

) . (2.11)

Equation (2.11) can be further simplified as

Fcum(m) =
1

2
√
π

exp (−n/4) exp

(
−9m2

4n
+

3m

2

)
(m− n/3)−1. (2.12)

In the model, the largest value of m possible is n, therefore in the limit of large m we can assert
m2/n ≈ m. Using the above alongwith the fact that the total number of events for a Cantor set
of generation n is 3n and δm = 1 in the model, it is easy to see that

logN(m) = A− 3

4
m− log(m− n/3), (2.13)

where N(m) is the number of earthquakes greater than a given magnitude m for the model. The
term A denotes all the constants and the purely generation (n) dependent terms taken together.

Now we shall show that equation (2.13) depicts all the features of the cumulative count
distribution of the model observed in simulations and seen in Figure 2.2. The third term on
the right hand side shows that this form of the distribution holds only for m ≥ n/3. For larger
values of m, the linear term dominates. For smaller values of m the cumulative count becomes
smaller than what is expected purely on the account of the linear term due the increasing effect
of the logarithmic term. But the turning is smeared out gradually over a range of magnitudes
due to the logarithmic term (as seen in the figure). The model also predicts a small bump in the
cumulative statistics when the argument of the logarithmic term becomes smaller than one (due
to negative values of the logarithmic term adding to the linear term). A little bit of deliberation
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Figure 2.2: The Frequency-Magnitude (FM) plots (logN(m) vs. magnitude m, N being the
number of earthquakes with magnitude greater than or equal to magnitude m) for the model
for generations 8 and 9. The overlap time series are also shown on the right for the respective
generations. The low-magnitude roll-off is evident for both the generations. The lines are drawn
as visual aid to understand the linear trend. The b-values were obtained by fitting a linear
polynomial to the data. The values of the exponents are the slopes of the indicated straight
lines. The b-values thus obtained are also indicated for each of the generations (cf. [17]).

on this issue tells us that the requirement of integral magnitudes in the model does not let this
condition persist for more than one magnitude value for a given value of n and even then the
effect is negligible as seen from simulations. This gives the synthetic seismic sequence a smooth
roll off towards the lower end of the magnitude scale. This is the precise form of the GR law as
observed in earthquake seismology.

Now the so-called b-value from our theoretical distribution is 3/4 and not unity as generally
reported for natural seismicity. The value 3/4 arises out of the fact that we have constructed
our Cantor set by the middle third removal procedure. In fact for a Cantor set with dimension
log(q−1)
log(q) the exponent would be q

q+1 . This of course would be effectively unity for higher
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dimensional Cantor sets. Now this means that there will be region to region variation in
the b-value and this is important as most other theoretical models [4, 5, 7, 19] give universal
values for the exponent. In practice the b-value has shown some variability from unity. The
b-value generally varies from 0.5 to 1.5 depending on the tectonic setting, tectonic stress and the
magnitude ranges but normally comes close to 1 for seismically active regions [20–23]. The GR
law holds good for aftershock sequences also which is really what our model describes [24, 25].
In our model however the range is from slightly smaller than 0.75 to 1 (the lower bound on the
exponent is smaller than 0.75 in practice as m2/n is slightly smaller than m in reality).

Further, the constant A in (2.13) is dependent on the generation number n and the value
of n determines, for a given similarity dimension, the seismicity in our model i.e. the number
of earthquakes increases with increasing n. Mathematically, A is equivalent to the constant a
in the GR law. It is notable that in the GR law too a characterizes seismic activity. So A
is a reasonable proxy for the a value in GR law. Figure 2.2 shows the GR law plot from the
model for generations 8 and 9. The values obtained for the exponent are also indicated in the
plot. The values obtained by fitting (b = 0.74 for n = 8 and b = 0.71 for n = 9) support our
analysis presented above. The low magnitude roll-offs are also quite conspicuous for both n = 8
and 9. Comparison with the frequency-magnitude plot for Sumatra shown in later in Figure 3.1
clearly brings home the similarities between our theoretical distribution and the form observed
in nature.

2.4. The Omori Law
Previously a theoretical study derived the Omori formula from a preliminary statistical model
where aftershocks are produced by a random walk on a pre-existing fracture system [26]. The
derived result shows a direct connection between p and the fractal dimension of the pre-existing
fracture system. This study showed that the fractal properties of aftershocks are determined by
the fractal geometry of the pre-existing fracture system. The Omori law comes out naturally
from our fractal overlap statistics as well.

Physically, our model corresponds to an aftershock sequence for a mainshock of magnitude n.
So it is of inherent interest to check for the Omori Law in our model by studying the temporal
distribution of these synthetic aftershocks. The time series of overlap magnitudes in our model
has built-in power law behavior. The entire magnitude-time sequence is a nested structure of
geometric progressions as pointed out earlier. This makes it difficult to enumerate an exact value
of the exponent p in general. But there is, however, departure from this in two limiting cases.
Omori Law in practice gives specific value of p for a given magnitude threshold. We observe
that for any generation, when the threshold is the minimum overlap magnitude 1 in our model,
the p value is 0. This is because by the virtue of the assumption of uniform velocity there is
an aftershock at every time step. A very interesting fact is however unearthed on putting the
magnitude threshold at the second highest possible value n− 1 (that means we are considering
aftershocks only of magnitude n − 1 and higher). Now the times of occurrences of aftershocks
of magnitude n− 1 are at each value of t = 2× 3r1 where r1 varies from 0 to n− 1. Therefore
when the lower magnitude threshold is n − 1, we have, not considering the constant prefactor
2, consecutive aftershocks occurring at times which follow this geometric progression (2.3) with
common ratio 3 (that is if at any t there is an aftershock of magnitude n − 1 then at 3t the
next aftershock will occur and at 32t the one after that and so on). This gives the general rule
N(3t) = N(t) + 1 leading to:

N(t) = log3 t (2.14)

where N(t) is the cumulative number of aftershocks (of magnitude m ≥ n− 1 for a mainshock
of magnitude m = n). To observe this, one has to remember that the symmetry in the time
series is an artificially introduced artefact of the periodic boundary conditions and in the above
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Figure 2.3: Omori Law from the model for generations 8 and 9 respectively. Dashed lines show
best logarithmic fits. Plots are for N(t) vs. t, N(t) being cumulative number of aftershocks at
time t where t is the time since the mainshock. Time parameter for the model being as defined
in the text i.e. unit time for a step of size 3−n (cf. [17]).

analysis we only consider the first half of the times series (e.g. see Figure 2.1). Integration of
the Omori relation gives, N(t) = 1/tp.

From (2.14) this gives us p ∼ 1 which is the traditional Omori exponent value. The model
therefore gives a range of p-values from 0 to 1 which systematically increases within the range
with increasing threshold. Figure 2.3 shows the plots (from the model) for cumulative number
of aftershocks N(t) of magnitude greater than equal to n− 1 versus t for n = 8 and n = 9.

The fact that the Omori exponent p is not universally unity is a very well documented fact
and some workers have reported variability in p from 0.5 to 2.5 [27]. But for seismically active
zones p is generally larger than but close to unity. This variability is present in our model
too. The variability in p in our model apparently stems from implementing different magnitude
thresholds.

But, there is a more subtle feature of this analogy with the real world. The magnitude
threshold for Omori Law calculations is always put above the completeness magnitude Mc.
Completeness magnitude is that magnitude below which the frequency-magnitude statistic rolls-
off from the GR like power law. It is generally believed that the number of earthquakes is not
exhaustively recorded below this magnitude and this is the reason for the roll-off [28, 29]. In
other words the complete record of earthquakes below this magnitude is not available in the
sense that the frequency level below this magnitude is less than what really should be according
to the GR law. For real earthquakes Omori Law exponents are calculated only in the power law
region of the magnitude scale. In our model such a roll off occurs naturally. The roll-off occurs
at approximately below a magnitude n/3 as discussed in Section 2.3. A meaningful comparison
with the Omori statistics for real data sets can be done only for the power law region and that
means our threshold can be no smaller than n/3. This implies that the p-value can never be
observed to be zero. And for a higher generation or a higher dimension fractal, at the same
magnitude cut-off, the p exponent will be higher than a lower dimension or lower generation
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fractal. Values of p closer to unity will be seen as we take up Cantor sets of progressively higher
dimensions and/or generations at the magnitude cut-off n/3. The higher the generation and/or
dimension of the fractal we consider the higher will be the mainshock magnitude and more
number of aftershocks will be observed in the model. Thus the seismic activity will increase. At
the same time the exponent p will yield values closer to unity even at magnitude cut-offs lower
than m = n − 1. Thus for seismically active zones p-values will be closer to unity. One might
be tempted to extend this analogy to real seismicity and conclude that the p-value is close to 1
as observed in seismically active regions. This would be far-fetched as the p-value is generally
observed to be larger than and nearly equal to unity for seismically active regions. Our model
approaches 1 from the left hand side on the real number line and hence the analogy is not very
direct in terms of the values of the exponent. But the analogy of the form of the temporal decay
is direct and unmistakeable and shows that the Omori Law behavior might also be linked to the
fractal geometry of the fault.

2.5. Temporal distribution of magnitudes of an aftershock sequence
There is another very important observation that comes out from the model. If we evaluate the
time cumulant of magnitude, i.e.

∫ t
0 m(t′)dt′ where t is the time since the mainshock and m(t)

is the magnitude at t, it comes out to be a remarkable straight line. In other words:

Q(t) =

∫ t

0
m(t′)dt′ = St (2.15)

where S is the slope of the straight line. This temporal distribution of the Q(t) statistic is very
significant. The slope S is a function of both the generation number as well as the dimensionality
of the Cantor set. It is however quite difficult to enumerate the slope exactly due to the presence
of the nested geometric progressions in the time series as stated earlier but an approximate
estimate of the slope is given by

Sqn =

(
q − 1

q

)
n

2
(2.16)

for the model where the Cantor set has been formed by removing the middle block from q
blocks and the generation number is n. Now the important fact coming out of (2.16) is the
dependence of S on both the dimension and the generation number of the model. The model
predicts that the slope S for real aftershock sequences would be fault dependent as we expect
the generation number and/or the dimension of the fractals involved to vary from fault to fault.
Thus in a sense, the slope S is a kind of a ‘fractal fingerprint’ of the fault zone. The slope is
a very characteristic local feature of the aftershock sequence and hence of particular interest
as a diagnostic feature of aftershock sequences. In effect this provides us a new approach in
analyzing the temporal behavior of aftershock sequences from which we can, at least from the
model, clearly extract information about the fault geometry. The precise meaning of the slope
comes out to be something a bit different when we put the value of q into (2.16) for the middle
third removed Cantor set we have used here. Here q = 3 giving the slope to be equal to
approximately n/3.

A look back at (2.5) immediately brings home the meaning of the slope. It is simply the
average magnitude of the Gaussian distribution of the aftershock magnitudes generated by the
model. The significance of this will become even more clear when we look for this feature of
aftershock statistics in real earthquakes. Let us suspend this discussion for then and look at
Figure 2.4 for such Q(t) vs t plots for the model for n = 7, 8, 9 respectively. From the figure
one can clearly see the increase in slope with successive increases in generation number n. The
increase in generation number is something that we might expect in an active seismic zone.
This can take place due to re-rupturing of an existing rupture zone. Such re-rupturing has been
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Figure 2.4: The Q(t) vs. t statistic for the model for generations 7, 8 and 9. At the top plots for
all the three generations (for the first 25 time steps) are shown together to show the increase in
slope with increase in generation number n. At the bottom plots A), B) and C) show the entire
Q(t) time series for generations 7, 8 and 9 respectively (cf. [17]).

reported very often and happens when an earthquake occurs at or near the hypocenter of a
previous large earthquake (hypocenter is the assumed point from which seismic waves emanate)
years afterwards. We discuss such an event and the resultant Q(t) vs. t plot in Section 3.3.

3. Comparison with observations
3.1. The Gutenberg Richter law
In Figure 3.1 we have considered the frequency-magnitude distribution for two real aftershock
sequences to compare our theoretical formulation (see Section 2.3) with real earthquake
data. The data sets considered were 1) The 2004 Sumatra earthquake aftershock sequence
(26/12/2004, Mw = 9.0, Epicenter latitude: 3.30◦, Epicenter longitude: 95.98◦, source
catalog: NEIC (PDE) catalog (http://neic.usgs.gov/neis/epic/) and 2) The 1995 Kobe
earthquake aftershock sequence (17/01/1995, MJMA = 7.2, Epicenter latitude: 34.6◦, Epicenter
longitude: 135.0◦, source catalog: JUNEC catalog (http://www.eic.eri.u-tokyo.ac.jp/
CATALOG/junec/monthly.html). Aftershocks of a major event were considered to be events
within a given region, geographically defined as boxes or polygons constrained by suitable
latitudes and longitudes, and the magnitudes were recorded over a length of time (of the order
of a year or more) over which the region has not yet relaxed to its background seismicity
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(tentatively within the first 1000 days). Now one point needs to be made clear with respect to
the Sumatra dataset. The dataset was inhomogeneous in the sense that it reported earthquake
magnitudes in different magnitude units. So we had to convert all the magnitudes reported
to one uniform magnitude scale using inter-magnitude conversion relationships. We chose the
uniform magnitude scale for our work to be the moment magnitude Mw as defined in [30]. For
the Sumatra event we used the conversion relationships used in [31]. These relationships were
specifically designed for the aftershock sequence of the Sumatra event extracted from the PDE
catalog and hence serve our purpose. The fact that the conversion relationships were designed
for nearly the same dataset as we have used here is important as such conversion models are in
general regressional models and hence their use in our work is validated by the fact that here
we use them on the same population for which they were originally designed. But errors in
magnitude reporting as well as those induced due to magnitude conversions can severely affect
the estimation of the GR law exponent. These errors have been discussed in a bit more detail
in Section 3.3.

2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

Magnitude

lo
g 10

N
(m

)

Kobe (1995)

 

 

2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

3.5

4

Magnitude

lo
g 10

N
(m

)

Sumatra (2007)

 

 

Frequency Magnitude data
b = 0.81±0.03

Frequency Magnitude data
b = 0.90±0.02

(A) (B)

Figure 3.1: GR or Frequency-Magnitude distributions for the aftershock sequences described in
the text A) the 1995 Kobe earthquake and B) the 2004 Sumatra earthquake. We clearly see the
lower magnitude roll-off from the power law distribution in Sumatra. N(m) represents number
of earthquakes with magnitude greater than or equal to m, m represents magnitude.

As we remarked earlier, the frequency-magnitude plot for the Sumatra aftershock sequence
clearly shows the roll off from GR statistics at the low magnitude end. This is similar visually to
the roll off observed in our model (see Section 2.3 and Figure 2.2). But the Kobe sequence does
not show any such clear roll-off. According to conventional wisdom in statistical seismology,
this means that the Kobe sequence is probably complete upto m = 2.0. According to the model
however, this means that the instrumentation deployed by the network only records events larger
than the physical roll-off threshold. As the JUNEC catalog is well known for its accuracy, one
might assume that this means that the threshold itself is low or the fault is of small generation
number. The roll-off phenomenon will be observed again when we present the GR plots for the
various aftershock sequences used in Section 3.3.
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3.2. The Omori law
Our model shows that the Omori exponent p (see equation (1.3)) increases with increase in the
lower magnitude threshold. We tried to check for this trend of increase in p with increase in lower
magnitude threshold for three real aftershock data sets. The aftershock sequences chosen were
1) 1989 Loma Prieta earthquake aftershock sequence (18/10/1989, Mw= 7.1, Epicenter latitude:
37.0◦, Epicenter longitude: -121.88◦, source catalog: same dataset as [32]); 2) 1999 Chamoli
earthquake aftershock sequence (29/03/1999, M = 6.6, Epicenter latitude: 30.51◦, Epicenter
longitude: 79.40◦, source catalog: Wadia Institute of Himalayan Geology catalog (same dataset
was used in [33]) and 3) 2004 Sumatra earthquake aftershock sequence described before. The
results are given as log n(t) vs. log t plots in Figure 3.2 where the cut-off thresholds are denoted
as Mc and the p values are indicated. Here n(t) denotes number of aftershocks per unit time
and t denotes time since the mainshock in days. As is evident from Figure 3.2, the increase
in p with increase in Mc is clearly seen in Chamoli and in Sumatra. However in Loma Prieta,
which is a very well characterized data set, the same trend is not seen. The reason for widely
different values of Mc for the three data sets is that the completeness level (as explained earlier
meaningful analysis can only be done above the completeness magnitude) for the three catalogs
are very much different mainly due to the nature of the seismic networks implemented.

Most statistical seismologists now agree that the Omori law is too simplistic a model to
describe the true nature of the temporal decay of aftershock sequences. It is now standard to
describe the decay of aftershock rates by the more complicated modified Omori law [3]

dN

dt
=

1

τ [1 + t/c]p
,m ≥Mc (3.1)

where t is time elapsed since the mainshock, Mc is a lower magnitude cutoff above which
earthquakes are taken into account, τ and c are characteristic times, and p is an exponent
specifying how fast the sequence is decaying in time. The mechanism behind the time dependence
in Omori law has been debated. Elastic effects work on short time scales and cannot explain the
gradual decay of aftershock sequences over very long times. Therefore, the value p is thought
to reflect the mechanical conditions of Earth’s crust. There have been reports of systematic
regional variations of the p-value in Japan which could be attributed to regional variation of
surface heat-flow values [27, 34]. The central argument behind this hypothesis is that aftershock
activity decays faster as the stress relaxes faster in regions of higher crustal temperature. Many
other mechanisms have been proposed for this temporal decay e.g. subcritical crack growth [35],
visco-elastic relaxation [36], post-seismic creep due to stress corrosion in the regions of stress
concentration after the mainshock [37], static fatigue [38], pore fluid flow [39], post-seismic
slip [40] and earthquake nucleation under rate- and state-variable friction [41]. In general, it
is assumed that the parameters c and τ are constants and are specific to a given aftershock
sequence. The significance of the parameter c has been somewhat debated. It may reflect the
poor detection level during the early post-seismic period when coda waves from the mainshock
make it difficult to identify aftershocks or large magnitude event swarms mask smaller events
[38, 42]. It may have more physical connotations as well; e.g. due to finite duration of earthquake
nucleation time [35, 41] or, for post-mainshock seismicity driven by afterslip, due to the response
of aseismically creeping zones to the co-seismic stress change [43]. It recently has been suggested
that τ and c may be considered functions of the lower magnitude cutoff Mc, and thus may be
written as τ(Mc) and c(Mc) [44]. In view of this discussion, it must be recognized that our
model does not capture the modified Omori Law. Hence the analogy of the behavior of the
p-value in the model with that in nature is very approximate at best in the physical sense and
is only valid if one accepts the Omori Law decay of aftershocks rather than the modified Omori
Law decay as the mathematical description of the temporal decay of aftershock rate.
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Figure 3.2: The plots for number of aftershocks per unit time n(t) vs. time since the mainshock
in days, t, for the Loma Prieta, Chamoli and Sumatra data sets. The cut-off magnitudes Mc are
indicated in each plot title. The corresponding p values are shown within the plots. The solid
lines give the linear fits to the data with slope p (cf. [17]).

3.3. The temporal distribution of aftershock magnitudes
To establish the observations obtained for the Q(t) statistic. We first collected the aftershock
magnitude-time sequences m(t) of eleven major earthquakes from different geographical regions
of the world. The earthquakes were selected carefully from all over the globe to ensure that
no regional bias was introduced due to the choice of a specific catalog or a specific geological
setting. We also intentionally selected some multiple events in the same geological region on a)
different fault zones b) the same fault zone at a different time. We then evaluated a cumulative
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integral Q(t) of the aftershock magnitudes over time. Numerically, we evaluated the integral

Q(t) =
∫ t
0 m(t′)dt′, the time cumulant of magnitude where t denotes the time since the main

shock. The integration is done over all event magnitudes above a threshold level, in this case
chosen to be the completeness magnitude Mc. The datasets we used for our analyses are as
follows (some of the datasets used here have already been cited in Sections 3.1 and 3.2 and used
for calculations and we restate them again for the sake of completeness):

a) The 1989 Loma Prieta earthquake (18/10/1989, Mw = 7.1, 37.0◦, - 121.88◦). The data
set used was the same as the one used in Section 3.2.

b) The 1995 Kobe earthquake (17/01/1995, MJMA = 7.2, 34.6◦, 135.0◦). The aftershock
region was chosen on the basis of the work of [45] (latitudes 34◦-36◦, longitudes 133.5◦-
137◦). The data were taken from the JUNEC catalog (http://www.eic.eri.u-tokyo.ac.
jp/CATALOG/junec/monthly.html) for the period 17/01/1995-31/12/1995.

c) The 2004 Sumatra earthquake (26/12/2004, Mw= 9.0, 3.30◦, 95.98◦). The box was
chosen in accordance to the earthquake summary poster prepared by the USGS (available
at http://earthquake.usgs.gov/eqcenter/eqarchives/poster). The box chosen was
latitudes 0◦-20◦, longitudes 90◦-100◦. The data were taken from the NEIC (PDE) catalog
(http://neic.usgs.gov/neis/epic/) for the period 26/12/2004-28/05/2008.

d) The 2005 Muzaffarabad (Kashmir, North India) earthquake (08/10/2005, Ms= 7.7,
34.52◦, 73.58◦). The box chosen is defined by latitudes 33.5◦-35.5◦ and longitudes 72.2◦-
74.2◦. The data were once again from the NEIC (PDE) catalog (http://neic.usgs.gov/
neis/epic/) for the period 08/10/2005-28/02/2008.

e) The 1999 Chamoli earthquake (29/03/1999, Ms = 6.6, 30.51◦, 79.40◦), the aftershocks
were obtained from a highly localized network employed by the Wadia Institute of
Himalayan Geology (same dataset as used in [33]).

f) The 2003 Bam earthquake (26/12/2003, Ms = 6.8, 29.00◦, 58.31◦).The box was
chosen to be latitudes 27.5◦-30.5◦ and longitudes 57.5◦-59.5◦, the time interval being from
26/12/2003-26/12/2005 on the IIEES listing (http://www.iiees.ac.ir/iiees/EQsearch/
(4tswcof3bokb2r2z0gca4245)/EventQuery.aspx) reported only in local magnitude ML.

g) The 2005 Zarand earthquake (22/02/2005, Ms = 6.5, 30.80◦, 56.76◦), the aftershock
sequence was chosen over latitude extent 29.5◦-32.5◦ and longitude extent 55.5◦-59.5◦ for
the time period 22/02/2005-22/02/2007. The catalog used was again IIEES (http://www.
iiees.ac.ir/iiees/EQsearch/(4tswcof3bokb2r2z0gca4245)/EventQuery.aspx).

h) The 2002 Denali fault earthquake in central Alaska (03/11/2002, MS=8.5, 63.52◦, -
147.44◦). The listing was taken from the NEIC (PDE) listing (http://neic.usgs.gov/
neis/epic/). The box was: latitude 65.0◦-60.0◦ and longitude -141.0◦-(-151.0◦) and
the time window was 23/10/2002-02/05/2008. This sequence is referred to as Alaska 1
henceforth in the text.

i) The 2003 Rat Islands, Aleutian Islands earthquake in Alaska (17/11/2003, Mw = 7.8,
51.15◦, 178.65◦). The source was again the NEIC (PDE) catalog (http://neic.usgs.gov/
neis/epic/). The latitude longitude box was defined by latitudes 54◦-50◦ and longitudes
174◦-(-174◦) and the time series was taken between 17/11/2003-02/05/2008. This dataset
is henceforth referred to as Alaska 2.

j) The 2002 Taiwan earthquake (31/03/2002, Mw = 7.1, 24.13◦, 121.19◦) for which
the listing was taken from BATS (Broadband Array in Taiwan for Seismology) CMT
catalog (http://tecws.earth.sinica.edu.tw/BATS/cmtbyform.php). The relevant box
was latitudes 20◦-23◦ and longitudes 119◦-122◦ for the time period 31/03/2002-31/03/2005.
This sequence is called Taiwan 1 in the text.
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k) Another 2006 Taiwan earthquake on the same plate boundary, viz. the Eurasian plate
and the Philippines plates, (26/12/2006, Mw = 6.7, 21.89◦, 120.56◦). The latitude longitude
box was defined as 20◦-23◦ and 119◦-122◦ and the time window was 26/12/2006-23/05/2008.
The catalog was once again the BATS CMT catalog (http://tecws.earth.sinica.edu.
tw/BATS/cmtbyform.php).

(All dates are expressed as dd/mm/yyyy, positive latitude implies northern hemisphere,
positive longitude implies eastern hemisphere, negative latitude implies southern hemisphere
and negative longitude implies western hemisphere.) The spatial distribution of aftershocks for
each of these sequences is shown in Figure 3.3. Q(t) for each of the above aftershock sequences
was estimated using numerical integration.

The important limitation of our analysis, while evaluating the aforementioned integrals,
is the fact that more often than not most catalogs which give the most exhaustive list of
aftershocks report the various events in different magnitude scales. This warrants the need for
using conversion relationships to convert the various magnitude scales to a uniform scale. This,
wherever we have inhomogeneous catalogs, we have chosen to be Mw, the moment magnitude
as defined by [30] analogous to the previous sections. To this end we have used well defined and
previously employed conversion relationships. The datasets extracted from the NEIC (PDE)
catalog are all inhomogeneous with respect to the magnitude scales used to report the various
events.

The PDE listing was used in cases of the Sumatra, Muzaffarabad and the Alaska events (see
Table 3.1). For the Sumatra event we used the conversion relationships used in Section 3.1.
These relationships were specifically designed for the aftershock sequence of the Sumatra event
extracted from the PDE catalog and hence serve our purpose. For the Muzaffarabad event we
used conversion relations given in [46] which were again designed specifically for the region and
is based on the PDE listing. The fact that the conversion relationships were designed for nearly
the same datasets as we have used here is important as such conversion models are in general
regressional models and hence their use in our work is validated by the fact that here we use
them on the same Alaska 1 and Alaska 2 we could not obtain valid conversion relationships.
Our strategy for these two sequences is described later in the text. Once we had homogeneous
magnitude-time listings, we calculated the b-values and completeness magnitudes (Mc) for each
of the recorded aftershock sequence. Our estimate of Mc is based on the assumption that the
GR law [1] explains a large percentage of the frequency-magnitude distribution above a given
completeness magnitude. We assumed the percentage to be an ad hoc 90% and followed the
methodology in [28].

It has been recently noted [29] that the assignment of a single completeness magnitude to an
aftershock sequence is oversimplified and the Mc for such sequences have temporal variability.
Within the first hours to days of an aftershock sequence, Mc tends to decrease systematically.
This is caused by improvements of the station network and the fact that the frequent larger
aftershocks eclipse smaller events. In our case however, as we track an aftershock sequence over
a large period of time exceeding at least a year, this initial variability has been disregarded and
a unique Mc has been ascribed to each of the homogenized sequences. Such an assignment is
problematic for the Alaska 1 sequence due to the lack of homogeneity (and hence increased
possibility of bias in determination of the b-value) discussed previously. So we progressed
following a different methodology. For Alaska 1, the most numerous listing of events was in
ML. So we chose this subset of the data (1848 events out of a total 2031 events) and calculated
the b-value and Mc on this set. This was done keeping in mind that the lower magnitudes are
more regularly reported in ML in the PDE catalog.
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Figure 3.3: Maps showing spatial distribution of aftershocks chosen for A) Kobe, B) Sumatra
datasets.
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Figure 3.3: Maps showing spatial distribution of aftershocks chosen for C) Muzaffarabad, D)
Chamoli datasets.
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Event Name (Event Tag) Mc b S1 S2 RMS error R square
Loma Prieta (L) 0.50 0.67 1.15 - 2.22 0.99

Kobe (K) 2.00 0.90 2.41 - 1.11 0.99
Sumatra (S) 3.63 0.81 4.16 - 5.18 0.99

Muzaffarabad (M) 3.33 0.79 4.05 - 7.38 0.99
Chamoli (C) -0.20 0.32 1.39 - 2.02 0.99

Bam (B) 2.70 0.90 3.48 - 45.28 0.99
Zarand (Z) 2.80 0.99 3.47 - 10.11 0.99

Alaska 1 (Al 1) 3.00 1.08 - 3.47 12.78 0.99
Alaska 2 (Al 2) 2.60 0.46 - 3.47/4.08 9.41/11.37 0.99/0.99
Taiwan 1 (T 1) 3.42 0.77 4.30 - 39.55 0.99
Taiwan 2 (T 2) 3.63 0.75 4.32 - 17.73 0.99

Table 3.1. Event names are used to refer to respective sequences in the text. The event
tags correspond to those in the plot in Figure 3.4 and Figure 3.5. S1 corresponds to the slope
of the linear fit with the homogeneous listings while S2corresponds to the linear fit with the
inhomogeneous datasets. In Alaska 2, the slope changes midway (see Figure 3.6(C)) and the
two slopes, rms errors and R square values depict the values obtained while fitting for the earlier
part before the slash and for the later part after the slash.
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Figure 3.4: The Frequency-Magnitude distributions for the various aftershock sequences enlisted
in Table 3.1 (except for the Alaska 1 and Alaska 2 sequences).
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However, for the Alaska 2 listing no such clear maximal homogeneous subset was available
and we calculated Mc and b based on the entire inhomogeneous dataset. This is followed by
calculation of Q(t) where the cumulative integral is carried out only over events that have
magnitude m ≥ Mc. Therefore in our case the minimum magnitude or lower cut off is Mc

unless otherwise specified. Our analyses indicate a clear linear relationship Q(t) = St where
S denotes the slope. Wherever we have a homogeneous listing, we have attempted to fit a
straight line to the observed Q(t) curve and we call the slope thus obtained as S1. Wherever
we have a inhomogeneous listing the slope obtained by fitting is renamed as S2. This is the
nomenclature followed in Table 3.1 in listing the slopes for each sequence. The results of our
analysis mentioned in Table 3.1 and the plots in Figure 3.1 point clearly to the linear variations
mentioned above. The straight line (fit) retains this slope for years. Also the slope changes
significantly over different fault zones. This indicates that the slope, S, is characteristic of the
fault zone. This was further checked by integrating from anywhere in the time series (i.e. shifting
our t = 0 to any randomly chosen aftershock) after the mainshock. The slope was found to be
the same and the linearity of Q(t) was not affected by shifting the origin of integration. A wide
variety of events can lead to systematic errors in the reported magnitudes (events as varied as
a change in instrumental calibration to addition or removal of seismograph stations) and such
systematic errors can be very large going up to as much as 0.5 magnitude units [47]. Such errors
would set the eventual error bound for the slope as the errors due to fitting are much smaller as
stated already. Additionally, the conversion relationships themselves induce some errors in the
magnitudes. This can also lead to systematic errors in the slope estimate. With the available
catalogs, the errors in slope estimation would be thus about 6-10% [47, 48].

3.3.1. Analyzing the properties of the slope As we said earlier, it is our contention that these
slopes are characteristic of the fault zone. Firstly, there is significant global variation in the
values of the slopes. Each aftershock sequence seems to have a different slope for the Q(t)
statistic. Significantly, aftershock sequences caused by the same fault zone or on the same
geologic and tectonic setting yield similar slopes. These two facts are clear from the results in
Table 3.1. To illustrate the second point further, we draw attention to the two Taiwan sequences,
Taiwan 1 and 2. Both of these took place on the Eurasian and Philippines plate boundary
(from the Earthquake Summary Poster for the Taiwan event (26/12/2006, MW = 6.7) available
at (http://earthquake.usgs.gov/eqcenter/eqarchives/poster/2006/20061226.php). It is
only natural that the two corresponding slopes would be nearly identical in view of our proposed
error bounds due to the geological similarities and precisely similar tectonism. In Iran though,
on the contrary, the Bam and Zarand earthquakes took place on two different faults belonging to
a highly developed fault system. The Bam event occurred on the Bam fault whereas the Zarand
event took place in close proximity of a previous event on the Gowk system (1981 July 28, Sirch
earthquake MW = 7.1) at a distance of about 60 km from the northern extremity of the rupture
zone of the Sirch event [49]. But still the slopes were found to be the same (within proposed
error bounds). This might be because the Gowk system and the Bam fault are part of a highly
developed fault system. Further, the slope does not change with unusually large aftershocks in
the sequence e.g. the Sumatra sequence had a few very large aftershocks including one great
earthquake on March 28, 2005 (MW = 8.7) which occurred about 150 km SE of the earlier giant
earthquake epicenter (MW = 9.3) of December 26, 2004. This further reveals the characteristic
nature of the slope.

More importantly it is critical to note that the integration process is akin to an averaging
process on the magnitudes and the slope, as we will later see, is approximately an average
magnitude. So the reader may immediately think that the slope is more a signature of the
catalog and the completeness level of the listing rather than the fault itself. But then if we
have examples where reactivation or re-rupturing or similar events on a preexisting fault system
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Figure 3.5: (A) Plots of time cumulant of magnitude Q(t) vs. t (in number of days since the
mainshock) for the datasets described in the text and in Table 1 for the first 300 days. The
tags for the events used in the plot are the same as in Table 3.1. (B) Plots of Q(t) vs. t for
the Sumatra and Muzaffarabad sequences before conversion of magnitudes according to [31] and
[46] respectively. Again, only the first 300 days are plotted.
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was calculated on the entire inhomogeneous listing. B) Q(t) for the first 25 days for Alaska 1
showing that foreshocks and aftershocks exhibit same slope. C) The entire sequences for Alaska
1 and 2. Note slope change in Alaska 2.

changes the slope of Q(t) over time, that would establish the characteristic nature of the slope.
The reason for this is two fold. Firstly, as we will show later, we have considerable reason to
believe that the slope of the Q(t) statistic depends significantly on the geometry of the faults
and the slope change is an expected result of the change in geometry of the fault surface due to
the re-rupturing. Secondly, the inherent changes in completeness level in aftershock sequences
are limited to within days of the occurrence of the mainshock. If we observe a change in slope
a long time after the mainshock, when the Mc has stabilized to a steady level, then this change
in slope cannot be ascribed to a change in completeness level. This slope change is then due to
the changes in asperity distribution and stress patterns brought about by the re-rupturing. The
reader will quickly recognize that this statement supports the analytical expression for the slope
obtained in (2.16). Re-rupturing will clearly modify the slope as it would modify the nature of
the fractal involved, either the dimension or q or the generation or n. If the slope changes due to
these factors then of course it is characteristic of the fault involved. This part will become very
clear later when we discuss the statistical interpretation of the slope as average magnitude. At
present let us look at an example of such an occurrence which strengthens our claims. To this
end we shall use the results for the two sequences obtained in Alaska. Alaska 1 was an event
on the inland Denali fault and the Q(t) statistic gives a slope S2 = 3.47. One important aspect
came out during the analysis of the Alaska 1 dataset. The first shock considered here was not
the Denali fault mainshock but a previous shock in the same region. This was done because
this event is a very well established foreshock of the Denali fault event and is followed by a
series of foreshocks till the occurrence of the mainshock. The cumulant Q(t) for the foreshocks
retains the same linearity as the cumulant Q(t) for the aftershocks (see Figure 3.6 (B)). This is
expected though if one believes in the characteristic nature of the slope for a given fault system.
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Figure 3.7: Plots of cumulative moment versus time since the mainshock for the datasets
Sumatra, Taiwan 1 and Taiwan 2. The values for Taiwan 2 depicted here in the plot are
10 times the real values to ensure proper legibility of the figure (cf. [17]).

As foreshocks and aftershocks both happen on the same fault or fault system they are expected
to yield the same slopes. Our claim, that the slope is a signature of the fault system, is further
strengthened on analysis of the Alaska 2 aftershock sequence (see Figure 3.6 (C)). Here, the
slope of the Q(t) vs. t curve increases after about 754 days of the main event. One of the
most significant events of the last century, the 1965 Mw 8.7 Rat Islands earthquake ruptured a
600 km long portion of the plate boundary to the west of the Amchitka Island. In the November
17, 2003 M7.7 earthquake, associated with the main shock or the first shock in the sequence we
chose, the easternmost part of the 1965 zone failed again. On June 14, 2005, a series of moderate
to strong earthquakes occurred in the Rat Islands region of the Aleutian Islands. The sequence
started with a M 5.2 event at 08:03 UTC and the largest event (M 6.8) followed 9 hours later
(at 17:10 UTC). The largest earthquake was situated 49 kilometers (31 miles) south-southeast
of Amchitka. This new sequence of earthquakes re-ruptured the easternmost end of the 1965
rupture zone. This is the reason, we believe, for the increase in slope. The re-rupturing process
meant that the earlier asperity distributions were changed and hence the region underwent a
marked change in its seismicity pattern. The slope measures for the Alaska 2 sequence are given
in Table 3.1 for the total inhomogeneous event listing i.e. S2 = 3.47 for the earlier half and
S2 = 4.08 for the later half. The change in slope, as one can clearly observe is not within our
error bounds. The slope change also occurs after about two years from the mainshock and hence
should not be an artifact of change in minimum completeness level of the seismic network which
is constant by now. Also the slope does not keep on changing and remains at S2 = 4.08 for the
rest of the sequence. The slope of Q(t) definitely shows that some significant change occurred
in the aftershock sequence (equivalently the fault system) due to re-rupturing.

However such cumulative statistics have already been attempted for the scalar seismic moment
or Benioff stresses for aftershock sequences. We did a similar cumulative integral of scalar seismic
moment for our sequences in Sumatra and Taiwan (the former was reliably converted to scalar
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seismic moment in [31] and the BATS CMT catalog for Taiwan was homogeneous and listed only
broadband MW values). The results are shown in the Figure 3.7. The resultant plots resemble a
step function. Authors in [31] have tried to fit a power law and/or linear models piecewise to such
data (in their case the cumulative Benioff stress). There seems to be no robust feature to this
statistic, i.e. the cumulative moment versus time curve. Such cumulative curves have also been
reported for theoretical models such as for the Critical Continuum-State Branching Model of
Earthquake Rupture [50]. Precursory accelerating moment release before large earthquakes has
been a widely discussed phenomenon until recent years, being regarded as observational evidence
for the controversial critical-point-like model of earthquake generation [51, 52]. Another useful
property of such seismic moment cumulants is that they help in monitoring the stress release
modes for a given region and hence allow for discussions on the type of mechanisms underlying
earthquake occurrences [53].

As mentioned earlier, the slope of Q(t) is an estimate of the average magnitude of the
aftershock sequence. We proceed on this line and try to obtain an expression connecting the
slope and other parameters of aftershock statistics. For an aftershock sequence, apart from the
first few aftershocks, let us assume that the event inter-occurrence times and their magnitudes
are statistically independent of each other in the long term. Then for a large number of events
we have,

Q(t) =

t∫
0

m(t′)dt′ ≈
t∫

0

m(t′)dt′ ≈ mt, (3.2)

where m is the average magnitude calculated from the GR distribution for the aftershock
sequence (assuming that the b value is constant over time which is an observed fact [22]). Now
this m can be calculated from the GR distribution as follows,

m =

mmax∫
mmin

m
b× ln 10× 10−bm

(10−bmmin − 10−bmmax)
dm. (3.3)

If we assume that the GR law holds for all larger magnitudes then mmax tends to infinity and
we have,

S = m = mmin +
0.43

b
. (3.4)

This is the expression for the slope which connects it with the b value for the aftershock sequence.
We have presented a comparison of the slopes obtained through fitting and m in Table 3.2 (except
for the Alaska 2 sequence because of the complete inhomogeneity and change in slope midway).
The results show a very good agreement. But the agreement is in general better for b as computed
for the specific aftershock sequence rather than the global b value of unity. In some cases like in
Loma Prieta, Taiwan 2 and Chamoli the error (i.e. S −m) for b 6= 1 is an order of magnitude
less than the errors obtained when m is computed using b = 1. Clearly, in general S = m(b) is
a more accurate expression than S = m(b = 1). This brings us to an important realization. As
can be seen in Table 3.1 and is also reported widely [22], the b-values for individual aftershock
sequences are unique to the sequence in general and show wide variations. Moreover the b-value
for a single aftershock sequence has been known to vary spatially between the extremities of the
rupture [22].

However, temporally, the b-value is exceptionally robust except at times when we have rather
large earthquakes. Now it is known that the b-value of a given aftershock sequence can be
explained in terms of the surface similarity dimension of the causative fault network (the
fault network being treated as a fractal) [54]. Also the Two Fractal Overlap model clearly
demonstrates the GR law for the synthetic aftershock sequences and shows that the b-value
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Event Tag Mc b m(b = 1) m(b) S S −m(b = 1) S −m(b)
L 0.50 0.67 0.93 1.14 1.15 0.22 0.01
K 2.00 0.90 2.43 2.47 2.41 -0.02 -0.06
S 3.63 0.81 4.08 4.18 4.16 0.08 -0.02
M 3.33 0.79 3.78 3.90 4.05 0.27 0.15
C -0.20 0.32 0.33 1.23 1.39 1.06 0.16
B 2.70 0.90 3.13 3.18 3.48 0.35 0.30
Z 2.80 0.99 3.23 3.24 3.47 0.24 0.23

Al 1 3.00 1.08 3.43 3.40 3.47 0.04 0.07
T 1 3.42 0.77 3.95 4.03 4.30 0.35 0.27
T 2 3.63 0.75 4.16 4.30 4.32 0.16 0.02

Table 3.2. The comparison of S and m computed from (3.4) using b = 1 (values listed as
m(b = 1)) as well as using b as computed by us from the sequences (values listed as m(b)).
mmin = Mc for all the sequences. The errors are listed as S −m.

is purely dependent on the dimension and generation of the fractals involved in sticking and
slipping (in our case we have the dependence on the fractal dimension). In the case of real
aftershock sequences this would be equivalent to saying that the b-value is dependent on the
fractal geometry of (a) the fault surfaces (b) the fault network. Therefore, the b-value might
change after a large earthquake due to re-rupturing or extensive change in asperity distributions.
Re-rupturing would affect the fractal geometry of the fault and, as discussed before, this should
generally increase the slope of the Q(t) statistic (not decrease). This is what we believe happened
in Alaska 2. So as S is a function of the b-value it is characteristic of the fault geometry. Also one
must keep in mind that our definition of the completeness magnitude is dependent on the roll-off
of the frequency-magnitude distribution from the GR law curve towards the lower magnitude
range. Our definition of a roll off or a fitting algorithm (like the one we used), based on creating
synthetic distributions with the b-value obtained, depend on the value of b and a slightly smaller
or larger b can alter our Mc calculations and hence affect our chosen mmin. Theoretically, we
also saw that the roll off can be defined as a log correction on the GR law and its onset is defined
by the factor n/3, the same factor which decides the slope. Hence the roll off itself is a function
of the generation number for the Cantor set or the geometry and extent of rupture of the fault.
Thus the slope can be clearly called a definite characteristic of the fault zone as it is highly
affected by the b-value. The usual temporal stability of the b-value explains the constancy in
slope over long periods of time. The other question that we tried to address is: Is equation (3.4)
an accurate expression for S or a good approximation? To check this we used the following
observation. If we increase our mmin by some ∆mmin above the minimum level of completeness
then, we have, using (3.4),

∆S = ∆m = ∆mmin + ∆

(
0.43

b

)
. (3.5)

Now as b is constant above the completeness level the second term on the right hand side goes
to zero and we have,

∆S = ∆mmin. (3.6)

We checked for this by recalculating Q(t) for three different minimum magnitude thresholds
for each sequence. We chose mmin = Mc+∆,∆ = 0, 0.1 and 0.2 as thresholds for each sequence.
Nowhere did the results agree exactly to (3.6). Close agreement was seen only for Alaska 1. The
results are reported in Table 3.3 and the plots for Muzzafarabad and Loma Prieta are shown in
Figure 3.8. This implies that (3.4) might be an over-simplified expression for the slope and is not
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Event Tag Mc S(mmin = Mc) S(mmin = Mc + 0.1) S(mmin = Mc + 0.2)
L 0.50 1.15 1.17 1.21
K 2.00 2.41 2.49 2.57
S 3.63 4.16 4.21 4.28
M 3.33 4.05 4.08 4.10
C -0.20 1.39 1.40 1.47
B 2.70 3.48 3.53 3.59
Z 2.80 3.47 3.48 3.55

Al 1 3.00 3.47 3.56 3.63
T 1 3.42 4.30 4.31 4.38
T 2 3.63 4.32 4.42 4.43

Table 3.3. Effect of the increment in mmin on the fitted slope of Q(t) for all the sequences in
Table 3.2.
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Figure 3.8: Slope variation in Q(t) with mmin for the aftershock sequences in Loma Prieta and
Muzaffarabad. First 200 days shown for the sake of clarity.

accurate. It explains the dependence of the slope on b reasonably whereas the dependence of the
slope on mmin seems not to be straightforwardly linear. Hence the slope is probably not simply a
manifestation of the lower magnitude cut-off. The failure of (3.4) and (3.6) to address the slope
increment may also be an indication that aftershock magnitudes and inter-occurrence times may
not be uncorrelated even long after the mainshock thus invalidating the line of mathematical
argument used to arrive at (3.4).
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3.3.2. Possible usefulness of the slope To end our discussion we check the nature of the linearity
of the Q(t) statistic: Is it deterministic or stochastic? We check this using the following
expression for the numerical evaluation of the integral for Q(t);

Q(ti) =

ti∫
0

m(t′)dt′ ≈
∑
i

m(ti)∆ti = Q(ti−1) +m(ti)(ti − ti−1) (3.7)

which leads to the expression

ti+1 =
m(ti+1)ti −Q(ti)

m(ti+1)− S
, (3.8)

where we make use of the fact that Q(ti+1) = Sti+1. For all the aftershock sequences, as a
benefit of posteriori knowledge of the catalog sequence, we have with us m(ti+1) as well as ti+1.
So starting with the mainshock and using the magnitudes of every subsequent aftershock we
could make a synthetic occurrence time listing of ti+1 using (3.8) for each i. This synthetic
ti+1 we will call tpred while the actual catalog listed sequence of ti+1 we call tac. We calculated
the quantity tpred − tac and created scatter plots against tac. The plots had very significant
concentration of points around the line y = tpred − tac = 0 but there were also some very large
outliers. In general though the number of deviations were quite smaller. The concentration
of most of the points around tpred − tac = 0 clearly demonstrates the deterministic nature of
the linearity. The details of the behavior of such plots will be discussed by us elsewhere. At
the present we give two such plots for the Kobe and Muzaffarabad sequences to demonstrate
this point. As pointed out earlier, the linearity in Q(t) is maintained with the same slope if we
shift our origin of integration to any aftershock in the sequence. As cumulative integrals are
always subject to accumulation of errors, we also recalculated tpred within various time windows
within the series where the origin of the window is far from the mainshock. We observed lesser
scatter within the time window than that observed within the same time window when the
origin of integration was the mainshock indicating lesser error accumulation as expected. One
usefulness of this result is that if we have apriori knowledge of (or we assume) the magnitude
of the next aftershock in a sequence then (3.8) can be used in real time to predict time of
occurrence by extrapolation (which makes perfect sense for this linear curve). Conversely we
can have prediction tables where we can obtain a list of occurrence times for the next aftershock
corresponding to a list of possible magnitudes of the event. We will discuss the prediction issue
in more detail elsewhere. In real time calculations we can minimize errors by shifting our origin
of integration or in other words putting Q(t) = 0 after every few aftershocks and recalculating
all parameters in (3.8) again by again allowing Q(t) to accumulate over the next few aftershocks
and so on. This aspect of our study shows that the linearity of the Q(t) statistic is deterministic
and not stochastic. This affords it the unique ability to predict occurrence times of aftershocks
given an estimate of the magnitude of the next event (which, as far as we know, is not possible
by our current state of knowledge).

4. Conclusion
We have presented here some new results that have come out from our analysis of the Two Fractal
Overlap model. The model is based on the fact that fault surfaces, both fresh and weathered,
exhibit a fractal topography (Section 1.2). The model captures the stick-slip dynamics of
overlapping fractal surfaces by using regular middle third removal Cantor sets (Section 2.1)
wherein a Cantor set of a given generation slides over its replica with uniform velocity. Our
model is essentially one of repeating seismicity on the same fault following a large magnitude
event (or aftershocks). The statistical features of the synthetic earthquake time series thus
produced are completely analytically tractable (Section 2.2). The model, as is evident from our
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Figure 4.9: The tpred−tac vs. tac plots for the Kobe (top) and Muzaffarabad (bottom) sequences
for first 350 and 200 days respectively. Some of the larger deviations from y = tpred− tac = 0 lie
beyond the extent of the y-axis shown here and are omitted to facilitate better viewing. Inset:
different time windows within which Q(t) was recalculated. For Kobe: Inset A) First 100 days
only. Inset B) Between 90 and 250 days. Scatter lessened significantly with respect to the same
time window when we integrate Q(t) from the aftershock at the time origin of the window rather
than the mainshock. For Muzaffarabad: Inset A) First 30 days. Inset B) Between 30 to 160
days. Again note the reduced scatter with respect to the same time window when we integrate
Q(t) from the aftershock at the time origin of the window rather than the mainshock.

analysis, captures the GR law (Section 2.3). If one agrees that aftershock time decay is given by
the Omori law and not the modified Omori Law, then the model also captures the rudimentary
features of this behavior (Section 2.4). It gives a hitherto unknown statistical feature of the
temporal distribution of aftershock magnitudes which we have shown in Section 2.5. The model
predicts that the time cumulant of magnitudes of synthetic seismicity produced by the model
for a given generation number is a remarkable straight line with a slope that is characteristic
of the fractal topography of the rupture surface. In Section 3 we have shown the proximal
correspondence of the values of the model parameters with the b-value and the constant a in
the GR law as observed for natural seismicity. The model also shows that there may be some
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physical basis behind the completeness magnitude Mc and the corresponding low magnitude
roll off of the frequency magnitude statistics of earthquakes. There is also reasonable analogy
between the behavior of the exponent p in Omori Law and the exponent which describes time
decay of aftershocks in this model.

We have also shown that the new statistical law involving the time cumulant of magnitudes
discussed in Section 2.5 is also observed in nature in the case of aftershocks and this might
give us important information about the fractal geometry of the faults involved in producing
an earthquake and its aftershock sequence. Specifically, we have shown that cumulative integral
of magnitudes Q(t) of a natural aftershock sequence over time t is linear, the slope S being
characteristic of the fault zone. Hence some key features of the rupture zone may be extracted
from such an analysis of the magnitude time series m(t) of the earthquake aftershocks, in
particular information about the fractal geometry of the fault. We have demonstrated the
characteristic property of the slope and its relationship with the b value. We have also shown
that though the slope depends on the lower magnitude cutoff, the relationship is not very simple
or linear. More importantly we have demonstrated that the linearity of Q(t) is deterministic
and hence might very well provide methods to predict aftershock occurrence times in the future

Our focus here was on the Two Fractal Overlap Model which is a very simplistic model
of earthquakes and do not claim in any way that this is the realistic physical scenario at the
geological faults. But the fact that such a simplistic geometrical model mimics so much of nature
is truly astonishing. The analysis, we reiterate, is one which requires very basic mathematics.
The fractal overlap model tells us that the role of the fractal geometry of fault surfaces might
play a significant role in controlling the statistical features of aftershock sequences.
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