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Probability distribution of the sizes of largest erased-loops in loop-erased random walks

Himanshu Agrawal∗ and Deepak Dhar†

Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai – 400 005,India
(July 12, 2001)

We have studied the probability distribution of the perimeter and the area of thekth largest erased-loop in
loop-erased random walks in two-dimensions fork = 1 to 3. For a random walk ofN steps, for largeN, the
average value of thekth largest perimeter and area scales asN5/8 andN respectively. The behavior of the scaled
distribution functions is determined for very large and very small arguments. We have used exact enumeration
for N ≤ 20 to determine the probability that no loop of size greater thanℓ is erased. We show that correlations
between loops have to be taken into account to describe the average size of thekth largest erased-loops. We
propose a one-dimensional Levy walk model which takes care of these correlations. The simulations of this
simpler model compare very well with the simulations of the original problem.

05.40.Fb, 05.65.+b, 02.50.-r, 02.70.Uu

I. INTRODUCTION

The classical theory of statistics of extremals deals with the
distribution of the largest of manyindependent identically dis-
tributed random variables [1,2]. After some rescaling, this
distribution tends to one of the three universal distribution
functions, the so-called Gumbel distributions, independent of
the details of the starting distribution of random variables [3].
The independence of random variables is, however, not a good
approximation in many physical problems. The statistics of
extremes of many random variables is relevant in many differ-
ent physical contexts. In many of these it is important to take
account of correlations, for example, in the study of earth-
quakes [4], weather records [5], slow relaxation in glassy sys-
tems [6], and persistence in random walks [7]. In some spe-
cial cases extremal statistics of strongly correlated variables
can be determined exactly [8]. In general, however, the study
of extremal distributions of correlated and strongly correlated
random variables poses a rather non-trivial problem even in
the simplest cases.

This paper deals with the extremal statistics of variables
with long-range power law correlations in the loop-erased ran-
dom walks (LERW’s) in two dimensions. Our interest in the
LERW problem comes from the fact that it provides one of
the simplest examples of self-organized critical systems.In
the LERW problem, the length of the walk is first increased
by one at each step, and then decreases by a random amount
due to possible loop erasures. The size of erased loops has
a power-law tail [9]. This is, thus, similar to the sandpile
model where one grain is added at each time step but the num-
ber of grains leaving the pile has a power-law tail. Clearly,
there are correlations in the sizes of erased loops at differ-
ent times. These correlations are more pronounced for larger
loops. Erasure of a large loop leads to significant decrease in
the length of the erased walk, and hence a significant decrease
in the probability of erasure of another large loop within a
short time. We propose that the expected ratios of sizes ofkth
largest loop with the largest loop is a good variable to quan-
tify these strong correlations, and propose a one-dimensional
Levy walk model which is then tested by simulations.

The LERW problem was introduced by Lawler [10] as a
more tractable variant of the self-avoiding walk problem. This
problem is related to many well-studied problems in statistical
physics: the classical graph-theoretical problem of spanning
trees, theq-state Potts model in the limitq→ 0 [12], and the
Laplacian self-avoiding walk problem [11]. Connection to the
spanning trees also relates this problem to the abelian sandpile
model of self-organized criticality [13]. Recently simulation
of LERW has been used as a computationally efficient way
to determine the dynamical exponent of the abelian sandpile
model in three-dimensions [14]. The upper critical dimension
of LERWs is known to be 4 [15]. In two dimensions, the
fractal dimension of LERWs is known to be 5/4 [12,16,17],
and the exponent characterizing the probability distribution of
the area of erased-loops is known to be superuniversal [14].
Several other results on LERWs can be found in [9,18–20]
and a good review of earlier results on the LERW problem
can be found in [15].

In this paper, we show that the asymptotic behavior of
the probability distribution function Prob(ℓ(k)|N) that thekth
largest erased-loop perimeter in the firstN steps has valueℓ(k)

is described by ak-dependent scaling function with argument
ℓ(k)/Nz/2. We determine the behavior of the scaling function
for the largest loop for very large and very small values of its
argument. A similar behavior is found for the loops ranked by
the enclosed area, rather than by their perimeter. The proba-
bility that there is no erased loop of length greater than a fixed
valuer varies exponentially withN for largeN. Enumerating
all walks satisfying this property (for a fixedr) is a general-
ization of the self-avoiding walk problem. We have used ex-
act enumeration techniques to determine the behavior of this
probability for r = 0, 2, and 4 by enumerating all random
walks with N ≤ 20. We have proposed a simple Levy walk
model which captures correlations in the LERW and agrees
well with its extremal statistics as determined from large-scale
Monte Carlo simulations.

The plan of this paper is as follows: In Sec. II, after defin-
ing the LERW model precisely, we recall relevant points from
scaling theory for distribution of sizes of erased-loops. These
are used to get the scaling form for the probability distribution
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of the perimeter and the area of largest erased-loop in a walk
of N steps. In Sec. III, we outline our results about the con-
nectivity constantsµ2 andµ4 and determine their numerical
value using series expansions. The simulation technique and
results obtained thereof are described in Sec. IV. In Sec. V,
we describe the Levy walk model and compare the results of
numerical simulations of this model with that of the LERW.
Finally, some concluding remarks follow in Sec. VI.

II. SCALING THEORY OF LOOP-SIZE DISTRIBUTIONS

A loop-erased random walk is defined recursively as fol-
lows: For a one step random walk, the corresponding loop-
erased random walk is the same as the random walk. To
form the LERWL ′ corresponding to a given random walk
of (N +1) steps, we first form the LERWL corresponding to
the firstN steps of the random walk. Let us say this LERW
L hasn steps. We now add the(N + 1)th step of the random
walk to L . If no loop is formed, the resultingn+ 1 stepped
walk isL ′. If this results in forming a loop of perimeterℓ, this
loop is erased, and the resultingn+1− ℓ stepped walk isL ′.
A simple example is depicted in Fig. 1.

Let L be a LERW ofn steps obtained from a random walk
of N steps. For a fixedN, n is a random variable. The critical
exponentzof the LERW is defined by the relation that

〈n〉 ∼ Nz/2 (1)

for largeN, where the angular brackets denote ensemble aver-
aging over all random walks ofN steps. Since the root-mean-
square end to end distanceR for LERWs is the same as that
for random walks, we haveR∼ N1/2, and〈n〉 ∼ Rz. Thus,z is
the fractal dimension of the LERW.

Let F(ℓ|N) be the cumulative probability that a loop of
perimetergreater thanℓ will be erasedat theNth step of the
loop-erased walk. We define

F(ℓ) = lim
N→∞

F(ℓ|N). (2)

It was shown in [14] that largeN ≫ ℓ ≫ 1, F(ℓ|N) satisfies
the scaling form

F(ℓ|N) ∼ ℓ−2/z f
(

ℓ/Nz/2). (3)

The scaling functionf (x) tends to a non-zero constant asx
tends to zero, and decreases to zero exponentially fast for
x≫ 1. Note that the exponents appearing in this scaling form
depend only on the fractal dimensionz.

Let Φ(ℓ(1) ≤ ℓ|N) be the cumulative probability that the
perimeterℓ(1) of the largest erased-loop in anN-step walk will
be less than or equalto ℓ. We shall study the behavior of this
function for largeN. The probability that the largest erased-
loop at thekth step of anN-step walk has perimeterless than
or equal to ℓ is given by 1−F(ℓ|k). A simple approximate
formula for Φ(ℓ(1) ≤ ℓ|N) is obtained by neglecting correla-
tions among sizes of erased-loops, and treating the generation
of loops at different time steps as independent events. In the

following, we will denote byΦuc the value ofΦ(ℓ(1) ≤ ℓ|N)
in this uncorrelated approximation. This gives

Φ(ℓ(1) ≤ ℓ|N) ≃ Φuc(ℓ
(1) ≤ ℓ|N) =

N

∏
k=1

[1−F(ℓ|k)]. (4)

Let x = ℓ/Nz/2, x(1) = ℓ(1)/Nz/2 andy = k/N be new scal-
ing variables. In terms of these new variables, substitution of
F(ℓ|k) from Eq. (3) in Eq. (4), gives

Φuc(x
(1) ≤ x|N) = ∏

y

[

1−
1
N

x−2/z f

(

x

yz/2

)]

. (5)

For fixedx and large, we can evaluate this expression by
taking logs, expanding in powers of(1/N), and keeping only
the lowest order terms in(1/N). With this we get

lnΦuc(x
(1) ≤ x|N) = −x−2/z f̃ (x), (6)

where f̃ (x) =
∫ 1

0 f
(

x/yz/2
)

dy. It is easy to see that̃f (x) has
the same qualitative behavior asf (x). In terms ofF(ℓ|k), this
equation can be written as

Φuc(ℓ
(1) ≤ ℓ|N) ≃ exp

[

−NF̃(ℓ|N)
]

, (7)

where

F̃(ℓ|N) =
1
N

N

∑
k=0

F(ℓ|k). (8)

For smallx, lnΦuc(x(1) ≤ x|N) should vary as−x−2/z. For
largex, f̃ (x) is small, and 1−Φuc(x(1) ≤ x|N) should vary as
x−2/z f̃ (x).

Eq. (7) is a good approximation to Eq. (4) so long as the
higher order terms in(1/N) can be neglected. It is easily
seen that the neglected term is of orderNF̃2(ℓ|N), and hence
the approximation is valid so long asℓ ≫ Nz/4. It will be
seen from simulation results (see Sec. IV) that our assumption
about correlations being small is not too bad and that Eq. (4),
and consequently also Eqs. (6) and (7), are reasonable approx-
imations to the largest loop size distribution for allℓ. The de-
viation of the correct value from Eq. (4) is largest ifℓ is very
small, say equal to 0, 2, 4, . . . . It is important to understand
the behavior ofΦ(ℓ(1) ≤ ℓ|N) in this case. This we do in the
next section.

Let mbe the expected number of loops of perimetergreater
than or equalto ℓ generated from a random walk ofN steps. If
there are no correlations between different loops, form≪ N,
the number of such loops generated in particular realization is
a random variable, distributed according to the Poisson distri-
bution: The probability that exactlyk such loops are generated
is e−mmk/k!. This implies that the probability that less thank
loops of size greater thanℓ are generated can be expressed in
terms of the probability thatno loop of size greater thanℓ is
generated. Simple algebra gives

Φuc(ℓ
(k) ≤ ℓ,N) = exp(−m)

k−1

∑
i=0

mi

i!
, (9)

where

m= − log(Φuc(ℓ
(1) ≤ ℓ|N)). (10)
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III. DETERMINATION OF CONNECTIVITY CONSTANTS

LetCr(N) be the number ofN-step random walks in which
no loop of sizegreater than ris formed. The caser = 0 corre-
sponds to self-avoiding walks. As the total number of random
walks ofN-steps is 4N on square lattice, we have

Φ(ℓ(1) ≤ r|N) =
Cr(N)

4N . (11)

For largeN it is expected that [22]

Cr(N) ∼ µN
r . (12)

For largeN, µr tends to a constant independent ofN, which
may be called the“r-th connectivity constant”. From Jensen
and Guttmann [21] the value ofµ0 is known very precisely
and we have estimatedµ2 andµ4 using series expansion and
exact enumeration (details follow).

Now consider the casek = 2. In this case, the walk cannot
form loops, except that it can go back along the path it has
taken. The connectivity constantµ0 can be interpreted as the
average number of forward directions available for the next
step in anN-step self-avoiding walk for largeN. As return
along the direction of last step is now allowed, in the first ap-
proximation, we should have

µ2 ≈ µ0 +1 (13)

We also have the trivial inequalityµr < µr+2 for all r. As r
tends to infinity,µr tends to 4.

We determined the numbersCr(N) for N ≤ 20 and for allr
by exact enumeration. The enumeration results forr = 2 and
4 are tabulated in Table I. We analyzed this data by fitting it
to the extrapolation form

Cr(N) = K0µN
r (N)Nγ−1

×

[

1+
K1

N
+

(−1)N

Nγ+1/2

{

K2 +
K3

N

}]

, (14)

where the critical exponentγ is expected to be independent of
r and takes the self-avoiding walk value of 43/32 in two di-
mensions [22] andKi are constants which depend onr. This
form is similar to that used by Conway and Guttmann [22]
for analyzing 51-term series of self-avoiding walks. We have
reduced the number of parameters in Eq. (14) because our se-
ries is shorter. Our estimates ofµ2 andµ4, by fitting the form
given by Eq. (14) term-by-term to the 20-term series tabulated
in Table I, are 3.7083(2) and 3.8818(4), respectively. These
values are not very sensitive to variation in the fitting values
of the parametersKi .

It is interesting to compare the numerical values ofµ0,
µ2, and µ4 with the estimates obtained using the uncorre-
lated approximation. From Eqs. (11) and (12) we see that
Φ(ℓ(1) ≤ ℓ|N) varies as(µℓ/4)N for large N. Thus the ap-
proximation Eq. (7) givesµk/4≈ 1−F(k). Using the values
of µk determined above, this would imply thatF(0), F(2),
andF(4) have the values 0.3404, 0.0729, and 0.0295, respec-
tively. The values of these quantities obtained from simula-
tions are 0.3125, 0.0625, and 0.0257, respectively. We see

that the approximation fares rather well in relating the prop-
erties of the self-avoiding and loop-erased walks, which have
quite different large-scale properties.

IV. COMPUTER SIMULATION RESULTS

We generated two-dimensional loop-erased random walks
using the algorithm outlined in [14]. For each walk we col-
lected statistics about the perimeter and the area of the erased-
loop at each step. The statistics were collected forN-step
walks withN = 2r , r = 15,· · ·, 20. We averaged over 4.7×105

different realizations of the random walk. We were able to
simulate the entire ensemble in about 93 hours on a Pentium-
III 700 MHz machine using about 2.6 Mb RAM.

A. Largest loop perimeter

During the simulations we collected statistics forF̃(ℓ|N),
the average number of loops of perimeterℓ formed from a ran-
dom walk ofN steps. For each walk we also determined the
perimeter and area of the five largest loops formed. this is used
to obtain the measured cumulative distributionΦo(ℓ

(k) ≤ ℓ|N),
of size of loops of rankk, with k = 1 to 5. The subscript “o”
here refers to “observed”. To reduce noise, nearbyℓ values
were binned together. We used 30 bins per decade of data.

In Fig. 2 we have shown the plot for Probo(ℓ
(k)|N) versus

ℓ the observed probability distributions fork = 1, 2, and 3
for N = 220. In Fig. 3 we have plottedΦ(ℓ(k) ≤ ℓ|N) versus
ℓ/ℓ⋆ for various values ofN as found in the simulations, and
compared it to the theoretical curve given by Eq. (9) ignor-
ing correlations between loops. An excellent collapse is seen
among curves for all the values ofN when plotted against the
scaling variablex = ℓ/ℓ⋆. From these figures it is clearly seen
that forx> 1 the prediction of the uncorrelated theory is quite
good and indeed asymptotically exact. However, considerable
departure is seen for smaller values ofx, for x≪ 1.

We see that the prediction of the cumulative distribution
function by the uncorrelated theory is consistently higher
compared to the observed distribution throughout the range
of variation of the scaling variablex. This shows the expected
anti-correlation between occurrences of large loops.

For small values of the scaling parameterx, the observed
cumulative distribution function seems to behave like

Φo(x
(1) ≤ x) ∼ aexp(−bx−2/z) (15)

with a = 2.2± 0.3 andb = 0.39± 0.02. The fit is shown in
Fig. 4. For largex, 1−Φo(x(1) ≤ x) is very nearlyNF̃(ℓ|N)
which varies as

1−Φo(x
(1) ≤ x) ∼ aexp(−bx2/z) (16)

with the numerical value of the parameters obtained by curve-
fitting beinga = 0.32±0.03 andb = 1.7±0.1, same as that
obtained by analysis of the all-loops data. This fit is shown in
Fig. 5.
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B. Largest loop area

During simulations we collected statistics for the area of the
erased-loops also. This was sampled exactly as the perimeter
data in the previous subsection.

In Figs. 6 and 7 we have shown the plots for Probo(A(k)|N)

versusA for N = 220 andΦ(A(k) ≤ A|N) versusA/N for var-
ious values ofN, for k = 1 to 3. The format of presentation
is as in the previous subsection. An excellent collapse is seen
among the curves for various values ofN when plotted against
the scaling variabley = A/N.

The departure between the observed behavior and predic-
tion of the uncorrelated theory is also similar to that seen for
the perimeter data in the previous subsection. It is clearlyseen
from these figures that fory> 0.1 the prediction of the uncor-
related theory is quite good and seems to be asymptotically
exact for largey. For y < 0.1 considerable departure is seen
between observed behavior and uncorrelated prediction. As
in the perimeter data, there is a systematic over-prediction by
the uncorrelated theory.

For small values of the scaling parametery, the observed
cumulative distribution functionΦo(y(1) ≤ y) seems to be-
have like exp(−a/y) with a = 0.049± 0.002. For largey,
1−Φo(y(1) ≤ y) varies as exp(−by) with b = 14±1.

C. Variation of loop sizes with rank

It is clearly seen in Fig. 2 that the probability distribution
of ℓ(k) becomes sharper ask increases. In fact, ifk is of or-
derN (sayk = N/1000), it is easy to see that the distribution
tends to a delta function for largeN. A more careful argument
shows that ifk ≫ Nz/(z+1), then the distribution would tend
to a delta function. We note thatℓ(k) varies as(N/k)z/2 and
the average number of erased loops with this perimeter varies
asN/(ℓ(k))1+2/z. For the distribution to have sharp peak at
ℓ(k), this number should be much greater than fluctuations in
the expected number of loops with perimeter greater thanℓ(k).
The latter varies ask1/2. Simple algebra then gives the re-
quired result.

A similar argument for the area distributions shows that the
positions of the peak for thek-th rank varies roughly asN/k
and their width varies asN/k3/2. Furthermore, whenk≫N2/3

the width of the distribution becomes exponentially small in
N.

D. Affect of correlations on the probability distribution
functions for kth largest erased-loop size

In Fig. 8, we have plottedΦ(ℓ(2) ≤ ℓ|N) andΦ(ℓ(3) ≤ ℓ|N)

versusΦ(ℓ(1) ≤ ℓ|N) for N = 220 from the observed distri-
butions. This is compared with what would be expected on
the basis of uncorrelated approximation. Similar plots using
area (instead of perimeter) data show similar trends, and are

omitted here. From this figure, it is clearly seen that the pre-
dicted and the observed distributions are quite close. The ac-
tual curve always lies above the value calculated by neglecting
anti-correlations present.

V. MODELING CORRELATIONS

Consider the time series{ni} with i = 1, 2, . . . , generated in
a LERW simulation, whereni is number of steps in the LERW
at time stepi. This process can be modeled by a stochastic
motion of point on a one dimensional lattice. Asni is always
positive, the motion occurs in the half spacex≥ 0. In a single
time step, this point can move one step to the right (if no loop
erasure occurs in the corresponding random walk), or several
spaces to the left. Now suppose that the random walk is not
accessible to observation, and only the time series{ni} is ob-
served. While the original LERW, treated as a stochastic pro-
cess is a Markov process, the projected process is clearlynot
Markovian. However, it may be approximated as a Markov
process.

A. One-dimensional Levy walk model

The transition probabilities for this Markov process are eas-
ily defined. We think ofni as the position of a random walker
at time i on a one dimensional lattice. The walk begins at
t = 0 with the walker positioned atx = 0. At each subsequent
time step, the walker takes one step to the right and then draws
a non-negative integer random numberℓ with the probability
Prob(ℓ), ℓ = 0, 1, 2, . . . . We will assume that for largeℓ,
Prob(ℓ) decreases asℓ−τ with τ > 1. If ℓ is less than or equal
to the current positionx of the walker, then the walker takes
ℓ steps to the left; otherwise it stays put. This completes one
step. Clearly, we have

∞

∑
ℓ=0

Prob(ℓ) = 1. (17)

To ensure that there is no overall drift in the model, we also
assume that

∞

∑
ℓ=0

ℓProb(ℓ) = 1. (18)

Note that theℓ here corresponds to the erased-loop size in
LERWs. In general, one can expect to improve comparison
with the original LERW model by making the probability of
backwardℓ steps when the walker is atn equal to the con-
ditional probability in the LERW problem that the next step
leads to erasure of a loop of lengthℓ when the current length
of walk isn. This is expected to be of the form

Prob(ℓ|n) = Prob(ℓ|∞) fcutoff(ℓ/n), (19)

where fcutoff is a cutoff function which is strictly zero if its
argument is greater than 1. We make the simple choice that
fcutoff is 1 if the argument is less than 1.
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For our simulations, we made a particular choice of
Prob(ℓ). We assumed that it is given by

Prob(ℓ) =























1
ℓ

[

1
ℓα −

1
(ℓ+1)α

]

, for 1≤ ℓ ≤ ∞

1−
∞

∑
k=1

Prob(k), for ℓ = 0.

(20)

Note that with this choice, the no-drift condition given by
Eq. (18) is automatically guaranteed for any choice ofα. Fur-
thermore, one can generate this distribution numerically by
using only two calls to the random number generator. We take
a random numberu with uniform distribution between[0,1],
definem= ⌊u−1/α⌋, and then putℓ = m with probability 1/m
andℓ = 0 with probability 1−1/m. In our simulations, we
usedα = 0.6, which corresponds to the valueτ = 2.6 of the
exponent of the two-dimensional LERWs.

The Master equation for the above process describing the
evolution of the probabilityP(x, t) of the walker being at po-
sitionx at timet is written as

P(x,t +1) =
∞

∑
ℓ=0

Prob(ℓ)P(x−1+ ℓ,t). (21)

For large timest, the width of the probability distribution
P(x,t) increases to infinity. It is easy to see that the width
must increase ast1/(1+α). We note that if the particle it atx,
its expected displacement in the next time-step is positive, as
jumps with displacement greater thanx to the left are disal-
lowed. The contribution of such terms to Eq. (17) varies as
x2−τ. This equation may schematically be written in the form

∂P
∂t

∼
∂
∂x

(Px2−τ)+DP, (22)

whereD denotes diffusion operator which, presumably, in-
volves fractional derivatives. The resulting equation forthe
scaling function is nonlocal, and its analytical solution seems
difficult. Simple dimensional analysis shows thatt scales as
xτ−1. Hence the width of this distribution should scale as
t1/(τ−1). Furthermore, for larget, P(x, t) tends to the scaling
form

P(x,t) ≃
1

t1/(τ−1)
p

(

x

t1/(τ−1)

)

. (23)

B. Results from the Levy walk model

We numerically integrated the Master equation Eq. (21) in
x≥ 0 half space using the probability distribution for erased-
loop sizes given by Eq. (20) and computedP(x, t). The inte-
gration for walks having up toN = 217 steps required about
80 hours of CPU time on a Pentium II 350 MHz machine
using about 7 Mb RAM. We also simulated the Levy walk
process for time steps up toN = 220 for obtaining the statis-
tics on erased-loop sizes and thekth largest erased-loop size.

The quantities were sampled along the same lines as for the
LERWs discussed in Sec. IV. To reduce noise in the statis-
tics, we averaged over a large ensemble consisting of 2×105

different runs. The simulation of the entire ensemble required
about 141 hrs of CPU time on a Pentium II 350 MHz machine
using about 1.5 Mb RAM.

Scaling plots for the computed probability of finding the
Levy walker at locationx at time stepN, P(x,N), are shown
in Fig. 9. In this figures we have plottedNz/2P(x,N) versus
x/Nz/2, for z = 5/4. The figure clearly shows that the ob-
served behavior agrees well with the conjectured scaling form
given by Eq. (23).

We also analyzed the distribution ofkth largest loop sizes
in simulation of this Levy walk model, and compared them
with the corresponding distributions for the two-dimensional
LERW model. We found that the deviations from the predic-
tions of the uncorrelated theory are much smaller in the case
of the Levy walk model than in the original LERW. The plots
are very similar to the Figs. 2, 3, and 8, and are being omitted
here.

In Fig. 10, we have compared the probability distributions
for thekth largest erased-loop sizes from the Levy walk model
with those from LERW. The figure clearly shows that the
probability distributions obtained from the Levy walk model
match very well with those from the LERW.

A better quantitative estimate can be obtained by comparing
the ratioRk, defined as

Rk = 〈ℓ(k)〉/〈ℓ(1)〉, (24)

where〈〉 denotes expectation value.
The value ofRk as found in the simulations of the LERW

was found to be 0.605, 0.463, 0.386, and 0.335 fork = 2 to
5, respectively. The corresponding values in the simulation
of the Levy walk model were 0.614, 0.474, 0.397, and 0.347,
respectively. The corresponding values from the uncorrelated
approximation would bek−z/2, i.e., 0.648,0.503,0.420, and
0.365, respectively. It is clear that the Levy walk model gives
a much better estimate of these ratios than the uncorrelated
approximation.

VI. CONCLUDING REMARKS

Our analysis above shows that the probability distribution
of the largest erased-loops in LERWs is fairly well described
by the simple approximation ignoring correlations between
the sizes of different loops. However, the average values of
ratios ofℓ(k) are not well described in this approximation. A
simple model which takes care of a large part of these corre-
lations is the Levy walk model introduced in this paper. In
this model, one keeps information about thelength of the
LERW, but throws out all information about its shape. We
have seen that this model reproduces the extremal statistics of
the LERWs quite well.

Secondly, we have exactly enumeratedCr(N) the number
of N step LERWs in which loops of sizeless than or equal
to r are erased. Using these we have determinedµr the rth
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connectivity constant. The determination ofµ0 for various
lattices has been a long-standing problem in lattice statistics.
Higherr-values present interesting geometrical questions, and
may be helpful in understanding the crossover from random
walk to self-avoiding walk.
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TABLE I. Number ofN-step loop-erased random walksCℓ(N) in
which the largest loop of perimeterℓ less than or equal to 2 and 4 are
erased forN = 1, · · ·, 20.

N C2(N) C4(N)

1 4 4
2 16 16
3 64 64
4 248 256
5 976 1024
6 3736 4072
7 14536 16248
8 55280 64352
9 213336 256120

10 808016 1011504
11 3099456 4016496
12 11706568 15828968
13 44696992 62727520
14 168475176 246805224
15 640913784 976340664
16 2411998168 3836482296
17 9148925856 15153764480
18 34387933200 59482843856
19 130125970320 234640138528
20 488603502672 920216177360
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FIG. 1. An illustrative example of the loop-erasure proce-
dure and some aspects related to perimeter and enclosed area
of erased-loops in loop-erased random walks: The random walk
a-b-c-d-i-b-e-f-e-g-h-g-i-j-k-l of 52 steps starts ata, and ends atl.
The erased-loops are shown by thin lines and the loop-erasedwalk
a-b-i-j-k-l having 12 steps is shown by thick lines with sites on it
marked by solid circles. Note that at the pointsi and k, while the
random walk path intersects itself, the LERW encounters no inter-
section as the loopb-c-k-d-i-b has already been erased.
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FIG. 2. The observed probability distributions for perimeter of thekth largest erased-loop,k = 1, 2, and 3, for two-dimensional LERW for
N = 220.
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FIG. 3. The cumulative probability distribution for perimeter of thekth largest erased-loop,k = 1, 2, and 3, for different values ofN for
two-dimensional LERW. Solid lines give the prediction of the uncorrelated theory and dashed lines with symbols give thenumerically observed
distributions. Forℓ/ℓ⋆ > 1 the curves match well withΦ(ℓ(k) ≤ ℓ|N) approaching unity very fast. Note the excellent collapse ofthe lines of
the same type for all values ofN andk and also the systematic deviation (over prediction) of the uncorrelated theory from the numerically
observed distribution.
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FIG. 4. Variation of the cumulative probability distribution for perimeter of the largest erased-loop for smallℓ for different values ofN
for two-dimensional LERW. Solid line gives curve-fit corresponding to Eq. (15) and dashed lines with symbols give the numerically observed
distributions.
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two-dimensional LERW. Solid line gives curve-fit corresponding to Eq. (16) and dashed lines with symbols give the numerically observed
distributions.
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FIG. 6. The observed probability distributions for area of the kth largest erased-loop,k = 1, 2, and 3, for two-dimensional LERW for
N = 220.
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FIG. 7. The cumulative probability distribution for area ofthe kth largest erased-loop,k = 1, 2, and 3, for different values ofN for
two-dimensional LERW. Solid lines give the prediction of the uncorrelated theory and dashed lines with symbols give thenumerically observed
distributions. ForA/N > 0.1 the curves match well withΦ(A(k) ≤ A|N) approaching unity very fast. Note the excellent collapse ofthe lines
of the same type for all values ofN andk and also the systematic deviation (over prediction) of the uncorrelated theory from the numerically
observed distribution.
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