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Probability distribution of the sizes of largest erased-loops in loop-erased random walks
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We have studied the probability distribution of the periemeand the area of thigh largest erased-loop in
loop-erased random walks in two-dimensions Kor 1 to 3. For a random walk dfl steps, for largeN, the
average value of thieh largest perimeter and area scalesl&$ andN respectively. The behavior of the scaled
distribution functions is determined for very large andyemall arguments. We have used exact enumeration
for N < 20 to determine the probability that no loop of size gredtant is erased. We show that correlations
between loops have to be taken into account to describe #rage size of théth largest erased-loops. We
propose a one-dimensional Levy walk model which takes chthase correlations. The simulations of this
simpler model compare very well with the simulations of thigioal problem.
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I.INTRODUCTION The LERW problem was introduced by Lawldr [10] as a
more tractable variant of the self-avoiding walk problerhisT

The classical theory of statistics of extremals deals vhigh t Problemis related to many well-studied problems in statibt
distribution of the largest of marigdependentidentically dis- Physics: the classical graph-theoretical problem of spenn
tributed random variables[[fl,2]. After some rescaling, thistrees, theg-state Potts model in the limé — 0 1], and the
distribution tends to one of the three universal distribati Laplacian self-avoiding walk problerh J11]. Connectionhe t
functions, the so-called Gumbel distributions, independé  SPanning trees also relates this problem to the abeliarpdand
the details of the starting distribution of random variaifll. ~ model of self-organized criticality [13]. Recently simtita
The independence of random variables is, however, not a godf LERW has been used as a computationally efficient way
approximation in many physical problems. The statistics off0 determine the dynamical exponent of the abelian sandpile
extremes of many random variables is relevant in many differmodel in three-dimensionf [14]. The upper critical dimensi
ent physical contexts. In many of these it is important t@tak of LERWs is known to be 4[[15]. In two dimensions, the
account of correlations, for example, in the study of earthfractal dimension of LERWs is known to be/4 [12[16[1}],
quakesl]]4], weather record} [5], slow relaxation in glassy s and the exponent characte_rlzmg the probability dIS.tI'dJUDf
tems [B], and persistence in random walfs [7]. In some spethe area of erased-loops is known to be superuniversal [14].
cial cases extremal statistics of strongly correlatedadeis ~ Several other results on LERWs can be found[] 9} 1B-20]
can be determined exactlf} [8]. In general, however, theystug@nd a good review of earlier results on the LERW problem
of extremal distributions of correlated and strongly ctated ~ can be found in[[25].
random variables poses a rather non-trivial problem even in In this paper, we show that the asymptotic behavior of
the simplest cases. the probability distribution function Prét) |N) that thekth

This paper deals with the extremal statistics of variabledargest erased-loop perimeter in the fikssteps has valué®
with long-range power law correlations in the loop-erased r  is described by &-dependent scaling function with argument
dom walks (LERW's) in two dimensions. Our interest in the /K /N%2. We determine the behavior of the scaling function
LERW problem comes from the fact that it provides one offor the largest loop for very large and very small values f it
the simplest examples of self-organized critical systeins. argument. A similar behavior is found for the loops ranked by
the LERW problem, the length of the walk is first increasedthe enclosed area, rather than by their perimeter. The proba
by one at each step, and then decreases by a random amobility that there is no erased loop of length greater thanedfix
due to possible loop erasures. The size of erased loops hsaluer varies exponentially withN for largeN. Enumerating
a power-law tail [P]. This is, thus, similar to the sandpile all walks satisfying this property (for a fixed is a general-
model where one grain is added at each time step but the nurization of the self-avoiding walk problem. We have used ex-
ber of grains leaving the pile has a power-law tail. Clearly,act enumeration techniques to determine the behavior ®f thi
there are correlations in the sizes of erased loops at diffeprobability forr = 0, 2, and 4 by enumerating all random
ent times. These correlations are more pronounced fordargevalks withN < 20. We have proposed a simple Levy walk
loops. Erasure of a large loop leads to significant decrease imodel which captures correlations in the LERW and agrees
the length of the erased walk, and hence a significant dexreawell with its extremal statistics as determined from lasgede
in the probability of erasure of another large loop within aMonte Carlo simulations.
short time. We propose that the expected ratios of siz&shof The plan of this paper is as follows: In S(Eq‘,. I, after defin-
largest loop with the largest loop is a good variable to quaning the LERW model precisely, we recall relevant points from
tify these strong correlations, and propose a one-dimaakio scaling theory for distribution of sizes of erased-looplseJe
Levy walk model which is then tested by simulations. are used to get the scaling form for the probability distidnu
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of the perimeter and the area of largest erased-loop in a wallollowing, we will denote byd,. the value ofd(/() < /|N)
of N steps. In SecDII, we outline our results about the con-n this uncorrelated approximation. This gives

nectivity constantgl, and s and determine their numerical N
value using series expansions. The simulation technigde an q;(g(l) < UIN) ~ q)uc(g(l) </N) = |‘| 1-F(K)]. (4)
results obtained thereof are described in $efc. IV. In Bkc. v, k=1

we describe the Levy walk model and compare the results of _ 2/2 (1) _ (1) /NZ/2 _
numerical simulations of this model with that of the LERW. . Letx = £/N*% x* = £7/N*= andy = k/N be new scal-

; . o " ing variables. In terms of these new variables, substitutio
Finally, some concluding remarks follow in Sgc] VI. F (¢k) from Eq. () in Eq.[[4), gives

1 X
(1) — e T
I1. SCALING THEORY OF LOOP-SIZE DISTRIBUTIONS Puc(x™ < XN) = |;| [1 Nt <yz/2)} : ®)

For fixedx and large, we can evaluate this expression by

A loop-erased random walk is defined recursively as fol-t King | ding i N d keei |
lows: For a one step random walk, the corresponding Ioop—a ing logs, expanding in powers (I/N), and keeping only

erased random walk is the same as the random walk. Tg1e lowest order terms ifi,/N). With this we get

form the LERW .’ corresponding to a given random walk |ncpuc(x(1) <x|N) = _X*Z/Zf(x)’ (6)
of (N + 1) steps, we first form the LERW corresponding to - 1 2/2 _ .

the firstN steps of the random walk. Let us say this LERW Wheref(x) = o f (x/y%?) dy. Itis easy to see thaft(x) has
£ hasn steps. We now add th@\ + 1)th step of the random the same qualitative behavior 8&). In terms ofF (¢|k), this
walk to 2. If no loop is formed, the resulting+ 1 stepped ~ €quation can be written as

walk _iSL’. If this results in forming aloop of perimeté{this unc(f(l) < OIN) ~ exp[—le(€|N)] ’ @)
loop is erased, and the resulting- 1 — ¢ stepped walk is’.
A simple example is depicted in Fif. 1. where
Let £ be a LERW ofn steps obtained from a random walk - 1 N
of N steps. For a fixet, n is a random variable. The critical FUEIN) =& k;':(ﬂk)- (8)

exponent of the LERW is defined by the relation that
42 For smallx, In®y(xY) < x|N) should vary as-x %% For
(n)~N (1) largex, f(x) is small, and £ Dy(xV) < X|N) should vary as
X 27f (x).
for largeN, where the angular brackets denote ensemble avef- Eq. ﬂ) is a good approximation to E([| (4) so long as the

ggLna% g \(/aenrdallorgrrw](cjjog? S\t’;ilgg: EES\?\'/SS;Q?E eths:,r?gtgg‘?ﬁg{ higher order terms ir{1/N) can be neglected. It is easily
d seen that the neglected term is of ortiér?(¢|N), and hence

for random walks, we have ~ N'/2, and(n) ~ R Thus,zis h imation is valid So | 2/4 il b
the fractal dimension of the LERW. the approximation is valid so long ds> N%*. It will be

seen from simulation results (see S]E IV) that our assampti
about correlations being small is not too bad and thatﬁiq. 4)
and consequently also EqE. (6) aﬁd (7), are reasonablexappro
imations to the largest loop size distribution for &allThe de-
F(0) = lim F(¢N). (2)  Viation of the correct value from Ed](4) is largestiis very
N-—e0 small, say equal to 0, 2, 4, .... Itis important to understand
the behavior ofb(¢()) < /|N) in this case. This we do in the

Let F(¢|N) be the cumulative probability that a loop of
perimetergreater than/ will be erasedat the Nth step of the
loop-erased walk. We define

It was shown in[1}4] that largsl > ¢ > 1, F(£|N) satisfies

. next section.
the scaling form Letmbe the expected number of loops of perimeteater
F((N) ~ 0-2/7 (Z/NZ/Z). 3) than or equato ¢ generated from a random walk Nfsteps. If

there are no correlations between different loopspieg N,

The scaling functiorf (x) tends to a non-zero constant:as the number of such loops generated in particular realiaasio
tends to zero, and decreases to zero exponentially fast férandom variable, distributed according to the Poissani-dis
x> 1. Note that the exponents appearing in this scaling fornution: The probability that exactlysuch loops are generated

depend only on the fractal dimensian is e Mmk/K!. This implies that the probability that less thian
Let ®(¢() < ¢|N) be the cumulative probability that the loops of size greater _thaéhare generateq can be expressed in

perimeterV) of the largest erased-loop in hstep walk will terms of the probablhty thanq loop of size greater thafis

beless than or equab ¢. We shall study the behavior of this 9enerated. Simple algebra gives

function for largeN. The probability that the largest erased- k=1 i

loop at thekth step of arN-step walk has perimetégss than Pyc(¢® < £,N) = exp(—m) ZJ N 9)

or equalto ¢ is given by 1— F(£]k). A simple approximate i=0 ™

formula for ®(¢(Y < ¢|N) is obtained by neglecting correla- Where

tions among .sizes of.erased-loops: and treating the gémerat m= — |Og(¢uc(f(l) < (|N)). (10)

of loops at different time steps as independent events.dn th



I11. DETERMINATION OF CONNECTIVITY CONSTANTS that the approximation fares rather well in relating thepggro
erties of the self-avoiding and loop-erased walks, whickeha
LetC, (N) be the number oi-step random walks in which ~ quite different large-scale properties.
no loop of sizegreater than ris formed. The case= 0 corre-
sponds to self-avoiding walks. As the total number of random

walks ofN-steps is ¥ on square lattice, we have IV. COMPUTER SIMULATION RESULTS
ot <r|N) = Cf(’\'l\l). (11) We generated two-dimensional loop-erased random walks
4 using the algorithm outlined irm4]. For each walk we col-
For largeN it is expected thaiIEZ] lected statistics about the perimeter and the area of tise@ra
loop at each step. The statistics were collectedNestep
Cr(N) ~ . (12)  walkswithN =2",r =15, ---, 20. We averaged over#x 10°

For | N tends t tant ind d fwhich different realizations of the random walk. We were able to
or fargelN, 1 tends to a constant in epen” enthafwhic simulate the entire ensemble in about 93 hours on a Pentium-
may be called thér-th connectivity constant” From Jensen Il 700 MHz machine using about@ Mb RAM

and Guttmann@l] the value @b is known very precisely
and we have estimatqg andpy using series expansion and
exact enumeration (details follow).

Now consider the cade= 2. In this case, the walk cannot
form loops, except that it can go back along the path it has , , , o
taken. The connectivity constaps can be interpreted as the  During the simulations we collected statistics fof¢|N),

average number of forward directions available for the nexfn€ average number of loops of perimetéormed from a ran-
step in anN-step self-avoiding walk for largdl. As return dom walk ofN steps. For each walk we also determined the

along the direction of last step is now allowed, in the first ap Perimeter and area of the five largest loops form(%d. thisdd us
proximation, we should have to obtain the measured cumulative distributipg(¢\ < £|N),
of size of loops of rank, with k=1 to 5. The subscript “0”

A. Largest loop perimeter

M~ o+ 1 (13) here refers to “observed”. To reduce noise, nedrglues

S ) were binned together. We used 30 bins per decade of data.
We also _ha_v_e the trivial inequalify < o2 for all r. Asr In Fig.ﬂ we have shown the plot for Prgfls¥|N) versus
tends to infinityy, tends to 4. ¢ the observed probability distributions fér= 1, 2, and 3

We determined the numbeBs(N) for N <20 and forallr 5 N = 220 |n Fig.[} we have plotted(¢K) < ¢|N) versus
by exact enumeration. The enumeration results fer2 and /¢« for various values oN as found in the simulations, and
4 are tabulated in Tab[[e I. We analyzed this data by fitting 'tcompared it to the theoretical curve given by E@] (9) ignor-
to the extrapolation form ing correlations between loops. An excellent collapse énse
- N —1 among curves for all the values Nfwhen plotted against the
Cr(N) = Kok (N)N N scaling variablex= ¢/¢*. From these figures it is clearly seen
% {1+ Ky i (-1 { ot @H (14) that forx > 1 the prediction of the uncorrelated theory is quite
N = Nvt1/2 N J |’ good and indeed asymptotically exact. However, considerab
departure is seen for smaller valuespfor x < 1.
We see that the prediction of the cumulative distribution
function by the uncorrelated theory is consistently higher
LS compared to the observed distribution throughout the range
form is S"T”"ar fo that ”S.ed by Conway ‘?‘”d Guttmalﬂ [22]0f variation of the scaling variabbe This shows the expected
for analyzing 51-term series of self-avoiding walks. Wedav anti-correlation between occurrences of large loops
reduced the number of parameters in E@ (14) because our S€-Eor small values of the scaling parametethe obéerved

res 1s shorter. Our estimates jof andyy, by fitting Fhe form cumulative distribution function seems to behave like
given by Eq. [[14) term-by-term to the 20-term series taledlat

where the critical exponentis expected to be independent of
r and takes the self-avoiding walk value of /82 in two di-
mensions@Z] and; are constants which depend onThis

in Table[}, are 370832) and 388184), respectively. These Do(xV < x) ~ aexp(—bx 27 (15)
values are not very sensitive to variation in the fitting eslu -
of the parameteri;. with a= 2.2+ 0.3 andb = 0.39+0.02. The fit is shown in

It is interesting to compare the numerical valuespgf Fig. . For largex, 1— ®o(xY) < x) is very nearlyNF (¢|N)
Kz, and ps with the estimates obtained using the uncorre-ynich varies as
lated approximation. From Eqg. {11) ar{d](12) we see that
®(¢M < ¢|N) varies as(jy/4)N for largeN. Thus the ap- 1— Do(xV < x) ~ aexp(—bxe/?) (16)
proximation Eq. |Z]‘7) givesy /4~ 1—F (k). Using the values
of y determined above, this would imply thB{0), F(2),  with the numerical value of the parameters obtained by curve
andF (4) have the values.8404, 00729, and 0295, respec- fitting beinga = 0.32+0.03 andb = 1.7+ 0.1, same as that
tively. The values of these quantities obtained from simula obtained by analysis of the all-loops data. This fit is shown i
tions are B125, 00625, and M257, respectively. We see Fig.B.



B. Largest loop area omitted here. From this figure, it is clearly seen that the pre
dicted and the observed distributions are quite close. The a

Duri imulati llected statistics for th peft tual curve always lies above the value calculated by ndglpct
uring simulations we collected statistics for the arede anti-correlations present.

erased-loops also. This was sampled exactly as the perimete
data in the previous subsection.

In Figs.[$ and]7 we have shown the plots for Ry@¥"|N) V. MODEL ING CORREL ATIONS
versusA for N = 220 andd(AK) < A|N) versusA/N for var-
ious values oN, for k=1 to 3. The format of presentation
is as in the previous subsection. An excellent collapsedn se
among t.he curyesforvarious valuedivhen plotted against at time step. This process can be modeled by a stochastic
the scaling variablg = A/N. _ ‘motion of point on a one dimensional lattice. Asis always

_ The departure between the observed behavior and predigysitive, the motion occurs in the half space 0. In a single

tion of 'Fhe uncorrel_ated theor_y is also S|m_|lar to .that s&®N f {ime step, this point can move one step to the right (if no loop
the perimeter data in the previous subsection. Itis cle®®&n ¢ 435ure occurs in the corresponding random walk), or severa
from these figures that fgr> 0.1 the prediction of the uncor- spaces to the left. Now suppose that the random walk is not
related theory is quite good and seems to be asymPtOtica"é{ccessible to observation, and only the time sefiigkis ob-
exact for largey. Fory < 0.1 considerable departure is seen geryeqd. While the original LERW, treated as a stochastie pro
between observed behavior and uncorrelated prediction. Asass is a Markov process, the projected process is cleatly

in the perimeter data, there is a systematic over-preitio  n1arkovian. However, it may be approximated as a Markov
the uncorrelated theory. process.

For small values of the scaling parameyethe observed
cumulative distribution functiorb,(y(!) < y) seems to be-

have like exfp—a/y) with a = 0.049+4+ 0.002. For largey, A. One-dimensional Levy walk model
1— d,(yM <y) varies as exp-by) with b = 14+ 1.

Consider the time serigs; } withi=1, 2, ..., generated in
a LERW simulation, wherg; is number of steps in the LERW

The transition probabilities for this Markov process arg-ea

ily defined. We think ofh; as the position of a random walker
C. Variation of loop sizeswith rank at timei on a one dimensional lattice. The walk begins at
t = 0 with the walker positioned at= 0. At each subsequent
time step, the walker takes one step to the right and thensdraw
a non-negative integer random numisewvith the probability
Proh¢), ¢ =0, 1, 2, .... We will assume that for lardge
Prol(¢) decreases a& ™ with T > 1. If £ is less than or equal

It is clearly seen in Fig[|2 that the probability distributio
of /¥ becomes sharper &sincreases. In fact, ik is of or-
derN (sayk = N/1000), it is easy to see that the distribution

tends to a delta function for largé A more careful argument to the current positiox of the walker, then the walker takes

shows that ifk > N% (1, then the distribution would tend . e ;
- ' ; ¢ steps to the left; otherwise it stays put. This completes one
q:k) z/2
to a delta function. We note that9 varies agN/k)%? and .estep. Clearly, we have

the average number of erased loops with this perimeterssari
asN/(¢®)1+2/z_ For the distribution to have sharp peak at °°

(M, this number should be much greater than fluctuations in /z Prol() = 1. (17)

the expected number of loops with perimeter greater ¢han =0

The latter varies ak/2. Simple algebra then gives the re- To ensure that there is no overall drift in the model, we also

quired result. assume that

A similar argument for the area distributions shows that the ®
positions of the peak for thieth rank varies roughly ail/k ;)gprot(g) =1. (18)
and their width varies as/k32. Furthermore, whek>> N%/3 =

the width of the distribution becomes exponentially small i

N Note that the/ here corresponds to the erased-loop size in

LERWSs. In general, one can expect to improve comparison
with the original LERW model by making the probability of
backward/ steps when the walker is atequal to the con-
D. Affect of correlations on the probability distribution ditional probability in the LERW problem that the next step
functionsfor kth largest erased-loop size leads to erasure of a loop of lengtlwhen the current length
of walk isn. This is expected to be of the form

In Fig.[8, we have plotted(¢(?) < ¢|N) and®(¢(® < /|N) _ o
versus® (/) < ¢|N) for N = 220 from the observed distri- Prob{¢in) = Prok(t|e) feuon(£/m) (19)
butions. This is compared with what would be expected orwhere feyoi is @ cutoff function which is strictly zero if its
the basis of uncorrelated approximation. Similar plotsigsi argument is greater than 1. We make the simple choice that
area (instead of perimeter) data show similar trends, aad arfcof is 1 if the argument is less than 1.



For our simulations, we made a particular choice ofThe quantities were sampled along the same lines as for the

Proh(¢). We assumed that it is given by LERWs discussed in Seg.|IV. To reduce noise in the statis-
tics, we averaged over a large ensemble consistingof (P
1 [i 1 } for 1< £ < oo different runs. The simulation of the entire ensemble neglii
0| (41)a )’ - about 141 hrs of CPU time on a Pentium Il 350 MHz machine
Prol(¢) = (20)  using about 5 Mb RAM.
- . Scaling plots for the computed probability of finding the
1- k;Prok(k), for £=0. Levy walker at locatiorx at time stepN, P(x,N), are shown

in Fig.[@. In this figures we have plottdd?/2P(x,N) versus

Note that with this choice, the no-drift condition given by x/N%2, for z=5/4. The figure clearly shows that the ob-
Eq. (1) is automatically guaranteed for any choice oFur-  served behavior agrees well with the conjectured scaling fo
thermore, one can generate this distribution numerically bgiven by Eq_@g).
using only two calls to the random number generator. We takeé e also analyzed the distribution kih largest loop sizes
a random numbeu with uniform distribution betweef0,1],  in simulation of this Levy walk model, and compared them
definem= [u~%|, and then put = mwith probability 1/m  with the corresponding distributions for the two-dimemsib
and/ = 0 with probability 1—1/m. In our simulations, we LERW model. We found that the deviations from the predic-
useda = 0.6, which corresponds to the value= 2.6 of the  tions of the uncorrelated theory are much smaller in the case
exponent of the two-dimensional LERWS. of the Levy walk model than in the original LERW. The plots

The Master equation for the above process describing thare very similar to the Fig§] £ 3, afld 8, and are being omitted
evolution of the probability?(x,t) of the walker being at po- here.

sitionx at timet is written as In Fig. [19, we have compared the probability distributions
® for thekth largest erased-loop sizes from the Levy walk model
P(x,t+1) = ; Prob(/)P(x— 1+ /4,t). (21)  with those from LERW. The figure clearly shows that the

=) probability distributions obtained from the Levy walk mdde

match very well with those from the LERW.
A better quantitative estimate can be obtained by comparing
the ratioRy, defined as

For large timeg, the width of the probability distribution
P(x,t) increases to infinity. It is easy to see that the width
must increase a3/(1t%) . We note that if the particle it af,
its expected displacement in the next time-step is positise Re = (¢0) /¢y, (24)
jumps with displacement greater tharo the left are disal-
lowed. The contribution of such terms to Eff.](17) varies asvhere() denotes expectation value.
x2~T. This equation may schematically be written in the form  The value ofR as found in the simulations of the LERW

was found to be 05, 0463, 0386, and B35 fork = 2 to

a_P N E(PXLT)%—@R (22) 5, respectively. The corresponding values in the simutatio

ot 0x of the Levy walk model were 614, 0474, 0397, and B47,
respectively. The corresponding values from the uncaedla
approximation would bé& %2, i.e., 0648 0.503 0.420, and
0.365, respectively. It is clear that the Levy walk model gives
a much better estimate of these ratios than the uncorrelated
approximation.

whereD denotes diffusion operator which, presumably, in-
volves fractional derivatives. The resulting equation tfoe
scaling function is nonlocal, and its analytical solutieess
difficult. Simple dimensional analysis shows thatcales as
X'"1. Hence the width of this distribution should scale as
t1/(*=1)_ Furthermore, for largg, P(x,t) tends to the scaling

form VI. CONCLUDING REMARKS

1 X
Pxt) = t1/(t-1) P (tl/(T1)> ' (23) Our analysis above shows that the probability distribution
of the largest erased-loops in LERWs is fairly well desadibe
by the simple approximation ignoring correlations between
the sizes of different loops. However, the average values of
B. Resultsfrom the L evy walk model ratios of /(K are not well described in this approximation. A
simple model which takes care of a large part of these corre-
We numerically integrated the Master equation ﬂ (21) inlations is the Levy walk model introduced in this paper. In
X > 0 half space using the probability distribution for erased-this model, one keeps information about tleagth of the
loop sizes given by EquZO) and compufe,t). The inte- LERW, but throws out all information about its shape. We
gration for walks having up t&l = 217 steps required about have seen that this model reproduces the extremal statistic
80 hours of CPU time on a Pentium Il 350 MHz machinethe LERWSs quite well.
using about 7 Mb RAM. We also simulated the Levy walk Secondly, we have exactly enumera@dN) the number
process for time steps up d = 220 for obtaining the statis- of N step LERWSs in which loops of sizless than or equal
tics on erased-loop sizes and tth largest erased-loop size. to r are erased. Using these we have determinetthe rth



connectivity constant. The determination of for various
lattices has been a long-standing problem in lattice sigis

TABLE I. Number ofN-step loop-erased random walBg(N) in
which the largest loop of perimetétess than or equal to 2 and 4 are

Higherr-values present interesting geometrical questions, angrased foN =1,---, 20.

may be helpful in understanding the crossover from randomN

walk to self-avoiding walk. 1 CZ(NL C4(N21
2 16 16
3 64 64
4 248 256
5 976 1024
6 3736 4072
7 14536 16248
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FIG. 1. An illustrative example of the loop-erasure proce-
dure and some aspects related to perimeter and enclosed area
of erased-loops in loop-erased random walks: The randork wal
a-b-c-d-i-b-e-f-e-g-h-g-i-j-k-I of 52 steps starts &, and ends ak
The erased-loops are shown by thin lines and the loop-enaa#d
a-b-i-j-k-I having 12 steps is shown by thick lines with sites on it
marked by solid circles. Note that at the pointandk, while the
random walk path intersects itself, the LERW encountersnter-
section as the loop-c-k-d-i-b has already been erased.
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FIG. 2. The observed probability distributions for periaretf thekth largest erased-loojg,= 1, 2, and 3, for two-dimensional LERW for
N =220,

o(1® <1 |N)

1"

FIG. 3. The cumulative probability distribution for peritee of thekth largest erased-loofg,= 1, 2, and 3, for different values & for
two-dimensional LERW. Solid lines give the prediction of tincorrelated theory and dashed lines with symbols giveuheerically observed
distributions. For/¢* > 1 the curves match well wittb(é“‘) < /|N) approaching unity very fast. Note the excellent collapstheflines of
the same type for all values &f andk and also the systematic deviation (over prediction) of theowrelated theory from the numerically

observed distribution.
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FIG. 4. Variation of the cumulative probability distribati for perimeter of the largest erased-loop for snidbr different values oN
for two-dimensional LERW. Solid line gives curve-fit corpesding to Eq.5) and dashed lines with symbols give theatigally observed
distributions.
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FIG. 5. Variation of the cumulative probability distribati for perimeter of the largest erased-loop for lafder different values o for
two-dimensional LERW. Solid line gives curve-fit corresgomy to Eq. ) and dashed lines with symbols give the nurabyi observed
distributions.
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FIG. 6. The observed probability distributions for area lué kth largest erased-loofx = 1, 2, and 3, for two-dimensional LERW for
N =220,
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FIG. 7. The cumulative probability distribution for area tbie kth largest erased-loogk = 1, 2, and 3, for different values df for
two-dimensional LERW. Solid lines give the prediction of tincorrelated theory and dashed lines with symbols giveuheerically observed
distributions. ForA/N > 0.1 the curves match well wittD(A“‘) < A|N) approaching unity very fast. Note the excellent collapstheflines
of the same type for all values df andk and also the systematic deviation (over prediction) of theowrelated theory from the numerically

observed distribution.
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FIG. 8. Variation of the cumulative probability distribati for perimeter of théth largest erased-loofg,= 2 and 3, with that of the largest
erased-loop for two-dimensional LERW. Dashed lines giwe ghediction by uncorrelated theory and solid lines give libbavior of the
observed data. Here the curves are shown onliNfer 220, Curves for other values &f = 2", r = 17,18,19, collapse indistinguishably with
these curves.
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FIG. 9. Scaling plots from numerical integration of the Maigtquation Eq.@l) for probability of finding the Levy walka positionx at
time stepN versusx/N%2, z=5/4, forN = 216, and 27. Good scaling and consequently good collapse of curve®is se
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FIG. 10. Observed probability distributions for size (peeter for LERW) of thekth largest erased-loop for two-dimensional LERW (solid
lines) and the Levy walk model (dashed lines) for= 22°. The extremal distributions for the Levy walk model have rbeescaled by
multiplying (dividing) the abscissa (ordinate) by a facvdrl.04. This rescaling makes the mean points of the distribataitained from the
Levy walk model coincide with those of the LERW.
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