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Probability distribution of residence times of grains in models of ricepiles
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We study the probability distribution of residence time of a grain at a site, and its total residence
time inside a pile, in different ricepile models. The tails of these distributions are dominated by the
grains that get deeply buried in the pile. We show that, for a pile of size L, the probabilities that
the residence time at a site or the total residence time is greater than ¢, both decay as 1/t(Int)” for
LY < t < exp(L") where v is an exponent > 1, and values of z and w in the two cases are different.
In the Oslo ricepile model we find that the probability that the residence time T; at a site 7 being
greater than or equal to ¢, is a non-monotonic function of L for a fixed ¢t and does not obey simple
scaling. For model in d dimensions, we show that the probability of minimum slope configuration
in the steady state, for large L, varies as exp(—ﬁLd”) where « is a constant, and hence v = d + 2.

1. INTRODUCTION

Granular materials have drawn a lot of attention due
to their complex flow behaviour under different driving
conditions [1]. Slowly driven pile of sand grains serve as
a prototype for self-organized criticality (SOC) |2]. Al-
though SOC was not seen in experiments on piles of sand
3], but experiments on piles of long grained rice have
shown evidence of power law distribution of avalanche
sizes 4,1, 6]. Historically, perhaps because of its relation
to earthquake phenomena, studies of sandpiles [1] have
generally focused on the distribution of avalanche sizes.
There are only a few theoretical studies of other interest-
ing quantities such as the distribution of total residence
times of grains in piles, even though the experimental
studies by the Oslo group [, 5] using coloured tracer
grains are now almost a decade old.

In this paper we consider the probability distribution
of residence times of grains at a site, and of their
total residence times in the pile, in critical slope type
slowly-driven sandpile (equivalently ricepile) models.
In these models, these residence time distributions
are qualitatively different from the critical height type
models. In critical height models, the distribution
decays exponentially with average total residence time
equal to average active mass in the pile [§]. In critical
slope models, there is a possibility that the grain gets
buried very deep in the pile, and then takes a long
time to come out. We shall show that this makes the
cumulative probability distribution of these residence
times to have a characteristic 1/t decay for large times
t, (modified by a logarithmic multiplicative correction
factor), independent of details of the toppling rules, and
of the dimensionality of the system.

There have been some numerical and analytical studies
of these distributions earlier. Frette has proposed a the-
oretical model, called the Oslo ricepile model 9], which
seems to reproduce the phenomenology of the ricepile ex-
periment well. In the experimental studies of ricepiles,
Christensen et. al. 4, 1] estimated that average total

residence time of grains in a pile of size L varies as L,
where they estimated v = 1.5+ 0.2. From numerical sim-
ulations of the Oslo model for systems of size L < 1600,
the exponent characterizing the power law decay of the
probability density of total residence times at large times
was estimated as 2.2 +0.1. Boguna and Corral [1(], and
Carreras et. al. |L1] have used a continuous-time ran-
dom walk model of the motion of grains, with long trap-
ping times and a power-law distribution of step sizes,
to explain the anomalous diffusion of tracer grains. In
earlier papers |8, [12], we have studied the total residence
time distribution in the critical height type sandpile mod-
els with both deterministic and stochastic toppling rules.
We reduced the problem to a diffusion problem of a single
particle in a medium with space dependent jump rates
and showed that the distribution of the total residence
time does not have any power law tail. We also obtained
the non-universal scaling form of the distribution which
depends on the probability distribution of where grains
are added into the pile.

In this paper we study the distribution of total resi-
dence times of grains in the pile, and also of residence
time at a site, in a class of critical slope type sandpile
models. We define the residence time T; at a site i is the
time spent by a grain at the this site, measured in units
of the time interval between successive addition of grains.
The total residence time T is defined similarly. We show
that the probability of the residence time at a site or the
total residence time in the pile, being greater than or
equal to t, decays as 1/t(Int)° for a very wide range of
t. The upper cutoff in both the distributions scales with
system size L as exp(kL?) where v is an exponent > 1
and k is a positive constant.

For the Oslo ricepile model, we find an unexpected be-
haviour in the cumulative probability that a grain staying
at a site ¢ at least upto time ¢, is not a monotonically in-
creasing function of system size L. We argue that this
implies the cumulative probability distribution function
Probr,(Ty > t) cannot have a simple finite size scaling
form. We show that v = d + 2 in d dimensions for this
model.

Plan of the paper is as follows. In section 2 we define
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the four models studied in this paper. In section 3 we
present the simulation results for the residence time T}
at site 1 for the 1d Oslo ricepile model and explain the
non-monotonic behaviour of the cumulative distribution
Probr,(Th > t) with L by relating the residence times of
grains at the site 1 to the statistical properties of height
fluctuation at that site. We also explain the origin of
multiplicative logarithmic correction factor appearing in
the 1/t decay of Probr(Ty > t). In section 4 we discuss
the 1/t power law form of Proby (T > t), where T is the
total residence times, for large ¢ in the 1d Oslo model
and show that this also has a multiplicative logarithmic
correction. In section 5 we argue that the probability
of minimum slope configuration occurring in the steady
state of the 1d Oslo ricepile model, scales with system
size L as exp(—xL3) where x is some positive constant.
In section 6 we present our simulation results for other
models and show that in all cases the cumulative dis-
tributions is qualitatively similar to the 1d Oslo ricepile
model. The last section contains a summary and some
concluding remarks.

2. DEFINITION OF THE MODELS

We consider general critical slope type sandpile models
where the configurations are specified by integer height
variables h(Z), i.e., number of grains, at any site Z of a
finite d-dimensional lattice. Whenever height difference
between two adjacent sites is greater than a threshold
value, some specified number of grains are transferred to
the neighbouring sites. Piles are driven by adding grains,
one at a time, at a fixed, or at a randomly chosen site.
Grains are added only when there are no unstable sites
left in the system, and can leave the pile from the bound-
ary. We update all unstable sites in parallel. We have
studied four different models both in one and two dimen-
sions : the Oslo ricepile model and it’s 2d generalization,
local limited model and it’s variation. We now define the
precise rules of these four models.

Model-A: The Oslo ricepile model.

The Oslo ricepile model [4] is defined as follows. We
consider a one dimensional ricepile, which is specified
by an integer height variable h; at each site ¢ of a one-
dimensional lattice, with 1 < ¢ < L. The slope at site 4
is defined to be h; — h;+1. Whenever the slope z; at any
site ¢ is higher than a critical value 2., the site becomes
unstable and one grain from the unstable site goes to the
right neighbour, i.e., h; — h; — 1 and h;41 — h41 + 1.
Whenever there is a toppling at site 4, z.; is randomly,
independent of the history, reset to one of the two val-
ues, 1 and 2, with probability ¢ and p respectively, where
p+ q = 1. Whenever there is a toppling at site ¢ = L

(rightmost end), one grain goes out of the system. Grains
are added only at site 1.

The 1d Oslo ricepile model has an abelian property
[13]. The final height configuration does not depend on
the order we topple the unstable sites. After addition of
total L(L + 1) grains, the pile reaches the critical steady
state [13]. Since we have chosen the values of z. to be
1 or 2, in the steady state height profile fluctuate be-
tween slope 1 and 2. For number of sites L, the number
of possible configurations in the critical states are expo-

nentially large, approximately 1;—\/‘%5(%)% for large L

|[14]. The probabilities of various configurations in the
steady state differ from one another by many orders of
magnitude unlike the BTW model

Model-B : 2d generalization of the Oslo model.

The Oslo model defined above can easily be general-
ized to two dimensions. We take a triangular region of
a square lattice, the sites of which are indexed by (i, j)
with 4,5 > 1 and i + 7 < L + 1. The height of the pile
at site (¢,7) is denoted by h(i,j). Whenever the height
difference between site (i, j) and any of it’s neighbouring
sites exceeds a critical value z.(, j), assigned to the site
(i,7), there is a toppling at site (4,j) and one grain is
transferred from this site to the lower neighbouring site
towards the unstable direction. If there are more than
one unstable directions, grain is transferred towards the
greatest slope. If the two directions have equal slope val-
ues, one grain is transferred randomly towards any one
of these two directions. Whenever there is a toppling at
a site (,7), z.(4,7) is reset randomly, independent of the
history, to either 2 or 1 with probability p or ¢ respec-
tively, where p+ ¢ = 1. One grain is lost, whenever there
is a toppling at the boundary sites i.e., along i+7 = L+1
line. The model defined above in two dimensions is not
abelian because final stable configuration depends on the
order we topple the unstable sites. Grains are added only
at the corner site (1,1).

Model-C : The local limited model.

The local limited model [15] is a one dimensional model
defined as follows. The slope z; is defined as i.e., z; =
h; — hi+1. Whenever value of the slope z; at any site
¢ is higher than a critical value z., which we choose to
be 2, the site becomes unstable and two grains from the
unstable site goes to the right neighbour, i.e., h; — h; —2
and h;11 — h;11 + 2. Slope at any site may be negative
in the local limited model. Whenever there is a toppling
at site i = L (rightmost end), two grains go out of the
system simultaneously.

Grains are added uniformly everywhere. This model
is also not abelian. It is easy to see that in this case
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FIG. 1: Rice pile of size L = 5 after addition of 100 grains. All
grains are numbered whenever added in the pile. Minimum
slope is denoted by the thick line.

the maximum and the minimum slopes are 2 and 1 re-
spectively. Total number of recurrent configurations in
the steady state can be determined exactly, and varies as
L43—I;2 for large L [16]. Tt is known that the probabilities of
occurrence of various configurations in the steady state
is not equal, and may differ from one another by many
orders of magnitude.

Model-D : Model with non-nearest neighbour
transfer of grains.

Model-D is a variation of the model-C [15]. Whenever
value of the slope z; > 2 at any site ¢, the site becomes
unstable and two grains from the unstable site are
transferred to the right, one grain transferred to site
i+ 1 and the other one transferred to site i + 2, i.e.,
hi — hi — 2, hi—i—l — hi+1 +1 and hi+2 — hi+2 + 1.
If there is a toppling near the right boundary, grain
goes out of the pile. The order we relax unstable sites
matters. The grains are added uniformly everywhere.
The local slope can be negative as in model-C. The
minimum and maximum slope in this model are also 1
and 2 respectively.

The pile in all four cases is driven slowly, by adding
one grain per unit time, starting with the initial config-
uration of height zero at all sites. We assume that the
time interval between addition of two grains is chosen
long enough so that all avalanche activity has died be-
fore a new grain is added. The grain added at time n
will be labeled by the number n. We think of the grains
at a particular site as stacked vertically, one above the

other (Fig. 1). Whenever a grains is added at a site, it
sits on the top of the stack. When one unstable grain
leaves the stack, it is taken from the top of the stack. In
model-C, when two grains leave a site, we first take out
the topmost grain from the site and put it on the top of
right nearest neighbour stack, then we take the second
unstable grain and put it on the top of the first grain at
right nearest stack. In model-D, we transfer the unstable
grain, second from the top, to the right nearest neigh-
bour and transfer the topmost one to next to the right
nearest neighbour.

If a particular grain n enters a site ¢ at time ¢;,,(i,n)
and leaves the site at time ¢,,:(7,n), it’s residence time
T;(n) at site 7 is defined as the time spent by the grain at
the site ¢, i.e., T;(n) = tout(i,n) —tin(i,n). The residence
time of the n!* grain, T(n), is the total time spent by
the grain inside the pile. For a directed ricepiles in one
dimension where grains move only in one direction and
by one step in each toppling, the residence time T'(n)
equals to Zle T;(n) (e.g. in model-A and model-C).
We define the function Proby (T; > t) as the probability
that a new grain added in the steady state of the pile will
have a residence time at site j is greater than or equal
to t, and Probr(T > t) as the probability that its total
residence time in the pile is greater than or equal to t.
Clearly, we have Proby,(T; > 0) = Probr(T > 0) = 1.

3. RESIDENCE TIMES AT THE FIRST SITE IN
THE OSLO RICEPILE MODEL

The qualitative behaviour of distributions Proby, (T; >
t) for i = 1 can be seen in the simulation results shown
in Fig. 2 and Fig. 3. We have done our simulations for
p=q= % and different system sizes, L = 20, 25,35 and
50. We averaged the data for a total 10° grains added in
the pile for each L. Fig. 2 shows the plot of Proby, (T} >
t) versus time ¢ for different values of L. Interestingly,
various curves for different L have steps like structures.
The curves for different values of L cross each other many
times. The unusual non-monotonic behaviour is not an
artifact of statistical fluctuations. The statistical errors
in the data are much smaller than the step sizes except in
the tail region (i.e, t > 10°). The crossing of the curves
for the cumulative probabilities persists for quite large
system sizes also. In Fig. 3, we have plotted Proby, (T} >
t) versus t for two much bigger system sizes, L = 100 and
L = 200. We see that in this case also the probability
that a grain remains in the pile of size L = 100, for
time greater than or equal to 6 x 10°, is higher by a
factor 1.8 than for a pile, two times larger size L = 200.
Steps like structures are not log periodic as the height
and width of a step in each curve increases when going
down the curve even on the log scale. The existence of
several steps, whose positions and logarithmic widths are
different for different L’s, implies that simple finite size
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FIG. 2: The cumulative probability Probr (11 > t) versus
time ¢ for lattice sizes L = 20, 25,35 and 50 in the 1d Oslo
ricepile model. Total 10° grains were added.

le-02

le04

1e-06

Prob, (T, 2 t)

1e-08

10000 1e+06
t
FIG. 3: The cumulative probability Probr (11 > t) versus

time t for lattice sizes L = 100 and L = 200 in the 1d Oslo
ricepile model.
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scaling cannot hold in this case.

Relationship between residence times 77 and height
fluctuations.

We can understand the residence time distribution of
grains at any site in terms of the fluctuation of height at
that site. The h;(t) be the height of the pile at a site ¢ just
after the ' grain has been added. This is a stochastic
process and, in the steady state, it fluctuates in time
between a upper bound, h;,q., and a lower bound, A,y .
In case of the height fluctuation at site 1, hyq, = 2L and
hmin = L. The height hq(t) at the site 1 has a stationary
probability distribution which is sharply peaked near its
average value h1, and has the width 0, which is standard
deviation of the fluctuation of height h;. In the steady
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FIG. 4: Scaling collapse of various probability distributions
Probr,(Ahi) where Ah; is the deviation of height at site
1 about it’s average value, for different system sizes, L =
100, 200 and 400 for the 1d Oslo ricepile model.

state, the average value of hy varies as L, and the width
o, varies as L*!, where exponent wy < 1. For large L,
the probability distribution of h; has a scaling form as
given below.

Proby(hy) = L_“’lg(%) (1)

In Fig. 4 we have shown a scaling collapse of various
probability distribution of height at site 1, Probr,(Ahq),
where Ah; = hy — hy, for various values of system sizes,
L = 100,200 and 400 in the 1d Oslo ricepile model. We
get a good collapse using the scaled variable Ah/L“?
where w; ~ 0.25. Here the scaling function g(z) is nearly
Gaussian for x near zero. But very large deviations of hq
from the mean value are not well-described in the Gaus-
sian approximation. Later we shall argue that in the Oslo
model scaling function g(x) varies as exp(—|x|ﬁ) for

x> 1 and it varies as exp(—|x|ﬁ) for x < —1.

Let us consider variation of height h; at the first site
with time ¢ shown schematically in Fig. 5. Note that
hi1(t) is piecewise constant line segments, with possible
jumps at the integer time ¢. The value of hq(t) at time
t is denoted by y-coordinate of the line segment which
is just at the right of the coordinate ¢, e.g., h1(0) = 33,
hi(1) = 34, etc. A grain added at time ¢, when the height
at the first site is hy(t — 1), leaves the site at time t', we
must have hqi(t') < hi(t), and hq(t") > hq(t), for all ¢’
satisfying t < ¢/ < t/. As an example, for the time series
of hq(t) shown in Fig. 5, the grain added at ¢t = 14 stays
at site 1 upto time ¢ = 41 and then goes out of the site 1
at t = 42 (i.e., just after addition of the 42nd grain), and
so T1(14) = 28. As h1(13) = h1(12), the grain added at
t = 12 comes out immediately, and hence T3 (12) = 0.
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FIG. 5: Time fluctuation of height at first site is plotted as a
function of time in the 1d Oslo ricepile model for L = 20. The
horizontal line is at h1 = 33 which is the maximum probable
height. The first and second vertical lines are at t = 14 and
t = 42 respectively.

Let Probr(Th > t|h1) be the conditional probabil-
ity that a grain stays at site 1 for time greater than ¢,
given that it was added when the height was h;. Since
Proby,(hy) is the probability that height was h; when the
grain was added, we have the following, summing over all
possible values of h.

hmaz

Probp(Ty >t) = Y Proby(hy)Probr(Ty > t|h)

h1=hmin

(2)
But Probr, (Th > t|h1) can also be written as the con-
ditional probability that the height of the pile at site 1
would remain above h; for an interval > ¢, given that
the height is h; in the steady state. This probability
can be calculated from the general theory of Markov
chains as the probability of first return to a height less
than or equal to hi, given that we start with height hq
in the steady state, and add one grain per unit time.
The probability that no return has occurred up to time
t decreases as exp[—A(hy)t] for large ¢, where A(hy) is
the largest eigenvalue of the the reduced Markov matrix,
with rows and columns corresponding to configurations
with heights at site 1, below or equal to hj, removed
|17, [18]. While it is not very easy to calculate A(hy) ex-
actly, clearly it decreases as h1 decreases. For hy = hpqq,
it is +o00 as the height at the site cannot be higher than
hmae and T7 must always be zero. Also it is very small
for hy near A, as the pile returns to very low values

of hy only rarely.
For large ¢, in the sum in r.h.s. of Eq.(@), only terms
with hy near h,,;, make a significant contribution. In
this case, it is a reasonable approximation to replace the

function Probr,(T7 > t|h1) by a simple exponential, with
A(h1) = (T1)n,. Thus we write, for large ¢,

Probr,(Th > tlhy) ~ exp(—t/{(T1)n,) (3)

It is easy to write the conditional expectation value
of the residence time at the first site, (T )n,, given that
the grain was added at the height h; in terms of the
stationary probability distribution Probr,(h1) exactly as

(T, = Proby,(height > hq)
1k = p1Probr(hy)

(4)

where p; is the probability of adding a grain at site ¢ = 1.
When we add grains only at first site, p; = 1 and when
we add grains uniformly everywhere, p; = 1/L.

Proof : Define an indicator function n,; = 1, if the
nth grain is at height h; at time t, and zero otherwise.
Clearly, the sum of 7, ; over t is the residence time of
n'" grain at height h;. Then, averaging over n we get
the mean residence time. But the sum of 7, ; over n and
t both gives a contribution whenever there is a grain at
height hq, and hence is equal to NProby,(height > hy)
where N is total number of grains added and N is very
large. Dividing this sum by average number of grains
added at height hq, which is equal to p1 N Proby,(hy), we
get (T1)p,. Hence, Eq. @) follows.

We substitute this estimate of (T1)p, in Eq. [@). We
note that for large t, the terms in the summation that
contribute significantly correspond to hy near h,;,. For
these values of hy, Prob(height > hi) is nearly 1, and
(T1)n, may be replaced, with small error, by 1/Probr,(hy)
(see Eq. H). Then Eq. @) can be approximately written
as given below.

h'VrLO/(L'
Probr,(Th > t) ~ Z ProbL(hl)e*thbL(hl) (5)
hi=hmin

Thus, the distribution of residence times 7T; can
be expressed in terms of the probability distribution
Probyr,(hy) of height hy.

Behaviour of Probr (11 > t) for large t.

Now we shall use the knowledge of the behaviour of
Probr,(h1) to explain the step-like structures in the dis-
tribution function Proby (T} > t).

For h; < hi, the probability distribution of height
Probr,(hy) falls very rapidly. Actually, it will be ar-
gued in section 5 that for h; < hy the ratio Probr,(hy —
1)/Probr(hy) is of order exp(—aL?) where a is a con-
stant and hence is very much less than 1. The values
of Proby,(hy) for different hy’s could differ by several or-
ders of magnitude from each other, if h; is sufficiently
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FIG. 6: The cumulative probability Probr (11 > t) versus
time ¢ for lattice size L = 20.

near . Now in the interval of 1/Proby(hy — 1) >
t > 1/Probr(hi), only a single term corresponding to
h1 contributes significantly to the summation, and then
the summation is nearly independent of ¢. It is clearly
seen from Fig. 6, where Proby(T; > t) is plotted ¢ for
L = 20 in the 1d Oslo model. We can identify three steps
in the plot. Each step in the curve can be associated with
a unique value of hy (h1 = 28,29 and 30) and steps ap-
pear at the corresponding value of Proby(hy) along the
y-axis.

This explains the steps like structure of Probr(T) > t)
as a function of ¢. Also, the function decays roughly as
1/t since we must have Probr(hi) ~ 1/t for the term
to contribute in Eq. @). If hi(t) is the value of hy that
contributes most in Eq. (), the value of hj(t) is given
by the condition Probr(h}(t)) =~ 1/t. Substituting this
condition in Eq. (), we get

hi(t) —h
o100y gy ©

Thus the ¢ dependence of hi(t) comes through the scal-
ing variable tL~“! = 7 (say). Then for 7 large the argu-
ment establishing the 1/t dependence of Probr(t; > t)
given above is quite robust. However more careful anal-
ysis of Eq. @) shows that there is also a logarithmic
multiplicative correction factor with the 1/t decay of
PT‘ObL(Tl 2 t).

For large L and t, the terms, which contribute to
Probr,(Th > t) in Eq. (H), correspond to the values of
hy for which hy < hy. Substituting the scaling form
of Proby(h) = L—}ﬂg(%) (see Eq. @) in Eq @) and
putting z = (h — hy)/L“", we get the following.

Proby,(Th > 7L“Y) ~ /d:vg(:v) exp[—g(x)r] (1)
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FIG. 7: The cumulative probability Probr(Th > t) for resi-
dence time at the first site has been plotted against the scaled
residence time /L% for lattice sizes L = 300,400 and 500
in the 1d Oslo ricepile model. Total 107 grains were added.

where 7 = t/L“1. We have assumed that the probability
distribution Probr(h;) < 1, but is not rapidly decay-
ing so that Probr(hy — 1)/Probr(hi) = 1, and then the
summation of Eq. () can be replaced by an integral over
the scaled variable z. Actually in the real simulation (or
experiment) for large L, this is the region of ¢ we explore,
we cannot go too far down the tail of Proby (17 > t).

Now it is easy to see the origin of logarithmic correction
if we choose a particular form of the scaling function g(z)
as exp(—|z|*) for z <« 1, with o > 0, and try to find
out the large t behaviour of the above equation in terms
of the scaling variable 7 = t/L“'. We first substitute
s = exp(—|z|*) in Eq [@) and get,

1 d
Probu(Ty 2 7L ~ - [ T exp(-sr) (9
aJ [=in(s)] =
The asymptotic behaviour of the of the above integral
for 7 large is easy to evaluate, giving

a—1

Probr(Th > 7L¥") ~ 1/7(lnT) "= (9)

In Fig. 7 we have plotted Proby,(Ty > t) against scaled
variable t/ L with w; = 0.25 for large values of system
sizes L = 300,400 and 500 in the 1d Oslo model. We fit
the scaled curves with a functional form given in Eq. ()
with @ = 2 since the scaling function g(x) is Gaussian
near x = 0.

Now it is clear that there is a logarithmic multiplicative
factor in 1/t decay and we take account of this logarith-
mic multiplicative correction by writing the cumulative
probability as given below.

Proby (Ty > t) ~ L*[tlog® (tL~<1)]~! (10)



100
. Lo
e L=50 -
* *%
- 001 t 5/(X log(x)**0.75)
/\L
£ 00001
Ko)
£
1e-06 t
1e-08
le-10 — L s ‘
1 100 10000 1e+06
t/LO.25

FIG. 8: The cumulative probability Probr(Th > t) for resi-
dence time at the first site has been plotted against the scaled
time t/L%?5 for lattice sizes L = 20,25,35 and 50 in the 1d
Oslo ricepile model. Total 10° grains were added.

where we have used the fact that the answer is function
of the scaling combination tL~** and §; = (a—1)/a. As
a check we calculate the average residence time at site 1
as given below.

T, max
<T1> >~ / PTObL (Tl Z t)dt ~ L1 ln(Tl,maz)1751
1

(11)
The upper cutoff on the timescale is provided by
1/Proby,(h = hmin), which is the average time interval
between successive returns to the minimum height. As-
suming the scaling function g(z) varies as exp(—|z|®) for
r < —1 and then putting T} ,nar = exp[kL*(1=%1)] in the
above equation, we see that (77) is proportional to L.

For the 1d Oslo model, numerical estimate from the
simulation gives wi ~ 0.25. Assuming the value o =
4 (argued in section 5), we get §; ~ 0.75. In Fig. 8
we have plotted Probr(T1 > t) versus a scaled variable
t/L“ where w; = 0.25 for L = 20,25,35 and 50 and
fitted the envelop formed by steps in the curves with a
function 1/2(Inx)%* where ; = 0.75. We see that we get
a reasonable fit to the data. We note that the multiplying
logarithmic factor is necessary to get a good fit to 1/t
dependence.

4. THE DISTRIBUTION OF RESIDENCE TIMES
T IN THE OSLO MODEL.

The arguments given in the previous section are easily
extended to distribution of the residence times T; with
i # 1, and we conclude that they would also have a simi-
lar 1/t distribution with same logarithmic correction fac-
tor which is for 77, so long as i is not near the right end.

Hence the distribution of their sum 7" =), T; would also
be of same form.

Even though the cumulative distribution of residence
times T; at any site ¢ has steps like structure, the step-
structure may be washed out in the sum ), 7;.

Results of the numerical simulation for distribution of
the total residence times using a total 5 x 107 grains are
shown in Fig. 9. We see that the steps are not seen in
the distribution Proby (T > t) for different values of L
for the range of the total residence times reached in the
simulation (7' < 10%). The function Probn(T > t) is
much smoother than the function Probr(Ty > t). How-
ever for small values of L (say for L < 20), various curves
of Probr, (T > t) still cross each other at large times. But
for larger values of L, we don’t see any inter-crossing of
the curves in the times reached in our simulation (ex-
cept at the tail where the data is less reliable due to the
statistical fluctuations).

In analogy with results for the the distribution of 77,
We can expect the behaviour of the cumulative distri-
bution Probr(T > t) to be a scaling function of t/L*,
where the exponent w is different from w; defined earlier.
So we write

t

Proby(T > 1) = f(5

) (12)
where the scaling function f(z) varies as 1/[z(logz)?]
for large x, and the exponent § would also be different
from §; defined earlier. Using the condition that the
mean residence time in the pile is equal to the mean
active mass in the pile, and hence scales as L2, can be
used to determine § in terms of w and v by integrating
Probr, (T > t) over t upto the cut-off time scale exp(kL7).
Now we get,

§=1-(2-w)/y (13)

In Fig. 10 we have plotted Proby (T > t) versus scaled
variable t/L¥ where w =~ 1.25 [10]. We get the value of
0 approximately equal to 0.81 from Eq. (&), assuming
~v = 3 (argued in section 5). The fit is seen to be very
good. In the numerical analysis of Christensen et. al. 4],
no logarithmic factor was used, and the data was fitted
with a larger effective exponent, i.e. , 1/t1:22 decay.

5. PROBABILITY OF MINIMUM SLOPE IN THE
OSLO MODEL

The function Proby,(hy) can be exactly calculated nu-
merically for small L using the operator algebra satisfied
by addition operators [13]. We denote any stable config-
uration by specifying slope values at all sites from i = 1
toi =L, e.g., [122.....21). Whenever slope z; becomes 2
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FIG. 10: Scaling collapse of Probr (T > t) versus scaled res-
idence time t/L**® in the 1d Oslo ricepile model for lattice
sizes L = 20, 25,35 and 50. Total 5 x 107 grains were added.

after additions or toppling at site i, we denote such slope
by 2, i.e., |...2...). “Bar” denotes that the site may topple
or become stable with probability g or p respectively.

Using these two toppling rules repeatedly and the
abelian property of the 1d Oslo ricepile model, we can
relax any unstable configurations. For example, if we
relax |22) for L = 2, we get the following sequence,
122) — p|22) +4|12) — p°|22)+pq|12)+pg|12) +¢*(21) —

.= p*22) + (p + p*)ql12) + (p + p*)¢?[21) + (p +
p*)q*|02) + (1 +p)g*[11).

The probability of maximum slope configuration (i.e.,
when hy = 2L) can be easily calculated. We start with
the unstable configuration |22...2). The probability that
no site topples in this unstable configuration is p* and
this is the probability of the maximum slope configu-
ration (i.e. h; = 2L) in the steady state. That this
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FIG. 11: Probability of occurrence of minimum slope config-
uration, calculated exactly, is plotted versus system sizes L in
the Oslo ricepile model in the semi log scale. We calculated
for L =1 to 12.

probability varies as exponentially with L can be incor-
porated in the scaling hypothesis by assuming that the
scaling function g(z) in Eq. ([l) varies as exp(—axﬁ)
for £ > 1 where a is a constant.

The probability of the minimum slope configuration
cannot be calculated so easily. However we argue below
that this probability asymptotically varies as exp(—+L?)
where x is a constant.

Firstly, the above calculation for L = 2 showed that, in
the steady state, the probability of the minimum slope
configuration is O(q*). For L = 3, we calculated this
probability explicitly [19] which is O(¢q'?). Similar anal-
ysis, for other values of L = 1 to 20, shows that the
probability of minimum configuration is O(g™r ), where
m, is exactly given by the formula L(L+1)(L+2)/6. The
coefficient of ¢t in the probability is harder to compute
explicitly for large L. We conjecture that this simple for-
mula holds true for all L. Then for sufficiently small ¢,
the probability of minimum height configuration in the
1d Oslo model varies as exp|—r(q)L3], where k(q) is a
g-dependent function. Then, as there is no change in the
behaviour of the Oslo ricepile expected, as a function of
¢, this behavior should persist for all non-zero ¢q. For
the scaling function, this would imply that g(x) varies as
exp[—li(q)|x|ﬁ] for z > 1.

We have calculated, Proby (slope = 1), i.e. , the prob-
ability of the minimum slope configuration, exactly nu-
merically for ¢ = 0.50,0.60,0.75 for L = 1 to 12 and the
logarithm of Proby(slope = 1) has been plotted versus
LLADIA2) 3 pig. 11.

More specifically, consider a very low-slope unstable
configuration |11...12) which has total L number of grains
with slopes 1 at all sites except at the last site with slope 2
and estimate the probability to go to the minimum slope
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FIG. 12: The residence time distribution Probr(T,, > t) of
grains at the corner site versus time t in model-B for lattice
sizes L = 12,15 and 20. Total 10° grains were added.

from this configuration. To do this, we have to remove L
grains, and each grain has to be moved a distance of O(L)
on the average. Thus we need O(L?) steps for large L,
and each step requires a factor ¢ in probability. Actually
the probability of transition from this configuration with

height hypin 41 to the minimum slope configuration (with
L(L+1) L(L+1)

height hpmin) is O(¢— =z ) and the coefficient of ¢~ =
in this case is exactly 1. Now the probability of minimum
slope can be written in a general form as given below.

Prob(slope = 1) ~ exp|—k(q).L?] (14)

where £(0) = oo and k(1) = 0. The different asymp-
totic behaviour of large deviations in g(z) is somewhat
unexpected, but has been seen in other problems, such
as distribution of the large deviation of current in the
asymmetric exclusion process in a ring [20].

6. GENERALIZATION TO OTHER MODELS

In this section we present the simulation results in
other models and show that the cumulative distributions
Probr,(Th > t) and Probr(T > t) have same 1/t power
law behaviour for large ¢, but with different logarithmic
corrections.

Model-B : Ricepile model in two dimension.

Now we present the simulation results for 2d ricepile
model. We add marked grains at the corner site, i.e., at
(1,1). We simulated this model choosing p = 0.75 and
g = 0.25, and study the residence time distribution of
grains at the corner site (1,1). The standard deviation
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FIG. 13: The cumulative probability distribution function
Probr (T, , > t) versus scaled scaled residence time T, , /L°
in model-B for lattice sizes L = 12,15 and 20. Total 10°
grains were added.
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FIG. 14: The residence time distribution Probr (T > t) in
model-B for lattice sizes L = 12,15 and 20. Total 10° grains
were added.

Ohy of height h,, at the corner site about the mean
varies as L“! where we estimated w; ~ 0.2 from the sim-
ulation. We added total 106 grains.

We have plotted various curves for cumulative distri-
bution function Probr(Ty1 > t) of residence time 77 ;
at the corner site versus times ¢ for L = 12,15 and 20
in Fig. 12 and we see steps like structure appearing for
t > 50. Various curves for different L inter-cross each
other many times as seen in the 1d Oslo ricepile model.
In this case also, steps like structures are not log pe-
riodic as the step-length in each curve increases on log
scale when going down the curve. Any simple finite size
scaling does not work as in the case of the 1d Oslo ricepile
model. However in the Fig. 13 we plotted various cumu-
lative distributions Proby, (11,1 > t) versus a scaled time
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FIG. 15: Scaling collapse of various Probr (T > t) versus
scaled variable t/L*° in model-B for lattice sizes L = 15,20
and 27. Total 10° grains were added.

t/L“" with w; = 0.2. We see that decay of the envelop
formed by various steps in different curves fit well with
the function 2/[z(Inx)°5] where the logarithmic correc-
tion factor is according to Eq. ([@).

Using a similar argument to the 1d Oslo model, in this
case, we must have v = 4. To get to the minimum slope
configuration, we will have to topple O(L?) grains and
each grain O(L) times. As the average mass of the pile,
in this case, varies as L3, Eq. () is modified as given
below.

0=1-(3-w)/m.

In Fig. 14 we have plotted various distribution of the
total residence time, Probr (T > t), versus time ¢ for dif-
ferent L = 12,15 and 20. In Fig. 15 we have plotted
Probr, (T > t) for different L against the scaling vari-
able t/L* where w =~ 2.0. Now we can estimate § to
be approximately 0.75 from the above equation. In Fig.
15 we fit the scaling function for Probp(T > t) with
0.2/[z(In2)%75] which seems to be a reasonable fit.

Model-C : The Local limited model.

Residence time 77 : Since in model-C, grains are
added randomly everywhere in the pile, average resi-
dence time (T )p, of a grain added at height hy varies as
1/[p1Probr,(h1)] according to Eq. (@l). Now there will be
an extra 1/L factor inside the exponential in the Eq. [{@).
Consequently the scaling variable 7 = ﬁ in Eq. (@) is
replaced by 7 = ﬁ and Eq. [@) is modified to

(InT)" 5"

Probr,(Ty > 7L'T1) ~
-

(15)
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FIG. 16: The cumulative probability Probr (11 > t) versus
time T4 for lattice sizes L = 25,50 and 100 in model-C. Total
10% grains were added.

Similarly average residence time at the first site equals
to (h1)/p1 (proof is similar as for (T%), in Eq. Hl) which,
in this case, varies as L?. This can be checked directly
by integrating the above equation upto the cutoff time
scale as done in Eq. ().

Total number of grains added in the pile are different
for different L so that 10° grains are added at the first
site. The standard deviation o, of height fluctuations
at the first site varies as L“* with system size L, where
w1 ~ 1/3 [21]. We have plotted Probr (T > t) for differ-
ent values of L in the log-log scale in Fig. 16. We note
that, unlike in the 1d Oslo ricepile model, the cumulative
probability here is smooth (except at the tail due to sta-
tistical fluctuations) and monotonic function of L for a
fixed ¢. This is due to the fact that the probability distri-
bution Probr(hi) of height at first site is not as sharply
decaying function for h; < h; as it was in the 1d Oslo
model. In fact, in Fig. 17 we get a good scaling collapse
of various Probr(Ty > t) for different L using the scaled
residence time t/L'*t“1 where w; ~ 1/3. The scaling
function is fitted well with the function 1/[z(Inz)(®=1)/e]
for x > 1, taking o = 2 (see Eq. ([@)).

Total residence time 7' : In Fig. 18 we have plot-
ted various Proby (T > t) versus residence time t for
lattice sizes L = 50,70 and 100. Total 10° grains were
added in this case. In Fig. 19 we have collapsed vari-
ous Probr (T > t) for different L using the scaled vari-
able t/L* where w ~ 1.5. We fit the scaling function of
the cumulative distribution with 1/2z[In(2z)]° for z > 1
where ¢ ~ 0.63.
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FIG. 17: Scaling collapse of Probr (11 > t) for lattice sizes
L = 25,50 and 100 in model-C. Total 10° grains are added.
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FIG. 18: The distribution function Probr (T > t) versus time
t in model-C for lattice sizes L = 50,70 and 100. Total 10°
grains were added.

Model-D : Variation of the Local Limited model.

In the model-D, the standard deviation o, of the
hight fluctuation at site 1 scales with L as L“' where
we found wy ~ 0.53. In Fig. 20 we have plotted various
Probr,(Ty > t) against the residence time ¢ at the first
site for L = 75,100 and 130. We added 10* grains at
the first site. In Fig. 21 we have plotted Proby (11 > t)
versus scaled time t/L1T“1 with w; ~ 0.53 and get a
good scaling collapse of all the curves for various L. We
fit the scaling function with 0.73/[0.5z(In0.52)(@~D/e],
using Eq. @) and putting o = 2, as done in the model-C.

In Fig. 22 we have plotted various Probr (T > t) for
the total residence time versus ¢ for lattice sizes L =
50,70 and 100. Total 10° grains were added in this case.
In Fig. 23 we have plotted Probr (T > t) versus scaled
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FIG. 19: Scaling collapse of Probr (T > t) versus scaled time
t/L*® for lattice sizes I = 50,70 and 100 in model-C. Total
10% grains were added.
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FIG. 20: The cumulative probability Probr (11 > t) versus
time ¢ for lattice sizes L = 75,100 and 130 in model-D. 10*
grains were added at the first site.

time t/L* where w =~ 1.5 and we get a good collapse for
the scaling function which fits reasonably well with the
function 0.34/2x[In(2x)]° for § ~ 0.63.

11. SUMMARY AND CONCLUDING REMARKS

To summarize, in this paper, we studied distribution
of the residence times of grains in various ricepile mod-
els. We reduced the problem of finding the residence time
distribution of grains at a particular site to that of de-
termining the distribution of first return time of height
at the site to the same value. The result that the prob-
ability of the residence times T; at site ¢ or the total
residence time T' in the pile, being greater than or equal
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FIG. 21: Scaling collapse of Probr (11 > t) for lattice sizes
L = 70,100 and 130 in model-D.
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FIG. 22: The cumulative probability Probr (T > t) versus
time ¢ for lattice sizes L = 50,70 and 100 in model-D. Total
10° grains were added.

to t, decay as power law 1/t is valid for a large class of
sandpile models, where height fluctuation at a particular
site grows with the system sizes, and is independent of
dimensions. It depends only on the fact that there are
some deeply buried grains which come out only in rare
fluctuations, i.e. , slope of the pile becomes very close to
the minimum slope. It is important to note that, since
the total residence time T is sum of T;’s, the probability
of T = 0 is very small, and clearly our analysis can-
not predict the behaviour of the cumulative probability
Probp(T > t) for t < L*.

We also found that cumulative probability Probyr, (Th >
t) is non-monotonic with system size L for any fixed
t for some of the ricepile models. The non-monotonic
behaviour of the cumulative probability distribution
Probr(T; > t) of residence times at site ¢ with system
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FIG. 23: Scaling collapse of Probr (T > t) against the scaled
variable t /L for lattice sizes I = 50, 70 and 100 in model-D.

size L is possible when the probability distribution func-
tion Proby,(h;), where h; is the height at site i, sharply
decays for h; < h;. However this non-monotonicity is
seen only for ¢t > ¢*(L) where t*(L) increases with in-
creasing values of L, and hence may be harder to observe
in real experiments.

It is important to note that if we change the transfer
rule of grains, the distribution of residence times may
change completely. The rule, chosen in this paper is
called first-in-last-out rule. We may employ some other
rules, such as the first-in-first-out rule, adding the grain
at the top of the stack but take out grains from the bot-
tom of the stack. A different rule would be to add and
take out grain from a stack in random order. In these
cases, there are no sites with deeply buried grains and
the residence time distribution will be similar to that in
the critical height models studied earlier by us.
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