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Abstract

We de%ne restricted ensembles, called pico-canonical ensembles, for a statistical-mechanical
description of the metastable and glassy phases. In this approach, time evolution is Markovian,
with temperature dependent rates. Below a particular glass temperature, the system is strongly
non-ergodic, and the phase space breaks up into a large number of mutually disconnected sec-
tors. Averages are calculated over states within one such sector, and then averaged over sec-
tors. As a soluble example, we calculate these explicitly for a one-dimensional lattice gas with
nearest-neighbor couplings.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is perhaps not an exaggeration to say that the general principles of determining
equilibrium properties of systems are quite well understood by now. Given a system of
N molecules, interacting with each other with a given pair potential, one has to calculate
the partition function. Various thermodynamic quantities such as pressure, speci%c heat
can be obtained by di3erentiating the free energy with respect to appropriate variables.
When the exact calculation of partition function is not possible, di3erent approximation
schemes such as weak- or strong-coupling expansions, mean-%eld or other variational
approximations can be used to get the qualitative and quantitative behavior.
This procedure, however, fails completely for metastable phases, such as diamonds or

ordinary glass. This is because, the partition function, if correctly calculated, would only
give properties of crystalline states of graphite, or quartz, respectively. In the standard
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Bolzmann–Gibbs prescription, if the system could easily explore all parts of the phase
space available to it, the probability that the system will be found in a con%guration
corresponding to the diamond or the glassy structure, is negligible. The reason for the
failure of the Boltzmann–Gibbs prescription is non-ergodicity [1]. The system in the
glassy state is said to be trapped in a local minimum of the free energy. 1 Transitions
away from a local neighborhood of these states occur at very slow rate (the time scale
in case of window-glass is centuries). Once the system gets out of these trapping states,
it is very unlikely to return to them, and these states do not have a signi%cant weight
in the equilibrium state, which may be de%ned as the very-long-time steady state.
However, these states determine the averages of macroscopic quantities measured at
the laboratory time scales, quite di3erent from the “truly long-time averages”, calculated
correctly by equilibrium statistical mechanics.
Usually, one treats glasses as system relaxing to equilibrium very slowly, and there

is a lot of interest in the study of such slow relaxations. On the other hand, the prop-
erties of a piece of diamond, or glass do not change appreciably over a period of days,
or years. An experimentalist can put them in a calorimeter, and measure the speci%c
heat, or apply pressure to determine the bulk modulus. But for a theorist, these are
non-equilibrium states of matter, and notions like free energy are not “well de%ned”. In
this paper, we show how the conventional framework of equilibrium statistical mechan-
ics can be extended to include a description of such systems, and look upon glasses
and diamonds, not as evolving to equilibrium, but as in equilibrium.
The macroscopic description of the glassy state should involve only a small number

of variables, and certainly not the precise speci%cation of positions and momenta of
all the atoms. Hence, we necessarily deal with only a probabilistic description giv-
ing the probability of occurrence of di3erent microstates. However, the ensemble of
available microscopic states must to restricted to those which are “nearby”, and are
accessible to the system within times comparable to the experimental time scales. Such
an ensemble in these systems is much smaller than the corresponding microcanonical
ensemble. The ratio of number of states in one such ensemble to that of the standard
micro-canonical ensemble decreases exponentially with the size of the system. We shall
call such ensembles pico-canonical ensembles.
While the general idea outlined above is well known, and accepted, it has not been

possible so far to de%ne precisely this concept of restricted ensembles in a way which
allows calculation of such partition functions, and thus determine the averages in any
nontrivial case, with short-ranged interactions. This is what we shall try to do here
for the simple toy model of Ising spins on a line, with nearest-neighbor interactions,
and a non-ergodic dynamics [2,3]. In this paper, we will argue that this analytically
tractable model provides a useful paradigm for the statistical description of the glassy
phase. We shall not attempt to review here the very large body of work which already
exists dealing with glasses and spin-glasses (see for example Ref. [4]).
The key observation here is to note that the processes operating in a glass may be

divided into two classes: fast and slow. Fast processes are those whose time scales are

1 This has to be de%ned as a function of a small number of observables, after integrating over all other
degrees of freedom.
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much shorter than that of observation, e.g. the vibratory motion of atoms about their
mean positions. Slow processes are those involving rearrangement of atomic con%gu-
rations, particle- or vacancy di3usion, creep, etc. To de%ne a quasi-equilibrium state
of glassy systems, we have to imagine that “all the fast things have happened”, and
the slow things have not even started (see for example Ref. [5]). To be precise, we
postulate that the system dynamics is such that if the slow processes do not occur
at all, the dynamics becomes non-ergodic and the phase space breaks up into a large
number of disconnected pieces, called sectors. The number of such sectors increases
exponentially with the size of the system. We shall call such system many-sector
decomposable (MSD), and in pico-canonical ensembles we sum over only one of these
disconnected sectors.
We can explicitly compute the partition functions corresponding to such pico-

canonical ensembles in our simple model. These can, and do, vary from sector to
sector. Which one corresponds to the experimental system? A precise speci%cation of
the sector is not possible in a macroscopic description. As the number of sectors grows
exponentially with system size, one would need order N binary bits just to characterize
the sector, where N is the number of atoms in the system. In an experiment, one can,
at best, hope to give some speci%cation of how the system is prepared. In a theoretical
calculation, this implies that in addition to calculating the free energies in di3erent
sectors, given the cooling schedule etc., one has to also determine the probability dis-
tribution that one ends up in one of the many sectors. Thus, the free energy must then
be further averaged over sectors with a suitable weight for each sector, which will
depend on the history of the system etc.
This averaging is similar to that over quenched disorder in the usual approach to

glasses, but this disorder is a self-generated. Also, as we shall see in our model, the
“frozen degrees of freedom” need not be frozen in real space. The relative weight of
di3erent sectors is not an additional input to calculation, but is determined by the model.

2. The model

The model we shall choose to address these issues is a very simple one. We consider
N hard-core point particles on a linear chain of L sites. There is an attractive interaction
amongst the nearest-neighbor particles of strength J . The Hamiltonian of the model is
given to be

H =−J
L∑

i=1

nini+1 ; (1)

where ni is 1 or 0 depending on whether the site i is occupied or unoccupied. Clearly∑
i ni=N . We assume that the system evolves in continuous time by a local Markovian

dynamics. We shall choose the transition rates to satisfy the detailed balance condi-
tion. Then, in the steady state all accessible con%gurations occur with their Boltzmann
weights.
Now for a more detailed speci%cation of the allowed transitions: We assume that

the particles can di3use to nearby sites either by simple or by assisted di3usion.
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In simple di3usion, a particle at site i can jump to an empty neighbor with a rate
�1 exp(−LE=2kT ), where LE is the change in the energy of the con%guration, and T
is the temperature of the system. This may be represented by the equation

01→ 10 : (2)

In the case of assisted di3usion, two adjacent occupied particles (a dimer) can jump
together one step left or right with a rate �2 exp(−LE=2kT ). Then this process can be
represented by a “chemical” equation

110←→ 011 : (3)

However, these pairings are transient, and the dimers can “reconstitute”. Thus, for
example, in the sequence of transitions

::11010::→ ::01110::→ ::01011:: (4)

the middle particle is %rst paired with particle on the left, and then in the second
transition with the particle on the right.
Our reaction rates have been chosen to satisfy the detailed balance condition, and

so the steady-state properties of the system do not depend on the precise values of �1

and �2. The probability of di3erent con%gurations in the long-time state starting with a
given initial con%guration is immediately written down. It is proportional to exp(−�H)
for all con%gurations within the sector in which the initial con%guration lies, and 0 for
others. We assume that �1 has a strong dependence on temperature, so that it is
e3ectively zero for all temperatures T ¡TG, but is non-zero for temperatures greater
than TG. �2 may be assumed temperature independent. Thus, at low temperatures, this
model reduces to a system of di3using reconstituting dimers (DRD) [2].
The assumption that monomers have a much lower di3usivity than dimers at low

temperatures makes the model mathematically tractable, is untypical, but not unphysical:
for example, platinum dimers on some surfaces have higher mobility than monomers.

3. Calculation of the number and sizes of sectors

For of linear chain of L sites, the phase space consists of 2L distinct con%gurations.
The conservation of particle number implies that the total phase space can be broken
into (L + 1) disconnected parts, each corresponding to a di3erent value of the total
particle number. For T ¿TG, it is easy to see that all con%gurations having the same
number of particles can be reached from any one of them.
However, for T ¡TG, the number of disconnected sectors becomes much bigger.

The number of sectors increases as exp(L). This is easy to see. All con%gurations
having only isolated 1’s in a background of 0’s, with no dimers cannot evolve at all.
For example, : : : 0010100010001 : : : cannot evolve, and constitutes a sector, with only
one con%guration in the sector. The number of such con%gurations increases as exp(L),
and provides a lower bound on the total number of sectors (Fig. 1).
The decomposition of phase space into disjoint sectors is described most simply

in terms of a construct called the irreducible string (IS) [6–8]. With each of the 2L
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Fig. 1. An example of breakup of phase space into sectors when monomer di3usion is not allowed. There
are only six con%gurations in this sector of the phase space for L = 11; N = 6. All con%gurations have the
same irreducible string 101001010. The rates of transitions amongst them are shown. In the steady state,
their weights in the partition sum are u2 : u2 : u : u2 : u2 : u, where u = exp(�J ).

possible con%gurations of the DRD model, we attach a binary string, called the IS
corresponding to that con%guration, constructed as follows: we read the L-bit binary
string of ni specifying the con%guration from left to right until the %rst pair of adjacent
1’s is encountered. This pair is deleted, reducing the length of the string by 2. This
process is repeated until no further deletions are possible. The resulting string is the IS
for the con%guration. For example, for the binary string 01001110110, the irreducible
string is 0100100.
By construction, for each con%guration, there is a unique IS. If a dimer di3uses, the

IS is not changed. Thus the IS is a constant of motion. It is easy to show that two
di3erent con%gurations belong to the same sector, if and only if they both have the
same IS. The IS thus provides a unique label for each sector.
The DRD dynamics can be viewed as the exclusion process of a system of 3 species

A, B and C of particles on a line. In this process each site of linear chain is occupied
by a single particle, which may be of type A, B, or C. We set up a one-to-one
correspondence between the con%gurations of the DRD model, and of the exclusion
process as follows: read the binary string of the DRD from left to right, and use the
substitution rules 11 → A; 10 → B; 0 → C. The stochastic evolution rule in terms of
the exclusion process con%gurations is simply that a particle of type A can exchange
position with a particle of types B or C at an adjacent site. Types B and C cannot
exchange positions with each other. This model thus is a special case of the k-species
exclusion process [9–11].
The conservation of IS in this language corresponds to the simple statement that as

B and C type particles cannot exchange places, their relative order is unchanged in
time. Starting with an initial con%guration speci%ed by a string composed of three
characters A, B and C, deleting all the occurrences of A’s in the string, we are
left only with a string composed of B’s and C’s which is conserved by the
dynamics.
In terms of the exclusion process, it is quite straightforward to write down the

formulas for the number of distinct sectors for the DRD model, and also the number of
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con%gurations in each sector. In a sector having NA particles of type A, the length of
the IS is L− 2NA. The number of unpaired 1’s is NB = N − 2NA, and the number of
type C particles is NC = L− 2N + 2NA.
The number of con%guration within a sector with a speci%ed IS, say I =

BCCCBBCBC : : : ; is the number of ways we can place NA A’s between (NB +NC) B’s
and C’s. So this number is

�(NA |I) = (NA + NB + NC)!=[NA!(NB + NC)!]

= (L− N + NA)!=[NA!(L− N )!] : (5)

The number of di3erent sectors having a given value of NA is the number of
distinct ways of writing the IS consisting of NB B’s and NC C’s. This number is
(NB + NC)!=(NB!NC!). The numbers NB and NC are known once NA is known. To
calculate the total number of sectors, we have to sum the number of sectors for
06NA6N=2.

4. Calculating partition functions

Let Z(N; L |I) be the partition function for a linear chain with L sites with N atoms,
in a sector corresponding to IS I. Then Z(N; L |I) is a polynomial in u = exp(�J ).
We de%ne the generating function

Z̃(x; z; u |I) =
∞∑

L=1

L∑

N=0

xLzNZ(L; N |I) : (6)

It is easy to see that the generating function for the IS I′ = XI, where X = B or
C factorizes simply as

Z̃(x; z; u |XI) = wX Z̃(x; z; u |I) ; (7)

where wB sums over substrings reducible to B, i.e., 10 + 1110 + 1111110 : : : ; giving

wB = x2zu=(1− x2z2u2) : (8)

Similarly, we have

wC = x + x3z2u=(1− x2z2u2) : (9)

If the number of B’s and C’s in I is NB and NC , respectively, we have

Z̃(x; z; u |I) = wNB
B wNC+1

C =x : (10)

As a simple check, we see that the generating function for the null string is wC=x.
For temperatures above TG, we have to sum over all possible IS. This is easy.

We note that a formal series over all possible string of B’s and C’s can be formally
summed as

∞∑

n=0

(B + C)n = 1=(1− B− C) : (11)
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Replacing B by wB, and C by wC , this immediately gives the partition functions for
T ¿TG as

Z̃(x; z; u | ·) = wC=[x(1− wB − wC)] ; (12)

where the unspeci%ed IS represented by the dot indicates a sum over all possible IS.
To get Z(L; N ), we have to evaluate the coeQcient of xLzN in the above expression.
For large L this varies as �L, where 1=�= xc, the singularity nearest to origin of (12).
This gives us �(z; u) as the solution of the quadratic equation

�2 − �(1 + zu) + z(u− 1) = 0 (13)

a result which is also obtainable directly by the transfer-matrix method. The activity z
is determined using the condition z@ log �=@z = N=L. For simplicity, we discuss below
the special case N = L=2. This corresponds to the activity being given by the equation

z = 1=u for N=L= 1=2 : (14)

In the language of spin models, this case corresponds to a simple Ising chain with
no external %eld. It is straightforward to determine di3erent averages, and correlation
functions. Di3erentiating � with respect to u, we get the average energy E as a function
of u

E =− J
√

u
2(
√

u + 1)
for T ¿TG : (15)

Similarly, we calculate the average number of substrings of the type 01n0 per site.
For n = 0, this number is 1=(2�). For n¿ 0, it is 1=(2u�n+1). Summing over the odd
values of n, we get that the fractional number of nB = NB=L in a typical con%guration
is given by

nB =
1

2(1 + 2
√

u)
for u¡u0 : (16)

Above TG, the system can explore all con%gurations with di3erent IS, and the average
value of NB decreases with decreasing temperature. As we cool the system just below
TG, transitions that change IS are no longer possible. Hence the system will remain in
one sector, and the average value of nB remains constant

nB =
1

2(1 + 2
√

u0)
for u¿u0 (17)

where u0 = exp(J=kTG). There are (L− N )!=(L− N − NB)!NB! equivalent sectors. The
available phase space to the system shrinks by this factor as the temperature falls below
TG. The logarithm of this quantity gives us the component of entropy that gets frozen
at the glass transition. In our special case N = L=2, this expression simpli%es, and the
frozen entropy per site is

LSfr = 1
2H (2nB) ; (18)

where H (x) =−x log x − (1− x) log(1− x).
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For T ¡TG, we have to calculate the pico-canonical partition function in one of
these sectors. This is easily evaluated using Eq. (10). Since it only depends on NB and
NC , and these have only O(

√
L) Ructuations between di3erent sectors, we see that the

pico-canonical free energy in each of these sector is the same. Averaging over di3erent
sectors is then trivial, and has no e3ect. The average energy is a continuous function
of temperature at TG.
Within a given sector, the relative weights of di3erent con%gurations are functions

of temperature, and the average energy and entropy decrease with temperature. The
temperature dependence of average energy can be determined from Eq. (10), or directly
as follows: There are exactly (L − N ) zeroes in a con%guration. Let the number of
type A particles that are followed by a type-C particle be K . (We shall include in this
count a type A particle at the end of chain.) In the con%guration, the energy of the
con%guration is (−N +NB+K)J . There are (NC +1)!=K!(NC−K+1)! ways of putting
the K particles just left of NC + 1 symbols (treating the end mark as a 0). Then, for
any such choice, we have to distribute (NA−K) additional dimers left of these NB+K
symbols. This is the standard problem of distributing m identical balls in n boxes, with
more than one ball in a box allowed. The answer is (m+ n− 1)!=[m!(n− 1)!]. In our
problem, the dimers can be distributed in (NA+NB−1)!=(NA−K)!(NB+K−1)! ways.
This gives us

Z(L; N |I) =
NA∑

K=0

(NA + NB − 1)!(NC + 1)!
(NA − K)!(NB + K − 1)!K!(NC − K + 1)!

uN−NB−K : (19)

As a simple check, we can verify that this correctly gives the partition function of the
sector shown in Fig. 1.
In the limit of large L, we can use steepest descent to evaluate this sum. The

maximum contribution comes from K = kL, where k satis%es the equation

k(nB + k) = (1=2u)(1− nB − 2k)(1=2− nB − k) ; (20)

where nB is given Eq. (17). For temperature tending to zero, u tends to in%nity, and
k tends to zero. As k is equal to the excess energy at temperature T above the
zero-temperature value, this gives us the energy density at any temperature in the
low-temperature phase.
The minimum energy corresponds to k = 0. We see that even at T = 0, we have

a residual energy NBJ above the ground state energy. Also, in addition to the frozen
entropy, there is also a contribution to the zero temperature entropy coming from the
macroscopic degeneracy of the ground state within the sector.

5. Concluding remarks

In this paper, we described a simple model where the phase space shows many-sector
decomposition in the low temperature phase. We showed that this sector decomposition
can be characterized fully in terms of a constant of motion called the irreducible string.
The exact partition function can be calculated easily in each of these sectors. The
relative weights of di3erent sectors in calculation of other observable averages can
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also be calculated similarly within the model. In our model, it depends only on the
temperature at which ergodicity breaking occurs. More generally, it would depend on
the history of the sample.
In calculating thermodynamical quantities like the average energy, we found that

di3erent sectors are not so di3erent. In particular, the free energy depended only on NB

and NC , and not on the arrangement of characters of the irreducible string. And so, the
average over sectors was same as value in one sector. This property of self-averaging
is expected to work for other quantities as well, e.g. correlation functions.
Of course, the breaking of ergodicity is put into the model “by hand”. However,

it allows us to see explicitly, in a simple setting, concepts like frozen entropy, and
disallowing slow processes completely makes possible discussion of glassy states as
equilibrium states of matter. This is admittedly an idealization, but useful, and perhaps
no di3erent from other idealizations like the thermodynamic limit, ideal heat-baths
(which exchange energy with the system, but otherwise do not perturb it), etc. well
known in equilibrium statistical mechanics. The main advantage is that the arbitrariness
in de%ning the notion of nearby states is avoided. The naive implementation of the latter
makes the ensemble depend on the initial state, and on the maximum distance allowed.
Some generalizations of the model are straightforward, e.g. inclusion of next-nearest-

neighbor interactions. One can also allow some other relaxation processes, like 0010→
0100. These reduce the number of disjoint sectors, but the number still grows expo-
nentially with the volume of the system. Work on more realistic models, or higher
dimensional cases seems like a promising area for further study.
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