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We consider a model of shape memory materials in which hierarchical twinning near the habit 
plane (austenite-martensite interface) is a new and crucial ingredient. The model includes (1) a 
triple-well potential (4' model) in local shear strain, (2) strain gradient terms up to second order 
in strain and fourth order in gradient, and (3) all symmetry allowed compositional fluctuation- 
induced strain gradient terms. The last term favors hierarchy which enables communication between 
macroscopic (cm) and microscopic (A) regions essential for shape memory. Hierarchy also stabilizes 
tweed formation (criss-cross patterns of twins). External stress or pressure modulates ("patterns") 
the spacing of domain walls. Therefore the "patternn is encoded in the modulated hierarchical 
variation of the depth and width of the twins. This hierarchy of length scales provides a related 
hierarchy of time scales and thus the possibility of non-exponential decay. The four processes of 
the complete shape memory cycle-write, record, erase and recall-are explained within this model. 
Preliminary results based on 2D molecular dynamics are shown for tweed and hierarchy formation. 

I. INTRODUCTION 

A variety of minerals, ceramics, ferroelectrics, Jahn-Teller materials, and most notably the shape memory alloys (e.g. 
NiTi, FePd, CuAuZnz) undergo a diffusionless, displacive (i.e. martensitic), weakly first order structural transition 
and exhibit transformation precursors that can occur up to 100s of degrees above the transition temperature To.  Many 
types of pretransitional structures (or "mesoscopic textures") have been observed in transmission electron microscopy 
(TEM) including the so called "tweed" (miss-cross pattern of twins) patterns [1,2]. It is widely accepted that the 
precursor behavior cannot be attributed to phonon mode softening, critical fluctuations, defects or impurities. In 
addition, it has gradually become apparent that precursors in martensites are intrinsic features indicative of stable 
(or metastable) modulated phases and that they are not due to artifacts developed in the course of the nucleation 
process. These materials also exhibit twinning below To. The twins are stabilized by a long range, habit plane linked, 
elastic interaction [3,4]. 

Martensite is a mesoscopic structure, a texture that occurs a t  a scale between atomic and macroscopic. The 
interphase boundaries involve 10 to 100 unit cells whereas the twinning and tweed modulation scale is microns. The 
multiscale phenomena or "martensitic" characteristics are now being observed in a variety of other materials, e.g. 
high T, superconductors [5], magnetostrictive materials, etc. Our focus is on ferroelastic martensites that exhibit the 
shape memory effect (SME) and are technologically useful, e.g. in temperature control, actuators, transducers, 
etc. [6]. Finally, we note that both tweed and twins of varying length scales have been observed experimentally [1,2]. 
There is growing belief that these precursors are in some way responsible for shape recovery, but the mechanism of 
SME remains unclear. 

The modulated phases can be understood quite generally within a Ginzburg-Landau framework if, in addition 
to the traditional elasticity terms, one appends appropriate nonlinear and nonlocal (strain gradient) terms to the 
elastic energy functional [7]. There are at  least two models for tweed in the literature: (a) A static model based 
on To fluctuations induced by random local alloying (composition) fluctuations [8]. The criss-crossing domain walls 
forming the tweed are thus random local metastable minima in a quenched spin glass like picture [8]. Although 
this model captures a specific property of these materials, namely sensitivity of T o  to compositional fluctuations, 
there is no obvious narrow "window" of elastic constants/material properties, within which only the small class of 
martensitic materials would naturally fall. Disorder is an essential aspect of the model i.e. a perfect alloy would 
not show tweed. Furthermore, it is not obvious how the interesting property of shape memory involving macroscopic 
"write/record/erase/recall" cycle would enter these glassy models. (b) The second model is a kinetic nucleation model 
based on long range strains (included at  a mean field level) induced by vacancies/defects in the lattice [5]. Tweed in this 
picture appears as a saddle point microstructure (either short lived or metastable) related to a temperature quench. 
This model has been shown in kinetic simulations to generate tweed as an intermediate (unstable or metastable) state 
over a limited range of time steps, while observed tweed is apparently a long lived microstructure. Neither of these 
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models has any obvious property that would serve as a mechanism for the macroscopic "stress-temperature" cycle 
that constitutes the shape memory effect. 

Here we present a phenomenological elastic model, quadratic in the strain and quartic in strain gradients, with 
all symmetry allowed terms consistently retained [9]. The model synthesizes a variety of properties specific to these 
materials. It contains two key ingredients, namely a cross-derivative gradient term that favors domain wall crossing, 
and the idea of hierarchical (e.g. Cayley tree) splitting of the domain walls from atomic scales at the habit plane 
to macrmopic scales inside the tweed. The tweed is obtained as a free energy minimum and its existence is here 
demonstrated in 2D simulations. Preliminary results based on a square-rectangle transformation indeed show a tweed 
with varying length scales. 

11. HIERARCHICAL TWINNING MODEL 

We construct below a phenomenological elastic model that synthesizes several ideas specific to these materials that 
have been suggested in the literature. Clapp has noted that the softness of martensitic materials implies that the 
coefficient of the quadratic strain gradient terms in the elastic energy - a(V6)' may be small or even negative requiring 
higher order gradients N (VZ + V;)' to provide stability to the phonon spectrum [lo]. Thus, one must consistently 
keep terms fourth order in gradient and quadratic in strain. We note that this, however, implies that one must also 
keep the symmetry allowed term (under 2D square-rectangle transformation) -(v: - 01:)'. This clearly generates 
cross terms -VZV: with a negative sign implying that criss-cross domain walls are energetically favored. Note that a 
similar term is generated by a Gaussian integration of compositional fluctuations linearly coupled to V:V: [8]. The 
first key aspect of this model is the assumption that the renormalized coefficient of this term retains a negative sign. 
This enables a competition with elastic terms with positive coefficients in some range of elastic parameters. 

The second key aspect is the idea of a hierarchical structure of domain walls a t  the habit plane. It is the energy 
lowering contributions of the negative cross gradient term from the hierarchicai structure that eventually stabilize 
the tweed microstructure. The physical basis for twinning at a habit plane is that while the equilibrium strain of 
austenite is zero, that of only one variant of martensite is nonzero, implying unacceptably high elastic energies. 
Therefore, martensitic twinning, i.e. generating alternate "slabs" of positive and negative strain, leads to zero average 
strain over neighboring macroscopic twin widths. Kohn and Miiller carried this idea further by proposing a domain 
wall twinning pattern even lower in energy with a branching of martensitic slabs into progressively finer widths as the 
habit plane is approached, resulting in zero strain when averaged over a few atomic spacings [ll]. 

Our proposed hierarchy involves Cayley tree branching of domain walls rather than Kohn and Miiller slabs, but 
incorporates the idea of zero atomic scale average strain on either side of the habit plane. Given these two key ideas 
in conjunction with a d6 type (i.e. triple well) model and appropriate gradient terms as above, one can show a 
minimum of free energy in terms of tweed size L and spacing W. The tweed region ends on the habit plane in a "skin" 
of hierarchical blocks attached to each domain wall. This is consistent with experimental observations [2] that show 
tweed like regions of varying scales. Our simulations on a discrete NxN lattice confirm this. It is also found that 
tweed microstructures are sensitive to externally applied pressure and can survive even below To. We note that many 
choices of hierarchy other than the Cayley tree could also be possible. 

The notion of a connected hierarchy of domain wall separations ranging from macroscopic to atomic length scales 
allows for a possible mechanism of shape memory in which macrcscopic stress variations can be fed down t~ atomic 
scales and then recovered in an appropriate pressure/temperature cycle. The hierarchy of length scales (e.g. A + cm) 
provides a hierarchy of time scales (e.g. nanoseconds + minutes) and hence the possibility of non-exponential decay 
[12]. For instance, if energy barriers go up linearly with hierarchical generations En - nE1, then decays are power law, - t - T I E 1 .  This implies that low temperatures (martensite) correspond to slower processes while high temperatures 
(austenite) correspond to faster processes. Again, this time behavior is essential for the shape memory cycle. 

The above ideas are embodied in the following (dimensionless) elastic model Hamiltonian: 



Here ri are dimensionless, scaled local shear strains defined on the sites of a 2D square lattice; fi and r are 
dimensionless stress and scaled temperature in the d6 model, respectively. T, denotes the temperature at which 
the shear modulus would soften completely, i.e. the elastic constants would satisfy CI1 = C l z  Of the three elastic 
gradient coefficients (a, 6, a ) ,  b and a are possibly modified by compositionalfluctuations, and are necessarily positive. 
The gradient terms (Hgrad and Ha) are evaluated using discrete derivatives on the lattice. For P = 0, Hbulk has three 
minima for 0 < r < $, one minimum at r = 0 (pure austenite) for r > 6 ,  and two side minima (two pure martensitic 
variants) for r < 0. The range for stable tweed is 1 < r < 6. There are three degenerate minima at r = 1. Httoin 
represents the habit plane-mediated long range elastic interaction (of strength v) which stabilizes twins below To (41. 
Iri - rjI denotes the distance between sites i and j on the square lattice. 

111. S T A T I C S  

To obtain analytic estimates for the energy and equilibrium size (L*, W*) of tweed plus hierarchy (see Fig. 2c 
below) at a given temperature and pressure (stress) we consider a "skeleton" approximation in which (i) only three 
possible values of strain (ei), namely €0, e+,  and E -  corresponding to the austenite and two variants of martensite, 
respectively, are considered; (ii) domain wall (twin boundary) between E + ,  and E -  or habit plane between €0 and r+ 
(or E-) are atomically sharp; (iii) a Cayley tree type hierarchy (i.e. regions of alternating E+ and 6- strain distribution 
increasing in size progressively away from the habit plane) is assumed to give as many domain walls and intersections 
as possible. The tweed pattern corresponds to a checkerboard strain distribution of c+ and r-. 

The gradient terms contribute to the total energy across the interface (habit plane or twin boundary) and near 
the corners. In particular, for creating an interface Hgrad costs energy but H, has no effect. In contrast, H, favors 
intersections (corners) but Hgrod does not contribute to the energy of corners. Thus, the system strikes a compromise 
by creating tweed in most of the bulk and hierarchical (branched) domain walls near the habit plane. Therefore, the 
total energy is Etota' = E~~~~~ + E ~ ~ ~ ~ ,  where 

Etweed - - A L ~  + 4(a + b)$+L + 2(a + b ) # n ~ L  - 2ff#no(l+ no), 

In the skeletal model the total number of domain walls (with separation Wa,) is no and the number of generations 
in the hierarchy equals no, where a, is the minimum separation between two domain walls at the habit plane in units 
of lattice constant. The parameter range for stable tweed is determined from 

b > ( a + b ) 3 > c r > a + b > 1 .  

This condition holds for a < 0 and b > 0 (and a must be positive). For P = 0, 4 = 1 and $* = a. 
Minimization of Etotal with respect to L (or equivalently W) for parameters satisfying the above condition indeed 

leads to a stable tweed with equilibrium size (L*, W*). The variation of equilibrium tweed width W* as a function 
of temperature is shown in Fig. 1 for representative parameters. Note that in the absence of external (or internal) 
stress tweed coarsens upon cooling toward To (see Fig. 1). The region of equilibrium tweed size L* = W*a, (n~  + 1) 
increases proportional to the equilibrium tweed modulation width W*. Below -TO there is no tweed and above a 
critical temperature (TUpper, which depends on the coefficients of the gradient terms: a, b, a )  tweed becomes unstable 
to the formation of austenite. These results are qualitatively consistent with experimental observations [1,2]. In the 
presence of external stress we find that tweed can exist even below To. This is essential for realizing the shape memory 
cycle. 
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FIG. 1. Equilibrium tweed width as a function of temperature for representative parameters. 

IV. DYNAMICS 

We consider strain variables c i  on an NxN 2D square lattice (N=96) of atomic (unit) scale. The simulations are 
based on molecular dynamics with the above static tweed Hamiltonian as a potential for the deterministic force term. 
The equation for the evolution of the strain in the system, after quenching, is given by 

where is the dimensionless viscosity, do is the relative strength of elastic energy to thermal energy, and ui represents 
noise of various forms, e.g. Langevin white noise. The latter satisfies the fluctuation-dissipation relationship: 

< ui(t)uj(tl) >= 216ij6(t - t') , 
To 

where T and To are the temperature and the martensitic transition termperature of the system, respectively. For the 
results shown here the second term on the left-hand-side of equation (6) and the noise term are omitted. 

Preliminary results are shown in Fig. 2 for representative parameter values. Modulated twins (in the presence of 
external stress) for T < To are depicted in Fig. 2a. The white and black regions correspond to the two martensitic 
variants. The long range interaction term HtWi, was appropriately treated with a cut-off. For - To < T < TUPPer a 
typical tweed structure with varying length scales is shown in Fig. 2b. A preliminary pattern for tweed with hierarchy 
is depicted in Fig. 2c, where the interior (bulk) consists of coarse tweed and the periphery comprises branched domain 
walls becoming finer as the habit plane is approached. 

Having shown the formation of tweed and hierarchy, we are now in a position to address the question of shape 
memory. A particular shape is given to the alloy at high temperature (above the transition temperature To in the 
austenite phase). The alloy is then cooled below To (in the twinned martensite phase) and the shape is randomly 
changed by applying external stress. When the alloy is reheated above To the alloy recovers its original shape. 

By refining our simulations we expect to be able to demonstrate that (i) an external spatially varying stress ("good" 
message) induces corresponding spatial domain wall variations in the tweed (WRITE process). (ii) This spatial tweed 
variation feeds down at T > To into the connected hierarchical blocks that terminate the domain walls. Since the 
splitting is of the Cayley tree type, this implies a feeding of information down to atomic scale (RECORD process). (iii) 



FIG. 2. (a) Modulated twin bands, (b) tweed, and (c) hierarchical tweed pattern for representative parameters. 
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On cooling T < To a competing, e.g. random, spatially varying stress ("bad" message) induces tweed variations on the 
macroscopic scale (ERASE process). Since at  low temperatures hierarchical structure variations are non-exponential 
(slow) [12] in time the good message remains recorded a t  lower levels. (iv) On warming above To the lower level 
hierarchies produce internal stress that drives a regeneration of the erased macroscopic pattern of the good message 
(RECALL process). In general, we expect that disorder as well as noise sources of the above and other forms will 
truncate the hierarchy below a certain level (generation), thus introducing "generational amnesia" below that level. 

V. CONCLUSION 

We have synthesized several ideas in the literature and a variety of properties specific to  martensitic materials 
based on experimental observations and theoretical calculations to construct a phenomenological model that can 
satisfactorily describe (i) twins, (ii) tweed, and (iii) shape memory phenomena. Hierarchical twinning of domain 
walls is a novel and crucial feature of this model. In particular, the model contains two key ingredients, namely a 
cross-derivative gradient term that favors domain wall crossing, and the idea of hierarchical Cayley tree splitting of 
the domain walls from atomic scales at  the habit plane to macroscopic scales inside the tweed. Specifically, tweed 
was obtained as a free energy minimum and its existence was demonstrated in simulations. We also suggested that 
hierarchically stabilized tweed microstructures can possibly lead to shape memory. Finally, we note that the above 
discussion and results do not apply to all martensitic materials but to a limited class of materials. 
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