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is a concept that all of us understand but find difficult
to quantify. The only rational approach through which
we can assess this and maintain a communication line
with other enginecers, scientists and public 1s with the
help of probability and statistics. In this sense aseismic
design at present is more a passive Insurance, at non-
zero risk levels, which will be effective if and when an
earthquake occurs. The risk of faillure due to earth-
quakes can be lessened fo small levels. But such an
exercise will invariably be very expensive. This 15 not
just an engineer's problem. It is for the planners to
calmly decide how much the country can spend in
relation to how much risk the public can tolerate in the
postulated scenario of a seismic failure of the Tehri dam
in the culturally important Himalayas. The planners and
the public should actively participate in the decision
making process.
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Disorder parameter description of phase

transitions

Subodh R. Shenoy

The Yoga posture, Sirshasana, or standing on ones’ head, is supposed to stimulate the brain cells. It
is similarly stimulating to see how far one can go in inverting conventional viewpoints. Can the
picture of a phase transition as an order parameter formation on cooling, be complemented by a
picture of a disorder parameter blow-out on warming?

In this article, we consider: 1. Phase transitions and their
conventional ‘order-parameter’ description; 2. Break-
down of these conventional ideas and the introduction
of a ‘disorder-parameter’ description for certain special
two-dimensional systems; 3. Extension of the disorder-
parameter description to a particular three-dimensional
system with a conventional transition; 4. Suggestion of
other models that might also be examined within the
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disorder-parameter description. As reviews exist™? the
subject slice is ‘vertical’ (following a particular model)
rather than ‘horizontal’.

Order-parameter description of phase transitions

Phase transitions are all around us—in the boiling of
milk, the formation of rain drops, and the onset of
spontaneous magnetization when a hot iron slab 1s
cooled. There is a drastic change of matter from one
internal arrangement to another, when a control
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variable like the temperature T is moved smoothly
through some critical value 7. This ‘phase’ or
microscopic arrangement of matter could, for example,
be atoms in a liquid, randomly clumping and
wandering, like off-duty soldiers strolling and chatting
in loose groups, on a parade ground. On cooling
smoothly through T, the atoms form themselves into a
lattice, like a soldiers’ group suddenly forming a square
array, in response to a whistle from an invisible drill-
sergeant. The square grows, and gaps are filled by
stragglers, to complete the emerging and expanding
pattern. Clearly it is natural to describe a phase
transition in terms of this tendency to order—a
temperature-dependent average ‘order parameter M
(say), that is zero for temperature T above T, and non-
zero below it. This ordering can either occur with M (T)
jumping up from zero, and with a nonzero latent heat
(‘first-order transition’); or M (T) smoothly rising from
zero, with a zero latent heat (‘second-order transition’).
The idea that a common average M appears in a
correlated fashion all across the system can be
expressed as a ‘correlation function’. This 15 an average
of M (r), the order parameter at a position r, multiplied
by M (), taken at some far-off point r’, so [r—r'| is very
large. For T>T,, with no overall order, {(M)=M=0}
the average of this product is the product of
the independent averages. (M ()M (r'))->{M ()
(M) =0. Only for T< T, do we have (M (r) M(r'))
— M ?#0 at large separations —a key idea called ‘long
range order’ (LRO), that helps define the average order
parameter, {M > =M. This is depicted schematically in
Figure 1.

This general conceptual framework seemed to work
for all phase transitions, and a program was succes-
sively applied to a whole host of phase transitions: (i)
Identifying the order parameter (M) in each case; (1)
finding out how the appropriate energy F depended on
it, and on temperature, F=F (M, T); further showing
that the minimum F energy corresponded to an
average M=0 for T>T, and M#0 for T<T; (ii})
including fluctuations about this average, especially 1n
the second order case.
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Figure !, Long range order in correlation function, and behaviour

of order parameter {for second-order transition),
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Thermal fluctuations of the order parameter exist
above T, for a second order phase transition, even
though the average order parameter is zero. Blobs of
ordered M (r)#0, of (temperature-dependent) size ¢(7),
form and disappear. Similar fluctuations of the order
parameter occur below 7,. They induce remarkably
simple temperature dependences around T, that are
just the temperature difference raised to (noninteger)
powers or exponents: M (T)~(T,— T ), susceptibility
x~1T.—T|7?, specific heat C~|T ~T|7% blob size
E(T)Y~|T.—T|™". What is even more remarkable is
that these exponents B, «, ¥, v are the same for all
materials in the same ‘universality class’, even though
lattice constants and shapes, strength of interactions
and so on, could be very different. The numbers depend
only on certain pure numbers common to all members
of the universality class, such as space dimensionality,
number of components of the order parameter, etc.

The job was to calculate these exponent values by
systematically including bit by bit, these order para-
meter fluctuations by a rescaling procedure, called
‘renormalization group’, that was developed by Kadanoff
of Chicago, and Wilson and Fisher of Cornell in the early
seventies. One by one, the membership of the club of
Understood Phase Transitions (PT) grew, with the
membership card being LRO, and an order parameter.
This confirmed the correctness of the conceptual
picture.

But there was trouble brewing....

Thermal fluctuations of the order parameter are
larger in lower” dimensional systems or models, as the
same disordering thermal energy, proportional to tem-
perature T, gets squeezed into a smaller-sized arena. In
fact for dimensions d at and below a (lower)
critical dimension' d,, (d <d,), fluctuations are so
violent that they destroy LRO, and the average of the
order parameter.

A simple model that should® show this absence of
ordering on cooling through all nonzero temperatures,
is the ‘planar ferromagnet’ or XY model, on a two-
dimensional (2D) lattice, for which d=d_=2. The model
can be visualized as arrows or ‘spins’, at angles 6, each
on the surface of a dinner plate in the X —Y plane,
whose centre § is on the nodes of a square 2D grid, as in
Figure 2a. There is clearly a relative angle 6,6
between the arrows on neighbouring sites § and J. The
energy H,; between each nearest-neighbour pair of spins
depends on the cosine of the angular difference,

BH, =(H, ks T)=—Kg cos {0,~8). (1)

Here K, 15 a dimensionless coupling strength and & s
a constapt. The same (2D) model effectively describes
thin films of helium-4 superfluids, and superconductors
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Figure 2 X Y model spins, {or lattice in (#) two dimensions, () three
dimensions.

like aluminium, that are in the same ‘universality class’
of phase (ransitions. All such systems/models, at
d=d,=2 are forbidden to order, for T#0 in the
conventional order parameter picture: the angular
fluctuations are too violent to permit long range order.
There should be no phase transition, at any T_#0.

Unfortunately they bappily order, on cooling, quite
unaware that this is theoretically verboten! Superfluid/
superconductor films have zero effective viscosity/elec-
trical resistance, below 2 nonzero transition temperature
T=T,

The PT club has a scruffy-looking outsider, looking
in, who must be somechow admitted, perhaps by
modifying the dress code. One might protest that he
should be blackballed: there is no LRO. But it is hard
to argue with an infinite conductivity!

Disorder parameter description in 2D

Kosterlitz and Thouless (KT), in 1973, provided a way
out: a new kind of phase transition, driven by the
unbinding of new kinds of excitations, that sidestepped
the issue of LRQO.

One kind of excitation in the 2D XY model is well
known. On warming from zero temperature, the spins,
frozen at 7=0 into a common angular direction #,=6,
can wiggle due to thermal energy, like a field of grass in
a gust of wind —a ‘spin wave’,

There is also another kind of excitation®. The four
spins of arrows on the corners of an elementary lattice-
square centred at R, can be thermally kicked to
successively turn 90° with respect to the previous spin,
on a clockwise (say) path. This 360° turn is also
distributed over the spins of the larger square enclosing
this elementary square, and so on, outwards, as in
Figure 3a. All spins in the system are tilted by
amounts that add up to 360° along any path that
encloses the centre R, This extended object, that has a
centre but no periphery, is called a ‘vortex’, and has
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Figure 3, Vortex excitations in (#) 2D X Ymodel a5 a point, (B) 3D
X Y model as a loop.

vorticity (sign of successive angular tilt) that is
m(R,)= + 1. In fact, the vortices are created in m= % 1
pairs from the zero vorticity ground state on warming,
with a pair-creation energy E, and a creation
probability or pair ‘fugacity’ y, given by the Boltzmann
factor, yo~exp {—Eo/kg T). If the £ 1 charges happen
to jump onto the same site in their travels, they
annihilate in a blaze of spin waves. However, they
cannot just disappear by themselves, while moving
around, and are ‘topologically stabie’.

The word ‘vortex’ is nothing more than a collective
noun for the swirl of spins that couple to each other by
equation (1), with coupling constant K,. The energy of
a pair of vortices m(r), m(r’) at positions r and r’ varies
logarithmically with the separation |r~r'}], as

[r—r]

BH (r,r)= -2nKy m(r)m(r') 1n +BE, (2)

dg

with BE;=1r%K,, the pair Creation energy and, a, the
minimum SsCale, ie. minimum vortex separation or
lattice coustant in the problem. The total energy is a
sum over all such pair separations.

Thus in the KT picture, the 2D XY model can be
transformed into an overall neutral Coulomb gas of
m= x1 ‘charges’, of pair probability y,, coupling K,, and
interpair potential InR. Whatever phase transition at
some temperature 7, occurs in the Coulomb gas, 15 also
the phase transition and critical temperature of the 2D
X Y model, and superfluid/superconductor thin films.

At low T there are a few vortex pairs bound in
‘dipoles’ +1 together; these increase in size and number
on warming, and smaller pairs can then nest and screen
the larger ones, allowing them to grow bigger still; and
finally the largest {infinite) size pair unbinds, at a
transition temperature T.. This is depicted in Figure
4a. The vortex unbinding destroys eflective supet-
conductivity in films, by causing energy losses oOr
dissipation from the free motion of vortices. The films
thus develop voltages on application of an electric
current drive, ie. go to normal metals at T=7_. In the
2D XY planar ferromagnet model, the independent
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Figure 4. Disorder parameter descriplion or vortex unbinding
picture (8) in 2D XY case, (§) 3D XY case.

motion of unbound vortices stirs up all the spins
randomly, for 7>T_. (A bound *1 dipole has, by
contrast, compensating ‘stirs’ and ‘anti-stirs’ for T<T)
The model may be simulated on the computer®?, with
4+ 1 vortices seen on the screen, and the KT picture is
confirmed.

How does one extract the thermal properties? One
needs to do a ‘sum over states’ or integration over ali
vortex arrangements. At first sight, this seems easy.
Perhaps the +1, —1, vortex dipole is tightly bound as
a ‘molecule’, and small-dipoles can then be simply
added. But as mentioned, Nature is not so kind. The
dipoles are nested, one inside the other, and are of all
separations or scales, from the lattice constant a,,
through a general separation a=a,¢e”, to infinity. The
trick is to proceed iteratively®® capturing vortex pairs
in separation slices da, and ultimately covering the
whole scale range g, <a< o0,

Because of nested dipole screening, the coupling
constant for two test charges becomes scale-dependent,
K,—K, and is cut down compared to the bare value,
X,, as in a dielectric. This incremental dipolar screening
reduction dK,, due to a small +1, —1 pair of size
between a, and a+da, will depend on the fugacity or
probability y- of finding such a pair, at that scale,
(The fugacity, from equation (2) depends on the
coupling, and must also becomes scale-dependent,
yo—Y,) If 4, = daja is the fractional scale change, one
finds the rate of change (A, is a constant) of the
coupling constant with fractional scale change is

dK,

ds

=~AoKZ ¥ (3a)

where the negative sign indicates a screening of
reduction of the force as one moves out.
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Once we have included the screening of pairs smalier
than a+da, this may as well be taken to be the new
minimum scale for the next step of the iteration. We

must track down and change any explicit dependences

on the old minimum scale, a, such as in the loganthms
of equation (2), or in minimum scale volume factors
(a~%)? for the pair coordinates in the sum over states.
These are to be replaced by a+da, and the fractional
bits and pieces ~da/a=ds so generated can be
absorbed in a new increment dy,. Thus the rate of
change of fugacity on scaling up 15
dy,

'37#(4_27”(() Y.

(3b}

Equations (3a) and (3b) are the famous Kosterlitz—
Thouless scaling equations in 2D. The nput to these
2D vortex coupling and fugacity equations is the bare
or initial, smallest scale values (K, yo=¢€xp (—n°Ky))
that are temperature dependent, since Ko~ T . Thas
the behaviour of the solution K,, y, will depend on
temperature. A drastic change in behaviour on a
smooth change of temperature would signal a phase
transition. Since equation (3b) at imijtial scale changes
sign at nK,a2, this could determine the transition
temperature, 7=T_.

Figure Sa shows K, y, behaviour for various
temperatures. For T'<T,, the %1 pairs are pulled
towards each other, and with more pairs of small
separation than large, and a pair fugacity fall to zero off
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Figure 8. Coupling constant K, and vortex pair (2D} or foop (3D)
fugacity y, versus 7/, the logarithm of the pair/loop size showing
drastic change of behaviour s temperature 158 ramed through
transition. For superfluid biehium, the superfluid density g, at a given
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with distance, y,—0: vortices are bound in (Overlapping)
parrs. The coupling constant of the MR potential
merely changes from one constant (Kp) to another (K ;)
ie. there 1is ‘dielectric’ behaviour, for T<T,
K_ =K, {1/6), where ¢ is like a vortex-charge dielectric
constant. For T> T, y,~00 so there ar¢ more large
than small + 1 separations in the system, 1.€. vortex dipole
unbinding has taken place. The coupling constant is
zero at large scales, K, —0 so the potential is short-
ranged, and /e is zero, 1.6, We are in a vortex ‘plasma
phase’, for 7> T _.

Since unbound vortices cause a net dissipation, this
means that at T=T_ there is a breakdown of
superfluidity or superconductivity, in thin films, and an
onset of normal metal dissipation.

Thus as promised by KT, the mystery of the 2D XY
model (and related systems) is resolved. It does have a
phase traosition, and must be admitted to the PT %lub
as a special case, even though it does not have the LRO
membership card, and only has a disorder parameter
description, unlike all other phase transitions.. ..

The Club atmosphere would be considerably more
convivial, if the admitted, but ostracised, Newest
Member was found to be not so ‘exotic’, after all. Could
at least some conventional phase transitions also be
treated through a disorder parameter description?

Disorder parameter description in 3D

The simplest model to consider is, naturally, the planar
ferromagnet energy of equation (1), but now with the
planar spins —n<@<m on a three dimensional cubic
lattice. This 1s the 3D XY model. It has a conventional
phase transition, with LRQ, and exponents’ v=0.67,
«=002, y= 134, It is in the same universality class as
the bulk helium-4 superfluad transition.

Does it have topological excitations, like the 2D XY
point vortices? Yes®, they are vortex loops. Think of
many vortex points, each on a 2D planc of the 3D
model, and stacked one directly above the other. This
induces a ‘vortex line’, threading the vortex centres.
Each plane’s spins tilt in a 360° circle around the vortex
line, forming a cylinder of spin-tiits around it. Now
merge the top and bottom of the vortex line, like a
snake eating its own tail. What you have is a vortex
loop, that is a toroidal region of tilted spins as depicted
in Figure 3b. Just as the 2D vortex poiats m=0, +1
had a sign depending on the sense of spin-tilt, so the
vortex loop is a directed topological current, J, with
components J_, J,, J, capable of taking on integer
values, 0, +1,

It costs thermal energy to create a 3D vortex loop,
just like a £1 2D vortex pair, so there are no loops at
T=0. The tumbling of a loop is a complex stirTing up
of the spins, especially on the scale of the loop diameter
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£ of the largest loop present. The transition scenario® '
is analogous to the 2D case (in fact, shice a directed 2D
loop and you have a +1 vortex pair}. At low T there
are a few small vortex loops; these increase in size and
number on warming; smaller loops can nest and screen
them, allowing them to grow bigger still;, and finally the
largest size loop E(T)~|T,— T " blows out in size at a
transition temperature 7T,. This 1s depicted in Figure
4 b.

The picture of a vortex-loop blow out was first
proposed? by Onsager and by Feynman, a5 an
explanation for the 3D superfluid transition. Computer
simulations of the 3D XY transition have shown® that
thermally generated vortex loops are not just a figment
of a theorist’s imagination. At T#0 one can keep track
of the lattice squares around which spins have been
twisted by 360°. The centres of these squares are found
to be threaded on closed vortex 100ps, and the loops,
indeed*® increase in number and complexity on
warming.

In fact, Shrock and coworkers'! found that if an
externally controlled energetic cost was imposed on
such vorticity-bearing squares, then the vortex loop
population was suppressed, (not surprising), and the
transition temperature for order-parameter formation
was increased {(quite interesting!'%?). Thus vortex loops
not only exist, but are involved in the transition. So
surely?s, there could be a2 description of the phase
transition” %, based on them?

The potential energy between two vortex-looP
topological current segments J(r) and J(r"), at rand I’
turns out to depend both on their separation jr—r;
and on their relative angle. In fact, it is? the fanubar
Biot-Savart “magnetic’ force law between two ‘electric
cutrents.

J(r)J(r)

ﬁH(r,r')anﬂ—!r__r,l— (4)

but with flipped sign. Same signs repel, opposite signs
attract. The self-energy £, of a loop of average
diameter a 1s just the sum of such energies for segments
on the same loop. The interloop interaction energy is
the sum of encrgies for segments on different loops. The
segment separations ¢an vary from a, 1o nfinity.
Figure 6 shows a possible configuration!™ of loop
segments, distributed in a doughnut or ‘vada’ shap¢
about a mean circle of diameter a, With a_ being a core
ot fluctuation region. How can a complex structure like
that be reduced to just two lengths, a, a? The
directional form of equation (4) plays a central role.
Suppose you take a current-carrying wire and double
it back along its length in a U-shape, or hairpin. The
faroff magnetic field due to the hairpin is drastically less
than the original straight wire, due to cancellation
between oppositely directed sides. Similarly, from
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Figure 6. Directed vortex loop with mean cucle diameter a, and
hairpin-like excursions from the mean circle, in a “vore’ region 4.
Ficlds cancel between opposite sides of harpins, and asym;)tnucalfy
the loop s effecuively a synpler configuration of ‘uncancelled’
azymuthal segments.

equation (4), most segments of a hairpin excursion out
from the mean diameter contribute little to the
potential seen by some far-off loop. Only an uncancelled
(azimuthal) segment in each hairpin may contribute.
Far-off regions see only these survivors, that add up to
a circle of diameter a in a core region a_ as in Figure 6.
So, in the end, apparent complexity reduces to effective
simplicity, because of the ‘magnetic’ nature of the
interaction, that depends on the direction of the
topological currents.

As before, we have a bare coupling K,, and loop
fugacity y, and a KT-type nested scaling procedure,
within the physical picture above. (In fact the couphng
K, has absorbed a minimum scale a,, in equation (4)).
The 3D scaling equations, obtained by Williams® and
the present author!® by different methods, are

dK,

‘“‘"‘d =K, — A, K/z Y- (5a)
r

dy

- ;== 6-n*K L)y, (Sb)

Some technical comments. On comparing with equation
(3), The 6’ in equation (5b) comes from rescaling the
minimum scale volume factor ~ (¢~ 3)%. The second
term In equation (5a) comes from small-loops of
probability y, screening the big loops, just as in
equation {3a), the 2D case. The first term in equation (5a)
1s new and moportant, and comes from requiring that
the minimum s$eparation between two loops, is a if the
smallest joop-diameter is a. (For 2D vortex points there
18 no comparable distinction, so such a term does not
occur 1o equation (3b)) The core size a,, enters the
problem, in L, =1n [a/a.(+)}+1 of equation (5b).

The core region contains random hairpin excursions,
and K, scales as a length, from equation (5a). A

CURRENT SCIENCE, VOL 65, N S, 10 SEPTEMBER 1993
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Brownian walk of length L has an rms extent ~L"?,
that swells, slightly with self-avoiding walk restrictions,
~L1°% We assume a (r)/ax~K] % as an ansatz!%or
model for the core. Equations (5) now form a closed
systern of equations, whose behaviour can be investigated,
as the temperature 7, and hence the inputs Ko~T 7",
and yo~exp{—constant X K,) are varied. It turns out
there is a sharp change in behaviour, as T varies
through T : a2 phase transition does occur.

The fugacity », and coupling K, show very
different behaviour above and below T, as seen ID
Figure (5b), just like the 2D case. The critical
exponents, obtained from this disorder parameter
approach, are v=(,67, a=~0015, y=1.343, close to
values’ from the order-parameter approach.

Thus the disorder-parameter approach can be used
for a 3D system, previously described by the order-

parameter approach. The two viewpoints are comple-
mentary.

Speculations on furcher applications

Possible applications include:
Layered 3D models

Anisotropically coupled layers of planar spins are of
interest, since high 7, superconductors involve weakly
coupled, phase-coherent layers' 2. Computer simulation
data exist?®. Figure 7 shows an agreement between
vortex loop theoryl® and simulation data*®, The very
weakly coupled layer region has some new physics, and
is being investigated'® It would be interesting to
calculate nonlinear current-voltage characteristics and
compare with experiment’?,

1.2 ——

TRANSITION

0.B

Ty —— THEORGTICAL i
2 0 SIMULATION
o

DECOUPLED -
20 PLANLS o
0.0 J......L. R A 1 — A
o 1 S 10 15

ANISOTROPIC COUPLING RATIO K, /K,

Figure 7. Cntical iplane coupling K, >K_ (inverse transition
temperature) versus ‘annotropy fatto (K, /K,) between plane/in-plane

couphngs. Here K, = K, s patropie 3D XY case K, =0 s
decoupled-plane 2D X Y case,
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Quantum fluctuations

A quantum system 1n 4 dimension ¢an be mapped onto
a classical system in (d + 1) dimensions, by introducing
an extra label to keep track of quantum effects’'®. Thus
a 2D Josephson junction array, or granular film
consisting of superconducting grains separated by oxide
layers, is effectively (2+1) D at T=0, and can be
described by vortex loops, now created by quantum,
rather than thermal fluctuations'?. Interesting experi-
mental results’* on superconductor to insulator tran-
sitions of granular films await theoretical understanding.

Other models, other topological excitations

Lattice gauge theones, of interest to particle physics,
and other models, show a change in the transition
temperature on suppression of relevant topological
excitations!®, showing that these are somehow involved
in the phase transition. Can an appropriately generalized
disorder parameter scaling be developed? Hubbard
models, relevant for high T_ superconductors, have their
own topological excitations®, Vortices exist in models
of the fractional quantum Hall effect'’. Dislocation
loop pictures of melting have been suggested?.

Glassy transitions

On rapid cooling of a silica melt, the disorder of the
molten lhiquid somehow gets trapped, in a kinetic
transition to a quasi-solid without LRO, that flows like
a liquid over a time-scale of centuries. If the melt can be
regarded as a soup of dislocation loops?, then a
disorder parameter kinetics approach might help in
making the mysterious glass transition more transparent.

Turbulence

Liquid Mlowing through a pipe has a parabolic velocity
profile, with maximum velocity v=v, at the centre, and
zero tangential velocity v=0 at the pipe walls, because
of viscosity. As a dimensionless parameter called the
Reynolds number Rocvy is increased, hydrodynamic
vortices form, and beyond a critical value A>R_,
turbulence sets in'®, Can this be regarded!® as a

nonequilibrium phase transition, driven by these nested
eddies of all scales, with.%2_ analogous to the crntical
temperature for a disorder parameter blowout?

In conclusion, the disorder parameter approach, first

regarded as applicable only to ‘exotic’ two-dimenstonal
systems, is perhaps also applicable to at least one
conventional three-dimensional transition. This raises
the possibility that order-parameter formation on
cooling, and disorder parameter blowout on warming,
may be complementary approaches to yet other phase
transilions, opening an interesting line of further
investigation.
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Predicting the high pressure phase
transformations using density functional
approach

Satish C. Gupta, Jyoti M. Daswani, S. K. Sikka and R. Chidambaram

High Pressure Physics Division, Bhabha Atomic Research Centre, Bombay 400 0835, [ndia

m last decade, there has been an intense feed- radiation sources have facilitated detection of new

back between high pressure experiments and theoretical F’hﬂ“’5 ;ransfﬂnpations in solids under megabar prées-
techniques based on the density functional formalism for ~ sures™® and this has opened up new vistas for testing
the analysis of phase transformations. This has resulted  theoretical electronic structure calculations’®. In dyna-

in increased accuracy in theoretical computations and  mic pressure studies also, 2 new technique has been
they have now acquired predictive capabilities. Some  developed to detect phase transformations that are

successful examples are discussed. The existing pl'l)b- accgmpanied b}r small volume changesg_ In thiS, q
lems and their possible solutions are indicated, phase transformation is inferred from the observation

of a discontinuity in the measured sound velocity as a

PrepICTIONS of pressure-induced phase transformations fUHCti?n of peak pressure in the shocked state. The
in materials from ab initio methods are rare. This is  detection, however, like that in other shock wave

because it has been difficult to calculate accurately the  techniques, 1s macroscopic in nature and the transition
small Gibbs free energy differences between different ~ needs to be characterized either by comparison with the

phases (a few mRy/atom or smaller). However, recently,
electron band structure techniques based on density bee fec
functional formalism have acquired such capabilities |
due to improvements in their formalisms as well as 20

increases in the computational speed. Using these

methods, it 1s now possible to correctly compute the

equation of state, the most stable crystal structure of

materials, phonon frequencies and other ground state >
properties!'2. The recent calculations on the element 10 .\\.
thorium, done at Trombay, describe the state of the art. N
High pressure experiments, done by Vohra and Akella’®,
have shown that Th undergoes a fcc to bct phase
change at 80 GPa and V/V,=0.6. Figure 1 displays the
variation of the computed total energy with axial ratio
in the bect structure at various compressions®, It
correctly shows the stability of the fcc (¢c/a=1.414 in the
bct axis) phase up to volume fraction of 0.6, at which

Th

Ebcg_ Efcc (MRy)
el
™~
i/

the bct structure becomes more stable. The pressure of -0 . '
transition from the fcc to bet phase at 80 GPa agrees \ /
very well with the experimental value. In addition, the ,
calculations accurately reproduce the experimental (V/V,) ‘ /
variation of the axial ratio (¢/a) with compression in the e 1.0 \
bet phase (Figure 2) and the equation of state (Figure -20 - ' J
3). Also they clearly bring out the important role played —0.60
by the occupation of the 5f band in this structural .= 0.495
transition in thorium. | | | !

The experimental techniques, also, have been drama- 1.0 1.2 1-4 1.6
tically improved during the same period. In static high Axial ratio (c/0)

investigations, advances in the diamond anwvil cell , .
pressure 1n gations, adv & Figure 1. Total energy E,  of thottum in the bet structure {relateve

(DAC}) technology coupled with the energy dispersive to that in fue phase), caleulated as a function of avwal ratiw ¢, a. The
X-ray diffraction technique (EDXRD) at synchrotron curves al various compressions are as indicated 1 the legend (ref 4
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